JPH0562911A - Manufacture of semiconductor superlattice - Google Patents

Manufacture of semiconductor superlattice

Info

Publication number
JPH0562911A
JPH0562911A JP22323491A JP22323491A JPH0562911A JP H0562911 A JPH0562911 A JP H0562911A JP 22323491 A JP22323491 A JP 22323491A JP 22323491 A JP22323491 A JP 22323491A JP H0562911 A JPH0562911 A JP H0562911A
Authority
JP
Japan
Prior art keywords
layer
gas
growth
germanium
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22323491A
Other languages
Japanese (ja)
Inventor
Kenya Nakai
建弥 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22323491A priority Critical patent/JPH0562911A/en
Publication of JPH0562911A publication Critical patent/JPH0562911A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To form a Ge layer and an Si layer or a Ge-Si layer and an Si layer on an Si substrate, and also to put a hetero-epitaxial growth method, in which excellent crystal quality and high growth speed can be obtained, into practical use. CONSTITUTION:The title semiconductor superlattice manufacturing method is the method with which a Ge layer and an Si layer or Ge-Si layer and an Si layer are epitaxially grown on an Si substrate by conducting a depressed CVD method under the atmosphere containing oxidizing impurity gas of 1000ppb or lower using GeH4 and trisilane (Si3H8) as raw gas and also using H2 or inert gas as carrier gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はシリコン層とゲルマニウ
ム層或いはシリコン層とゲルマニウムの組成比の多いシ
リコン・ゲルマニウム層よりなる高品質の半導体超格子
を高い成長速度でエピタキシャル成長させる方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for epitaxially growing a high-quality semiconductor superlattice comprising a silicon layer and a germanium layer or a silicon-germanium layer having a large composition ratio of the silicon layer and germanium at a high growth rate.

【0002】シリコン(以下Si) 基板の上にゲルマニウ
ム( 以下Ge) とSiとを交互にエピタキシャル成長させた
結晶は直接遷移型の特性をもち、光学素子としての応用
が期待されている。
A crystal obtained by alternately epitaxially growing germanium (hereinafter, Ge) and Si on a silicon (hereinafter, Si) substrate has a direct transition type characteristic and is expected to be applied as an optical element.

【0003】例えば、SiとGeからなる超格子結晶をヘテ
ロエピタキシャル成長させた材料を用いてヘテロバイポ
ーラトランジスタ(HBT),受光素子,高電子移動度
トランジスタ(HEMT)などの超高速で高集積を目的
とするデバイスの開発が進められているが、これらに対
して結晶欠陥が少なく、且つ成長速度の速い本方法の適
用は極めて効果的である。
For example, for the purpose of ultra-high speed and high integration of a hetero bipolar transistor (HBT), a light receiving element, a high electron mobility transistor (HEMT), etc. by using a material obtained by heteroepitaxially growing a superlattice crystal composed of Si and Ge. However, the application of the present method, which has few crystal defects and a high growth rate, is extremely effective.

【0004】[0004]

【従来の技術】SiとGe或いはこのSiとGe混晶とSiとをエ
ピタキシャル成長させて形成した結晶層を用いてHBT
などのデバイスを形成する方法としては分子線エピタキ
シィ(MBE)がある。
2. Description of the Related Art HBTs using a crystal layer formed by epitaxially growing Si and Ge or a mixed crystal of Si and Ge and Si
There is molecular beam epitaxy (MBE) as a method of forming such a device.

【0005】すなわち、電子線回折の信号強度を測定し
て結晶の成長速度を原子層的に制御することにより超格
子構造をしたヘテロエピタキシャル成長を行うことが可
能である。
That is, it is possible to perform heteroepitaxial growth having a superlattice structure by measuring the signal intensity of electron beam diffraction and controlling the crystal growth rate atomically.

【0006】こゝで、MBEは構造的には極めて精密に
結晶成長を行うことができる技術であるが、実用的には
成長した結晶の欠陥密度が大きく、また欠陥密度の制御
がなされないと云う問題がある。
Here, MBE is a technique capable of performing crystal growth extremely precisely in terms of structure, but in practice, the grown crystal has a large defect density, and the defect density must be controlled. There is a problem to say.

