JPH0555647A - Superconducting mixer element - Google Patents

Superconducting mixer element

Info

Publication number
JPH0555647A
JPH0555647A JP3240539A JP24053991A JPH0555647A JP H0555647 A JPH0555647 A JP H0555647A JP 3240539 A JP3240539 A JP 3240539A JP 24053991 A JP24053991 A JP 24053991A JP H0555647 A JPH0555647 A JP H0555647A
Authority
JP
Japan
Prior art keywords
intermediate frequency
superconducting
mixer element
impedance matching
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3240539A
Other languages
Japanese (ja)
Other versions
JP3101362B2 (en
Inventor
Kazuya Futaki
一也 二木
Shuichi Yoshikawa
修一 吉川
Masanobu Yoshisato
順信 善里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP03240539A priority Critical patent/JP3101362B2/en
Publication of JPH0555647A publication Critical patent/JPH0555647A/en
Application granted granted Critical
Publication of JP3101362B2 publication Critical patent/JP3101362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/005Transference of modulation from one carrier to another, e.g. frequency-changing by means of superconductive devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To efficiently produce an intermediate frequency output by providing a tunable impedance matching circuit in an intermediate frequency output fetch unit in a superconducting mixer element having a Josephson junction. CONSTITUTION:A tunable impedance matching circuit 3 formed on a board 1 for impedance-matching a detector 2 with an intermediate frequency amplifier to be connected to a superconducting mixer element, is provided. The circuit 3 has a pair of meander type superconducting thin film inductors 4, 5. The inductor 5 of an output side is formed on a thin film heater 6 formed on the board 1 through an insulating layer. The impedance matching of the detector 2 to an intermediate frequency amplifier is conducted by the L-coupling of the inductors 4, 5. In this case, the temperature of the heater 6 is controlled to effectively fetch an intermediate frequency output.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ジョセフソン接合か
らなる超電導ミキサ素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting mixer element having a Josephson junction.

【0002】[0002]

【従来の技術】超電導体特有の現象であるジョセフソン
効果を利用した超電導ミキサ素子の研究は早くからなさ
れている。特にジョセフソン素子の研究においては、超
電導体/絶縁体/超電導体の積層構造を持つ、いわゆる
SISトンネル接合素子が中心になり、超電導ミキサ素
子の研究もSIS準粒子ミキサに関するものが中心とな
っている(特公昭60−3797号公報および特開昭6
1−733691号公報参照)。
2. Description of the Related Art Research on superconducting mixer elements utilizing the Josephson effect, which is a phenomenon peculiar to superconductors, has been made for a long time. In particular, research on Josephson devices is centered on so-called SIS tunnel junction devices having a laminated structure of superconductor / insulator / superconductor, and research on superconducting mixer devices is also centered on SIS quasi-particle mixers. (Japanese Patent Publication No. 60-3797 and Japanese Unexamined Patent Publication No. Sho 6)
No. 1-733691).

【0003】しかし、昨今の電気通信技術の発達にとも
ない、通信衛生等を利用した情報通信分野においては、
より高い周波数帯域の需要が多くなり、それにともない
ミリ波、サブミリ波帯における受信器、すなわちジョセ
フソンミキサの重要性も見直されてきている。
However, with the recent development of telecommunication technology, in the field of information communication utilizing communication hygiene,
With the increasing demand for higher frequency bands, the importance of receivers in the millimeter wave and sub-millimeter wave bands, that is, Josephson mixers, has been reviewed.

【0004】従来、Nb等の金属系超電導体あるいはY
BaCuO系、BiSrCaCuO系、TlSrCaC
uO系などに代表される酸化物超電導体において作製さ
れたジョセフソンミキサは、実験室レベルにおいては、
ポイントコンタクト型やクラックジャンクション型の素
子でその特性が得られている。
Conventionally, a metallic superconductor such as Nb or Y
BaCuO type, BiSrCaCuO type, TlSrCaC
At the laboratory level, Josephson mixers made of oxide superconductors represented by uO system are
Its characteristics have been obtained with point contact type and crack junction type elements.