【0007】また、大型基板については多数個の処理が
できず、そのために生産性に問題がある。一方、気相成
長法(CVD)は良質の結晶層ができる方法であるが、
Si層或いはSiの組成比の大きな混晶層に対しては500 ℃
以下でのエピタキシャル成長は困難である。
Further, a large number of substrates cannot be processed on a large substrate, which causes a problem in productivity. On the other hand, the vapor phase growth method (CVD) is a method for forming a good quality crystal layer,
500 ° C for Si layer or mixed crystal layer with large Si composition ratio
The epitaxial growth below is difficult.

【0008】すなわち、弗化シラン(SiF2H2)のような特
殊のシランを用い、また紫外光照射を行うなどの方法を
用いると500 ℃以下での成長は可能なものゝ、Geとの混
晶の成長については不明である。
That is, if a special silane such as fluorinated silane (SiF 2 H 2 ) is used and a method of irradiating with ultraviolet light is used, it is possible to grow at 500 ° C. or less. The growth of mixed crystals is unknown.

【0009】また、トリシラン(Si3H8) は沸点が52.9℃
と低く、多結晶( ポリ)Si や非晶質(アモルファス)Si
の形成材料として知られているが、CVD法により低温
でエピタキシャル成長ができるか否かについては知られ
ていない。
Trisilane (Si 3 H 8 ) has a boiling point of 52.9 ° C.
As low as polycrystalline (poly) Si or amorphous (amorphous) Si
However, it is not known whether or not epitaxial growth can be performed at a low temperature by the CVD method.

【0010】また、Geについては、Ge層が厚い場合には
CVD法によりSi基板上にエピタキシャル成長できるこ
とは知られているが、成長の初期状態では島状成長が生
じることから格子欠陥が高い密度で含まれており、精密
な構造をとる結晶成長は困難である。
Regarding Ge, it is known that when the Ge layer is thick, it can be epitaxially grown on the Si substrate by the CVD method, but since island-shaped growth occurs in the initial state of growth, lattice defects have a high density. Since it is included, it is difficult to grow a crystal having a precise structure.

【0011】[0011]

【発明が解決しようとする課題】Si基板上にGeをCVD
法によりヘテロエピタキシャル成長させる原料ガスとし
てゲルマン(GeH4) , ジエチルゲルマン[GeH2(C2H5)],
ジメチルゲルマン[GeH2(CH3)] などが挙げられるがゲル
マン(GeH4) が最も一般的である。
[Problems to be Solved by the Invention] CVD of Ge on Si substrate
(GeH 4 ), diethyl germane [GeH 2 (C 2 H 5 )]
Examples include dimethylgermane [GeH 2 (CH 3 )], but germane (GeH 4 ) is the most common.

【0012】そして、Si基板上にヘテロ成長させるに当
たっては島状に成長し易いことから、平坦性のよいGe膜
を成長させるためには成長温度を500 ℃以下に低める必
要がある。
Since hetero-growth on a Si substrate is likely to occur in an island shape, it is necessary to lower the growth temperature to 500 ° C. or lower in order to grow a Ge film having good flatness.

【0013】次に、Si基板上にSiをエピタキシャル成長
させる際に原料ガスとしてジシラン(Si2H6) を使用する
場合は550 ℃以上ではエピタキシャル成長できるもの
ゝ、それ以下の温度でエピタキシャル成長を行うことは
極めて困難である。
Next, when disilane (Si 2 H 6 ) is used as a source gas for epitaxially growing Si on a Si substrate, it can be grown epitaxially at 550 ° C. or higher. It's extremely difficult.

【0014】また、Si基板上にSiとGeの混晶をヘテロエ
ピタキシャル成長させる場合に、Geの組成比が少ない場
合は550 ℃以上の温度で形成できるものゝ、Geの組成比
が大きな場合は平坦な混晶層を形成することは困難であ
る。
In the case of heteroepitaxially growing a mixed crystal of Si and Ge on a Si substrate, it can be formed at a temperature of 550 ° C. or higher when the Ge composition ratio is small, and it is flat when the Ge composition ratio is large. It is difficult to form such a mixed crystal layer.

【0015】以上のことから、Si層とGe層またはSi層と
Si・Ge混晶層をヘテロエピタキシャル成長させて半導体
超格子を形成するにはSi層の成長温度を500 ℃以下に下
げることが必要である。
From the above, the Si layer and the Ge layer or the Si layer
In order to form a semiconductor superlattice by heteroepitaxially growing a Si / Ge mixed crystal layer, it is necessary to lower the growth temperature of the Si layer to 500 ° C or lower.

【0016】[0016]

【課題を解決するための手段】上記の課題はGeH4と酸化
性不純物ガスの含有量が100ppb以下の雰囲気の下で、ト
リシラン(Si3H8)とを原料ガスとし、H2または不活性ガ
スをキャリアとし、減圧CVD法によりSi基板上にGe層
とSi層、またはGe・Si層とSi層とをエピタキシャル成長
させることを特徴として半導体超格子の製造方法を構成
することにより解決することができる。
[Means for Solving the Problems] The above-mentioned problems are caused by using trisilane (Si 3 H 8 ) as a source gas in an atmosphere containing GeH 4 and an oxidizing impurity gas content of 100 ppb or less, H 2 or an inert gas. The problem can be solved by configuring a method for manufacturing a semiconductor superlattice characterized by epitaxially growing a Ge layer and a Si layer or a Ge / Si layer and a Si layer on a Si substrate by using a gas as a carrier and a low pressure CVD method. it can.

【0017】[0017]

【作用】Si基板上にSi層とGe層との超格子またはSi層と
Si・Ge混晶層よりなる超格子を形成するには先に記した
ようにCVD法によりSi膜を形成する際の成長温度を50
0 ℃以下にすることが必要であるが、発明者はトリシラ
ン(Si3H8) ガスを用い、且つ、酸化性不純物ガス( O2,
H2O ,CO,CO2 など)の含有量が100 ppb 以下の雰囲気と
する場合に可能であることを見出した。
[Function] Superlattice of Si layer and Ge layer or Si layer on Si substrate
To form a superlattice composed of a Si / Ge mixed crystal layer, the growth temperature at the time of forming the Si film by the CVD method is set to 50 as described above.
Although it is necessary to control the temperature to 0 ° C. or less, the inventor uses trisilane (Si 3 H 8 ) gas and uses an oxidizing impurity gas (O 2 ,
It was found that it is possible when the content of H 2 O, CO, CO 2 etc.) is 100 ppb or less.

【0018】図1はジシラン(Si2H6)とトリシラン(Si3
H8) を使用した場合について、成長温度と成長速度との
関係を示しており、Si2H6 の分圧は1.5 ×10-2 torr ま
たSi 3H8 の分圧は1×10-2 torr と2×10-2 torr であ
り、H2をキャリアとして全圧力を20 torr としている。
この図から、Si2H6 を使用する場合は500 ℃では成長速
度は約2Å/分と少ないのに対し、Si3H8 を使用すると
500 ℃では数〜10Å/分と高く、また450 ℃でもエピタ
キシャル成長できることを示している。
FIG. 1 shows disilane (Si2H6) And trisilane (Si3
H8) Is used, the growth temperature and growth rate
Shows the relationship, Si2H6Partial pressure of 1.5 × 10-2 torr
Si 3H8 The partial pressure of 1 × 10-2 torr and 2 × 10-2 in torr
, H2As a carrier, the total pressure is set to 20 torr.
From this figure, Si2H6Growth rate at 500 ° C
Although the degree is as low as about 2Å / min, Si3H8 With
At 500 ℃, it is as high as several to 10 Å / min.
It shows that you can grow axially.