【0005】[0005]

【発明が解決しようとする課題】しかし、ポイントコン
タクト型素子の欠点である接触部における表面酸化(劣
化)、ヒートサイクルにおける特性の劣化や経時変化、
再現性が得られないなどの種々の問題からそれらの実用
化は難しい。
However, surface oxidation (deterioration) at the contact portion, which is a drawback of the point contact type element, deterioration of characteristics in the heat cycle and change with time,
Due to various problems such as lack of reproducibility, it is difficult to put them into practical use.

【0006】また、これらの問題が比較的少ないウイー
クリンク型の素子(弱結合素子)に関しては、その素子
インピーダンスが低いため、ミキシング後の中間周波出
力を効率良く取出し、後段の中間周波増幅器へ導くこと
が難しいという欠点を持っている。
With regard to the weak link type element (weakly coupled element), which has relatively few of these problems, the element impedance is low, so that the intermediate frequency output after mixing is efficiently taken out and led to the intermediate frequency amplifier in the subsequent stage. It has the drawback of being difficult.

【0007】この発明は、中間周波出力を効率よく取り
出すことができる超電導ミキサ素子を提供することを目
的とする。
An object of the present invention is to provide a superconducting mixer element which can efficiently take out an intermediate frequency output.

【0008】[0008]

【課題を解決するための手段】この発明による超電導ミ
キサ素子は、ジョセフソン接合からなる超電導ミキサ素
子において、中間周波出力取出部にチューナブルインピ
ーダンスマッチング回路を設けたことを特徴とする。
A superconducting mixer element according to the present invention is characterized in that a tunable impedance matching circuit is provided in an intermediate frequency output extraction portion of the superconducting mixer element composed of a Josephson junction.

【0009】チューナブルインピーダンスマッチング回
路は、たとえば、一対のミアンダータイプの超電導薄膜
インダクタから構成され、一対の超電導薄膜インダクタ
のうち少なくとも一方が、薄膜ヒータ上に絶縁膜を介し
て形成される。
The tunable impedance matching circuit is composed of, for example, a pair of meander type superconducting thin film inductors, and at least one of the pair of superconducting thin film inductors is formed on the thin film heater via an insulating film.

【0010】[0010]

【作用】ジョセフソン接合からなる超電導ミキサ素子に
おいて、中間周波出力取出部にチューナブルインピーダ
ンスマッチング回路が設けられているので、中間周波出
力を効率よく取り出すことができる。
In the superconducting mixer element having the Josephson junction, since the tunable impedance matching circuit is provided in the intermediate frequency output extraction section, the intermediate frequency output can be extracted efficiently.

【0011】[0011]

【実施例】以下、この発明の実施例について説明する。Embodiments of the present invention will be described below.

【0012】図1は、超電導ミキサ素子を示している。FIG. 1 shows a superconducting mixer element.

【0013】超電導ミキサ素子は、基板1上に形成され
た超電導体からなる検出素子2と、基板1上に形成され
かつ検出素子2と超電導ミキサ素子に接続される図示し
ない中間周波数増幅器とのインピーダンスマッチングを
行うためのチューナブルインピーダンスマツチング回路
3とからなる。
The superconducting mixer element has an impedance of a detecting element 2 made of a superconductor formed on a substrate 1 and an intermediate frequency amplifier (not shown) formed on the substrate 1 and connected to the detecting element 2 and the superconducting mixer element. It comprises a tunable impedance matching circuit 3 for matching.

【0014】チューナブルインピーダンスマツチング回
路3は一対のミアンダータイプの超電導薄膜インダクタ
4および5を備えている。出力側のインダクタ5は、基
板1上に形成された薄膜ヒータ6上に絶縁層を介して形
成されている。
The tunable impedance matching circuit 3 comprises a pair of meander type superconducting thin film inductors 4 and 5. The inductor 5 on the output side is formed on the thin film heater 6 formed on the substrate 1 via an insulating layer.

【0015】検出素子2は、次のようにして作成され
る。
The detecting element 2 is produced as follows.