【0019】なお、実験によるとSi3H8 を使用してエピ
タキシャル成長を行うには O2, H2O,CO,CO2のような酸
化性不純物ガスの含有量が極めて少なく100 PPB 以下で
あることが必要で、そのため使用する減圧CVD装置は
気密性が高く、キャリアガスとSi3H8 およびGeH4の純度
が高いことが必須条件であることが判った。
According to the experiment, the content of the oxidizing impurity gas such as O 2 , H 2 O, CO, and CO 2 is extremely small and 100 PPB or less for performing epitaxial growth using Si 3 H 8. Therefore, it has been found that it is essential that the low pressure CVD apparatus used has high airtightness and that the carrier gas and the purity of Si 3 H 8 and GeH 4 are high.

【0020】なお、Si2H6 とSi3H8 の分圧が分圧が4×
10-2 torr 以上となると基板面に多結晶が成長するのが
観察された。次に、図2は0°から20°の低回折角度に
おいて測定したX線回折測定から求めた超格子の周期と
GeH4ガスの流量との関係を調べた実験結果であり、□印
は基板温度を470 ℃とし、Si3H8 の供給量を100ml/分,
供給時間を120 秒とし、GeH4の供給時間を30秒とした場
合、○印は基板温度を550 ℃とし、Si2H6 の供給量を20
ml/分, 供給時間を30秒とし、GeH4の供給時間を10秒と
した場合、△印は基板温度を500 ℃とし、Si2H6 の供給
量を40 ml/分, 供給時間を120秒とし、GeH4の供給時間
を20秒とした場合を示している。
The partial pressure of Si 2 H 6 and Si 3 H 8 is 4 ×.
At 10 -2 torr or more, it was observed that a polycrystal grew on the substrate surface. Next, FIG. 2 shows the period of the superlattice obtained from the X-ray diffraction measurement measured at a low diffraction angle of 0 ° to 20 °.
These are the experimental results of investigating the relationship with the flow rate of GeH 4 gas. □ indicates the substrate temperature is 470 ℃, Si 3 H 8 supply rate is 100 ml / min,
When the supply time is 120 seconds and the GeH 4 supply time is 30 seconds, the ○ mark indicates that the substrate temperature is 550 ° C and the Si 2 H 6 supply amount is 20 seconds.
ml / min, supply time 30 seconds, GeH 4 supply time 10 seconds, △ indicates substrate temperature 500 ° C, Si 2 H 6 supply 40 ml / min, supply time 120 Second, the case where the GeH 4 supply time is 20 seconds is shown.

【0021】こゝで、白抜きの印は測定の結果、超格子
が形成されていることを示しており、また黒印は超格子
の周期が認められないことを示している。こゝで、成長
周期が小さい場合と大きい場合に周期が認められない
が、その理由は成長周期が小さい場合はGe層はSiGeの混
晶の状態になり、また成長周期が大きい場合はGeの島状
成長のために表面の凹凸が激しくなり、見かけ上で混晶
に類似した状態になると考えている。
Here, a white mark indicates that a superlattice is formed as a result of the measurement, and a black mark indicates that the superlattice period is not recognized. Here, no period is observed when the growth period is short and when it is long, because the Ge layer is in a mixed crystal state of SiGe when the growth period is short, and when the growth period is long, Ge It is believed that the island-like growth makes the surface uneven and becomes apparently similar to a mixed crystal.

【0022】同図より、Si2H6 を使用し、550 ℃で成長
させた○印で表した超格子4では周期が6Å以下と20Å
以上では観察されないが、Si3H8 を使用し、470 ℃で成
長させた□印で表した超格子5では周期が4Å以下と30
Å以上では観察されなくなるが、Si3H8 の使用により周
期幅の範囲を広げることができることが判る。
From the figure, in the superlattice 4 represented by the mark ○, which was grown at 550 ° C. using Si 2 H 6 , the period was 6 Å or less and 20 Å.
Although not observed above, in the superlattice 5 represented by □ grown using Si 3 H 8 at 470 ℃, the period is less than 4Å and 30
Although it is not observed above Å, it is understood that the range of the period width can be widened by using Si 3 H 8 .

【0023】また、(004) 面のX線回折の結果から求め
たSiGe超格子の平均組成から、Si2H 6 とGeH4を用い、55
0 ℃で成長させた○印で表した超格子4と500 ℃で成長
させ△印で表した超格子6ではGe層内のGeの組成比は高
々50%であるが、Si3H8とGeH 4を用い、450 ℃で成長さ
せ□印で表した超格子5のGe層内のGe組成は80%以上と
推定することができ、著しく改善されていることが判
る。
Further, it was determined from the result of X-ray diffraction of the (004) plane.
From the average composition of the SiGe superlattice2H 6And GeHFourUsing, 55
Superlattice 4 grown at 0 ℃ and marked with ○ and grown at 500 ℃
In the superlattice 6 represented by Δ, the Ge composition ratio in the Ge layer is high.
50% each, but Si3H8And GeH FourGrown at 450 ° C
The Ge composition in the Ge layer of the superlattice 5 indicated by □ is 80% or more.
Can be estimated and found to be significantly improved.
It

【0024】[0024]

【実施例】実施例1:(Ge層とSi層との多層成長の例)
面方位が(001)のSiを基板とし、これを硫酸(H2SO4)と
過酸化水素(H2O2)の混合液に浸漬して表面の酸化処理を
行った後、弗酸(HF)水溶液に浸漬して酸化膜の除去を行
って清浄化処理を行い、次に、この基板を気相成長装置
に収容して直前処理として真空度が10 torr の高純度の
H2雰囲気中で温度900 度で10分間の熱処理を行って酸化
膜を除いた。
EXAMPLES Example 1: (Example of multi-layer growth of Ge layer and Si layer)
After using Si having a plane orientation of (001) as a substrate and immersing it in a mixed solution of sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ) to oxidize the surface, hydrofluoric acid ( (HF) aqueous solution to remove the oxide film for cleaning, then place this substrate in a vapor phase epitaxy apparatus and immediately before processing, use a high-purity vacuum with a degree of vacuum of 10 torr.
The oxide film was removed by performing a heat treatment at a temperature of 900 ° C. for 10 minutes in an H 2 atmosphere.

【0025】その後、空冷により基板温度を450 ℃に
し、Si3H8 とGeH4の分圧をそれぞれ2×10-2 torr と
し、H2をキャリアとして全圧力を20 torr としてして交
互に供給することによりSi層とGe層を交互に成長させ、
超格子を形成することができた。 実施例2:(Ge・Si層とSi層との成長の例)実施例1と
同様にしてSi基板の清浄化処理と酸化膜の除去を行った
後、図3に示すようなガス供給プログラムにより短時間
づつ独立にGeH4とSi3H8 のガスを供給した。
After that, the substrate temperature was set to 450 ° C. by air cooling, the partial pressures of Si 3 H 8 and GeH 4 were each set to 2 × 10 -2 torr, and the total pressure was set to 20 torr by using H 2 as a carrier, and alternately supplied. To grow Si layers and Ge layers alternately,
The superlattice could be formed. Example 2: (Example of growth of Ge / Si layer and Si layer) After performing cleaning treatment of Si substrate and removal of oxide film in the same manner as in Example 1, a gas supply program as shown in FIG. The gas of GeH 4 and Si 3 H 8 was independently supplied for a short time.

【0026】すなわち、この場合はGeH4を1分間供給し
た後、20秒の間隔をおいてSi3H8 を4分間供給し、20秒
の間隔をおいてGeH4を1分間供給し、これを繰り返す。
このようにGeH4の供給時間が短くなると、GeとSiの相互
拡散による組成の平均化のために、数Å程度の厚さの混
晶層を作ることができる。
That is, in this case, GeH 4 was supplied for 1 minute, Si 3 H 8 was supplied for 4 minutes at an interval of 20 seconds, and GeH 4 was supplied for 1 minute at an interval of 20 seconds. repeat.
When the GeH 4 supply time is shortened in this way, a mixed crystal layer having a thickness of about several Å can be formed due to the averaging of the composition due to the mutual diffusion of Ge and Si.

【0027】また、Si層はその厚さに相当する時間まで
Si3H8 を供給することにより作ることができる。以上の
方法により超格子を作ることができた。
Also, the Si layer is up to the time corresponding to its thickness.
It can be made by supplying Si 3 H 8 . A superlattice could be made by the above method.