【0016】まず、Y2 3 とBaCO3 とCuO粉末
を用意し、Y:Ba:Cu=1:2:3の比率で秤量
後、約1トン/cm2 の圧力でプレスして原材料ペレッ
トを形成する。このペレットをアルゴンアークなどによ
って2000℃以上に加熱して数秒間溶融し、続いてこ
の溶融ペレットを103 ℃/sec程度で急冷して酸化
物超電導体素材を得る。
First, Y 2 O 3 , BaCO 3 and CuO powder were prepared, weighed at a ratio of Y: Ba: Cu = 1: 2: 3, and then pressed at a pressure of about 1 ton / cm 2 to form raw material pellets. To form. The pellets are heated to 2000 ° C. or higher by an argon arc or the like to be melted for several seconds, and then the molten pellets are rapidly cooled at about 10 3 ° C./sec to obtain an oxide superconductor material.

【0017】次に、この素材を1mm以下、好ましくは
0.3mm以下の厚みにスライスし、そのスライス素材
を酸素、あるいは空気などの酸化雰囲気中で、該スライ
ス素材の融点以下の、例えば1000℃、3時間のアニ
ール処理を施してそのスライス内に酸素を均一に取り込
んでYBa2 Cu3 7-r で表される単一相の酸化物超
電導スライスを形成する。
Next, this material is sliced to a thickness of 1 mm or less, preferably 0.3 mm or less, and the sliced material is heated in an oxidizing atmosphere such as oxygen or air to a temperature below the melting point of the sliced material, for example, 1000 ° C. Annealing is performed for 3 hours to uniformly incorporate oxygen into the slice to form a single-phase oxide superconducting slice represented by YBa 2 Cu 3 O 7-r .

【0018】次に、酸化物超電導スライスを基板1に接
着する。上記方法で得られたYBa2 Cu3 7-r のス
ライスの熱膨張係数は、160×10-7/℃前後であ
る。基板1としては、熱膨張係数がスライスの熱膨張係
数とほぼ等しいZnO−Al2 3 −SiO2 系が用い
られる。すなわち、このZnO−Al2 3 −SiO2
系結晶化ガラスの熱膨張係数は、140〜160×10
-7/℃であり、スライスのそれと極めて近似している。
Next, the oxide superconducting slice is bonded to the substrate 1. The thermal expansion coefficient of the slice of YBa 2 Cu 3 O 7-r obtained by the above method is around 160 × 10 -7 / ° C. As the substrate 1, a ZnO—Al 2 O 3 —SiO 2 system having a thermal expansion coefficient substantially equal to that of the slice is used. That is, the ZnO-Al 2 O 3 -SiO 2
The coefficient of thermal expansion of the system crystallized glass is 140 to 160 × 10.
-7 / ° C, which is very close to that of slices.

【0019】そして、このスライスと基板1との接着に
は、PbO−ZnO−Al2 O−SiO2 系であって、
PbOが20〜70原子%の組成を有するフリットガラ
ス(図示略)を用いて行われる。この組成のフリットガ
ラスの熱膨張係数は、上記スライスおよび基板1のそれ
と近似した、120×10-7/℃であり、また、その軟
化温度は300℃程度である。
The PbO-ZnO-Al 2 O-SiO 2 system was used for bonding the slice and the substrate 1.
Fb glass (not shown) having a composition of PbO of 20 to 70 atomic% is used. The thermal expansion coefficient of the frit glass having this composition is 120 × 10 −7 / ° C., which is similar to that of the slice and the substrate 1, and the softening temperature thereof is about 300 ° C.

【0020】基板1にスライスを接着するには、ZnO
−Al2 3 −SiO2 系結晶化ガラスからなる基板1
の表面にPbO−ZnO−Al2 O−SiO2 系フリッ
トガラスを塗布し、その上に酸化物超電導スライス4を
載置した状態で400℃〜500℃で約30分間加熱
し、常温に戻す。この系のフリットガラスは、結晶化ガ
ラス基板1に対しても、また酸化物超電導スライスに対
しても良好な接着状態を呈するので、結果的にスライス
は基板1に強固に接着される。
To bond the slices to the substrate 1, ZnO
Substrate consisting -Al 2 O 3 -SiO 2 based crystallized glass 1
Of PbO-ZnO-Al 2 O- SiO 2 system frit glass was applied to the surface, the oxide superconductor slice 4 while was placed and heated for about 30 minutes at 400 ° C. to 500 ° C. thereon, back to room temperature. The frit glass of this system exhibits a good adhesion state not only to the crystallized glass substrate 1 but also to the oxide superconducting slice, so that the slice is firmly adhered to the substrate 1.

【0021】このように基板1とスライスとこの両者を
接着するフリットガラスの熱膨張係数が似通っているの
で、接着工程での加熱処理およびその後の冷却時におい
てもスライスにはほとんど歪みは生じない。
As described above, since the substrate 1 and the slice and the frit glass for adhering both the substrate 1 and the slice have similar thermal expansion coefficients, almost no distortion occurs in the slice during the heat treatment in the adhering step and the subsequent cooling.

【0022】次に、スライスを基板1に接着した状態
で、スライス表面を厚さ10〜50μm程度研磨する。
この後、イオンビームスパッタや化学エッチング、ある
いはレーザバターニングなどの方法を用いて、図1に示
すように中央部に両端部より幅狭のくびれ部2aを形成
する。くびれ部2aの寸法は、例えば幅0.03〜0.
3mm、長さ0.05〜0.5mm程度である。これに
より、検出素子2が得られる。図1において、2bはバ
イアス電流端子部であり、2cは中間周波出力端子部で
ある。
Next, with the slice adhered to the substrate 1, the slice surface is polished to a thickness of about 10 to 50 μm.
After that, a constricted portion 2a narrower than both end portions is formed in the central portion as shown in FIG. 1 by using a method such as ion beam sputtering, chemical etching, or laser patterning. The constricted portion 2a has, for example, a width of 0.03 to 0.
It is 3 mm and the length is about 0.05 to 0.5 mm. Thereby, the detection element 2 is obtained. In FIG. 1, 2b is a bias current terminal portion, and 2c is an intermediate frequency output terminal portion.

【0023】チューナブルインピーダンスマツチング回
路3は、次のようにして作られる。基板1上における検
出素子2の中間周波出力取出部に、検出素子2の中間周
波出力端子部2cに両端が接続されるように、第1のミ
アンダータイプの超電導薄膜インダクタ4を形成する。
さらに、基板3上における中間増幅器接続側に、ニクロ
ム等の高抵抗材料からなる薄膜ヒータ6を形成する。こ
のヒータ6の上面に絶縁層を形成したのち、インダクタ
4に対向する第2のミアンダータイプの超電導薄膜イン
ダクタ5を形成する。6aはヒータ電流端子部である。
インダクタ5の両端には、図示しない中間周波増幅器が
接続される。
The tunable impedance matching circuit 3 is manufactured as follows. A first meandering type superconducting thin film inductor 4 is formed in the intermediate frequency output extraction portion of the detection element 2 on the substrate 1 so that both ends thereof are connected to the intermediate frequency output terminal portion 2c of the detection element 2.
Further, the thin film heater 6 made of a high resistance material such as nichrome is formed on the side of the substrate 3 where the intermediate amplifier is connected. After forming an insulating layer on the upper surface of the heater 6, a second meander type superconducting thin film inductor 5 facing the inductor 4 is formed. 6a is a heater current terminal portion.
An intermediate frequency amplifier (not shown) is connected to both ends of the inductor 5.

【0024】検出素子2と中間周波増幅器とのインピー
ダンスマッチングは、インダクタ4とインダクタ5のL
結合により行われる。その際、ヒータ6の温度が制御さ
れることにより、インダクタ4、5間の結合度が調整さ
れ、中間周波出力が効果的に取り出される。
Impedance matching between the detecting element 2 and the intermediate frequency amplifier is performed by the L of the inductor 4 and the inductor 5.
It is done by combining. At that time, by controlling the temperature of the heater 6, the coupling degree between the inductors 4 and 5 is adjusted, and the intermediate frequency output is effectively taken out.