【0028】[0028]

【発明の効果】本発明の実施によりGe層とSi層、或いは
高濃度のGeを含むGe・Si混晶層とSi層よりなる超格子構
造を高い成長速度で品質よく成長させることができる。
According to the present invention, a superlattice structure composed of a Ge layer and a Si layer, or a Ge / Si mixed crystal layer containing a high concentration of Ge and a Si layer can be grown with high quality at a high growth rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】成長温度と成長速度との関係図である。FIG. 1 is a relationship diagram between a growth temperature and a growth rate.

【図2】GeH4の流量と超格子の周期との関係図である。FIG. 2 is a relationship diagram between a GeH 4 flow rate and a superlattice period.

【図3】超格子構造を形成するガス供給プログラムの実
施例である。
FIG. 3 is an example of a gas supply program for forming a superlattice structure.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸化性不純物ガスの含有量が100ppb以下
の雰囲気の下で、トリシランとゲルマンとを原料ガスと
し、水素または不活性ガスをキャリアとして減圧気相成
長方法によりシリコン基板上にゲルマニウム層とシリコ
ン層、またはゲルマニウム・シリコン層とシリコン層と
をエピタキシャル成長させることを特徴とする半導体超
格子の製造方法。
1. A germanium layer on a silicon substrate by a low pressure vapor deposition method using trisilane and germane as source gases and hydrogen or an inert gas as a carrier in an atmosphere having an oxidizing impurity gas content of 100 ppb or less. And a silicon layer, or a germanium / silicon layer and a silicon layer are epitaxially grown.
【請求項2】 前記シリコン層とゲルマニウム・シリコ
ン層との繰り返し成長がシリコン層とゲルマニウム層の
成長を停止する期間を挟みつゝ、それぞれ独立にトリシ
ランガスとゲルマンガスをシリコン基板上に供給して行
うことを特徴とする請求項1記載の半導体超格子の製造
方法。
2. A period in which the repeated growth of the silicon layer and the germanium-silicon layer stops the growth of the silicon layer and the germanium layer is sandwiched, and trisilane gas and germane gas are independently supplied to the silicon substrate. The method for manufacturing a semiconductor superlattice according to claim 1, wherein the method is performed.
【請求項3】 前記ゲルマニウム・シリコン層における
ゲルマニウムの組成比が50%以上であることを特徴とす
る請求項2記載の半導体超格子の製造方法。
3. The method for manufacturing a semiconductor superlattice according to claim 2, wherein the composition ratio of germanium in the germanium / silicon layer is 50% or more.
JP22323491A 1991-09-04 1991-09-04 Manufacture of semiconductor superlattice Withdrawn JPH0562911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22323491A JPH0562911A (en) 1991-09-04 1991-09-04 Manufacture of semiconductor superlattice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22323491A JPH0562911A (en) 1991-09-04 1991-09-04 Manufacture of semiconductor superlattice

Publications (1)

Publication Number Publication Date
JPH0562911A true JPH0562911A (en) 1993-03-12

Family

ID=16794905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22323491A Withdrawn JPH0562911A (en) 1991-09-04 1991-09-04 Manufacture of semiconductor superlattice

Country Status (1)