【0025】上記実施例では、基板1としてガラス基板
が用いられているが、アルミナ、MgO等の絶縁単結晶
基板を用いてもよい。
In the above embodiment, the glass substrate is used as the substrate 1, but an insulating single crystal substrate such as alumina or MgO may be used.

【0026】絶縁単結晶基板を用いた場合には、検出素
子2、インダクタ4およびヒータ6は、たとえば、基板
上にスパッタリング法で形成される。また、インダクタ
5は、ヒータ6に絶縁層を形成した後、たとえば、スパ
ッタリング法で形成される。
When an insulating single crystal substrate is used, the detection element 2, the inductor 4 and the heater 6 are formed on the substrate by sputtering, for example. The inductor 5 is formed by, for example, a sputtering method after forming an insulating layer on the heater 6.

【0027】図2は、上記超電導ミキサ素子を用いた検
出回路を示している。
FIG. 2 shows a detection circuit using the above superconducting mixer element.

【0028】超電導ミキサ素子10には、信号波RFと
局部発信波LOが入力される。超電導ミキサ素子10の
出力は、バンドパスフィルタ11を介して中間周波増幅
器12に送られ、中間周波増幅器12から中間周波出力
が得られる。
The signal wave RF and the local oscillation wave LO are input to the superconducting mixer element 10. The output of the superconducting mixer element 10 is sent to the intermediate frequency amplifier 12 via the bandpass filter 11, and an intermediate frequency output is obtained from the intermediate frequency amplifier 12.

【0029】表1には、チューナブルインピーダンスマ
ッチング回路3が設けられていない従来の超電導ミキサ
素子(従来例)の中間周波増幅器(IF増幅器)の出力
と、チューナブルインピーダンスマッチング回路3を有
する超電導ミキサ素子であってヒータ電流が異なる複数
の実施例の中間周波増幅器の出力を示している。中間周
波出力の周波数は50MHzである。
Table 1 shows the output of the intermediate frequency amplifier (IF amplifier) of the conventional superconducting mixer element (conventional example) without the tunable impedance matching circuit 3 and the superconducting mixer having the tunable impedance matching circuit 3. The output of the intermediate frequency amplifier of a plurality of examples which are elements and differ in heater current is shown. The frequency of the intermediate frequency output is 50 MHz.

【0030】[0030]

【表1】 [Table 1]

【0031】表1からわかるように、チューナブルイン
ピーダンスマッチング回路3を有する超電導ミキサ素子
においては、ヒータ電流を調整することにより、ミキシ
ング出力が従来より8dB向上した。
As can be seen from Table 1, in the superconducting mixer element having the tunable impedance matching circuit 3, by adjusting the heater current, the mixing output was improved by 8 dB as compared with the conventional one.

【0032】[0032]

【発明の効果】この発明によれば、中間周波出力を効率
よく取り出すことができる。
According to the present invention, the intermediate frequency output can be taken out efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す超電導ミキサ素子の斜
視図である。
FIG. 1 is a perspective view of a superconducting mixer element showing an embodiment of the present invention.

【図2】超電導ミキサ素子を用いた検出回路を示す回路
図である。
FIG. 2 is a circuit diagram showing a detection circuit using a superconducting mixer element.

【符号の説明】[Explanation of symbols]

1 基板 2 検出素子 3 チューナブルインピーダンスマッチング回路 4 インダクタ 5 インダクタ 6 ヒータ 1 substrate 2 detection element 3 tunable impedance matching circuit 4 inductor 5 inductor 6 heater