Country Link
JP (1) JPH0562911A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065517A3 (en) * 2001-02-12 2003-10-30 Asm Inc Deposition method over mixed substrates using trisilane
US6815007B1 (en) 2002-03-04 2004-11-09 Taiwan Semiconductor Manufacturing Company Method to solve IMD-FSG particle and increase Cp yield by using a new tougher UFUN season film
US7005160B2 (en) 2003-04-24 2006-02-28 Asm America, Inc. Methods for depositing polycrystalline films with engineered grain structures
US7026219B2 (en) 2001-02-12 2006-04-11 Asm America, Inc. Integration of high k gate dielectric
US7092287B2 (en) 2002-12-18 2006-08-15 Asm International N.V. Method of fabricating silicon nitride nanodots
US7186630B2 (en) 2002-08-14 2007-03-06 Asm America, Inc. Deposition of amorphous silicon-containing films
US7294582B2 (en) 2002-07-19 2007-11-13 Asm International, N.V. Low temperature silicon compound deposition
US7297641B2 (en) 2002-07-19 2007-11-20 Asm America, Inc. Method to form ultra high quality silicon-containing compound layers
US7312415B2 (en) 1997-01-29 2007-12-25 Foundation For Advancement Of International Science Plasma method with high input power
US7427571B2 (en) 2004-10-15 2008-09-23 Asm International, N.V. Reactor design for reduced particulate generation
JP2009278086A (en) * 2008-05-16 2009-11-26 Asm America Inc Process and apparatus processing wafer
US7629270B2 (en) 2004-08-27 2009-12-08 Asm America, Inc. Remote plasma activated nitridation
US7674726B2 (en) 2004-10-15 2010-03-09 Asm International N.V. Parts for deposition reactors
US7718518B2 (en) 2005-12-16 2010-05-18 Asm International N.V. Low temperature doped silicon layer formation
US7732350B2 (en) 2004-09-22 2010-06-08 Asm International N.V. Chemical vapor deposition of TiN films in a batch reactor
US7833906B2 (en) 2008-12-11 2010-11-16 Asm International N.V. Titanium silicon nitride deposition
US7850938B2 (en) 2004-03-17 2010-12-14 Denki Kagaku Kogyo Kabushiki Kaisha Silicon particles, silicon particle superlattice and method for producing the same
JP2012231165A (en) * 2003-07-23 2012-11-22 Asm America Inc Deposition of silicon germanium on silicon-on-insulator structures and bulk substrates

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7312415B2 (en) 1997-01-29 2007-12-25 Foundation For Advancement Of International Science Plasma method with high input power
US7273799B2 (en) 2001-02-12 2007-09-25 Asm America, Inc. Deposition over mixed substrates
US7186582B2 (en) 2001-02-12 2007-03-06 Asm America, Inc. Process for deposition of semiconductor films
US6716713B2 (en) 2001-02-12 2004-04-06 Asm America, Inc. Dopant precursors and ion implantation processes
US6716751B2 (en) 2001-02-12 2004-04-06 Asm America, Inc. Dopant precursors and processes
US7285500B2 (en) 2001-02-12 2007-10-23 Asm America, Inc. Thin films and methods of making them
US6900115B2 (en) 2001-02-12 2005-05-31 Asm America, Inc. Deposition over mixed substrates
US6821825B2 (en) 2001-02-12 2004-11-23 Asm America, Inc. Process for deposition of semiconductor films
KR101027485B1 (en) * 2001-02-12 2011-04-06 에이에스엠 아메리카, 인코포레이티드 Improved process for deposition of semiconductor films
US6958253B2 (en) 2001-02-12 2005-10-25 Asm America, Inc. Process for deposition of semiconductor films
WO2002080244A3 (en) * 2001-02-12 2004-03-18 Asm Inc Improved process for deposition of semiconductor films
US7585752B2 (en) 2001-02-12 2009-09-08 Asm America, Inc. Process for deposition of semiconductor films
US7026219B2 (en) 2001-02-12 2006-04-11 Asm America, Inc. Integration of high k gate dielectric
JP2008098668A (en) * 2001-02-12 2008-04-24 Asm America Inc Improved deposition method of semiconductor film
US6962859B2 (en) 2001-02-12 2005-11-08 Asm America, Inc. Thin films and method of making them
WO2002065516A3 (en) * 2001-02-12 2003-11-13 Asm Inc Improved process for deposition of semiconductor films
WO2002065517A3 (en) * 2001-02-12 2003-10-30 Asm Inc Deposition method over mixed substrates using trisilane
US6743738B2 (en) 2001-02-12 2004-06-01 Asm America, Inc. Dopant precursors and processes
US6815007B1 (en) 2002-03-04 2004-11-09 Taiwan Semiconductor Manufacturing Company Method to solve IMD-FSG particle and increase Cp yield by using a new tougher UFUN season film
US7297641B2 (en) 2002-07-19 2007-11-20 Asm America, Inc. Method to form ultra high quality silicon-containing compound layers
US7294582B2 (en) 2002-07-19 2007-11-13 Asm International, N.V. Low temperature silicon compound deposition
US8921205B2 (en) 2002-08-14 2014-12-30 Asm America, Inc. Deposition of amorphous silicon-containing films
US7186630B2 (en) 2002-08-14 2007-03-06 Asm America, Inc. Deposition of amorphous silicon-containing films
US7092287B2 (en) 2002-12-18 2006-08-15 Asm International N.V. Method of fabricating silicon nitride nanodots
US7005160B2 (en) 2003-04-24 2006-02-28 Asm America, Inc. Methods for depositing polycrystalline films with engineered grain structures
JP2012231165A (en) * 2003-07-23 2012-11-22 Asm America Inc Deposition of silicon germanium on silicon-on-insulator structures and bulk substrates
US7850938B2 (en) 2004-03-17 2010-12-14 Denki Kagaku Kogyo Kabushiki Kaisha Silicon particles, silicon particle superlattice and method for producing the same
US8221881B2 (en) 2004-03-17 2012-07-17 Denki Kagaku Kogyo Kabushiki Kaisha Silicon particle, silicon particle superlattice and method for producing the same
US7629270B2 (en) 2004-08-27 2009-12-08 Asm America, Inc. Remote plasma activated nitridation
US7732350B2 (en) 2004-09-22 2010-06-08 Asm International N.V. Chemical vapor deposition of TiN films in a batch reactor
US7674726B2 (en) 2004-10-15 2010-03-09 Asm International N.V. Parts for deposition reactors
US7427571B2 (en) 2004-10-15 2008-09-23 Asm International, N.V. Reactor design for reduced particulate generation
US7718518B2 (en) 2005-12-16 2010-05-18 Asm International N.V. Low temperature doped silicon layer formation
JP2009278086A (en) * 2008-05-16 2009-11-26 Asm America Inc Process and apparatus processing wafer
US7833906B2 (en) 2008-12-11 2010-11-16 Asm International N.V. Titanium silicon nitride deposition

Similar Documents

Publication Publication Date Title
JPH0562911A (en) Manufacture of semiconductor superlattice
EP1439570A1 (en) SiGe strain relaxed buffer for high mobility devices and a method of fabricating it
JP5543103B2 (en) Semiconductor substrate, semiconductor substrate manufacturing method, and electronic device
JPH0666274B2 (en) (III) -Method for forming group V compound semiconductor
WO2009084240A1 (en) Semiconductor substrate, method for producing semiconductor substrate, and electronic device
JP2007511892A (en) Epitaxial growth of relaxed silicon germanium layers.
JP2009177169A (en) Semiconductor substrate and method of manufacturing the same
JP5254195B2 (en) Method for manufacturing a single crystal semiconductor layer over a substrate
Fukuda et al. High quality heteroepitaxial Ge growth on (100) Si by MBE
JP2570646B2 (en) Si-based semiconductor crystal substrate and method of manufacturing the same
JPWO2011090040A1 (en) Epitaxial crystal substrate manufacturing method
JPH0529234A (en) Epitaxial crowing method
JPH0427116A (en) Method of forming semiconductor heterojunction
JPS6012775B2 (en) Method for forming a single crystal semiconductor layer on a foreign substrate
JPS63228714A (en) Manufacture of semiconductor crystal film
JP2651146B2 (en) Crystal manufacturing method
JP2001351869A (en) Silicon wafer and manufacturing method
JPH0645249A (en) Growth method of gaas layer
JPH09306844A (en) Semiconductor device and manufacture thereof
JPS6211221A (en) Molecular-beam epitaxial growth method
JP4216580B2 (en) ZnTe compound semiconductor surface treatment method and semiconductor device manufacturing method
JP4052458B2 (en) ZnO semiconductor manufacturing method
JPH01179788A (en) Method for growing iii-v compound semiconductor on si substrate
JPH01120011A (en) Inp semiconductor thin film
JPH09213635A (en) Formation of heteroepitaxial semiconductor substrate, compound semiconductor device having the substrate and its manufacture

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203