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ジョセフソン接合からなる超電導ミキサ
素子において、中間周波出力取出部にチューナブルイン
ピーダンスマッチング回路を設けたことを特徴とする超
電導ミキサ素子。
1. A superconducting mixer element comprising a Josephson junction, wherein a tunable impedance matching circuit is provided in an intermediate frequency output extraction section.
【請求項2】 上記チューナブルインピーダンスマッチ
ング回路が、一対のミアンダータイプの超電導薄膜イン
ダクタからなり、上記一対の超電導薄膜インダクタのう
ち少なくとも一方が、薄膜ヒータ上に絶縁膜を介して形
成されていることを特徴とする請求項1記載の超電導ミ
キサ素子。
2. The tunable impedance matching circuit comprises a pair of meander type superconducting thin film inductors, and at least one of the pair of superconducting thin film inductors is formed on a thin film heater via an insulating film. The superconducting mixer element according to claim 1, wherein
JP03240539A 1991-08-26 1991-08-26 Superconducting mixer element Expired - Fee Related JP3101362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03240539A JP3101362B2 (en) 1991-08-26 1991-08-26 Superconducting mixer element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03240539A JP3101362B2 (en) 1991-08-26 1991-08-26 Superconducting mixer element

Publications (2)

Publication Number Publication Date
JPH0555647A true JPH0555647A (en) 1993-03-05
JP3101362B2 JP3101362B2 (en) 2000-10-23

Family

ID=17061041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03240539A Expired - Fee Related JP3101362B2 (en) 1991-08-26 1991-08-26 Superconducting mixer element

Country Status (1)

Country Link
JP (1) JP3101362B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988003414A1 (en) * 1986-11-05 1988-05-19 Sumitomo Bakelite Company, Limited gamma-RAY STERILIZATION PROCESS FOR POLYVINYL ALCOHOL GEL
WO2019071005A1 (en) * 2017-10-05 2019-04-11 PsiQuantum Corp. Superconducting logic circuits
WO2019094957A1 (en) * 2017-11-13 2019-05-16 PsiQuantum Corp. Methods and devices for impedance multiplication
US10386229B2 (en) 2017-05-16 2019-08-20 PsiQuantum Corp. Gated superconducting photon detector
US10396733B2 (en) 2017-05-16 2019-08-27 PsiQuantum Corp. Superconducting signal amplifier
US10566516B2 (en) 2017-07-28 2020-02-18 PsiQuantum Corp. Photodetector with superconductor nanowire transistor based on interlayer heat transfer
US10573800B1 (en) 2018-08-21 2020-02-25 PsiQuantum Corp. Superconductor-to-insulator devices
US10879905B2 (en) 2018-02-14 2020-12-29 PsiQuantum Corp. Superconducting field-programmable gate array
US10944403B2 (en) 2018-10-27 2021-03-09 PsiQuantum Corp. Superconducting field-programmable gate array
US10984857B2 (en) 2018-08-16 2021-04-20 PsiQuantum Corp. Superconductive memory cells and devices
US11009387B2 (en) 2019-04-16 2021-05-18 PsiQuantum Corp. Superconducting nanowire single photon detector and method of fabrication thereof
US11101215B2 (en) 2018-09-19 2021-08-24 PsiQuantum Corp. Tapered connectors for superconductor circuits
US11289590B1 (en) 2019-01-30 2022-03-29 PsiQuantum Corp. Thermal diode switch
US11313719B2 (en) 2018-05-01 2022-04-26 PsiQuantum Corp. Photon number resolving superconducting detector
US11380731B1 (en) 2019-09-26 2022-07-05 PsiQuantum Corp. Superconducting device with asymmetric impedance
US11473974B2 (en) 2018-02-06 2022-10-18 PsiQuantum Corp. Superconducting photon detector
US11569816B1 (en) 2019-04-10 2023-01-31 PsiQuantum Corp. Superconducting switch
US11585695B1 (en) 2019-10-21 2023-02-21 PsiQuantum Corp. Self-triaging photon detector
US11719653B1 (en) 2018-09-21 2023-08-08 PsiQuantum Corp. Methods and systems for manufacturing superconductor devices
US11980105B2 (en) 2018-10-27 2024-05-07 PsiQuantum Corp. Superconducting switch
US11994426B1 (en) 2019-11-13 2024-05-28 PsiQuantum Corp. Scalable photon number resolving photon detector

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988003414A1 (en) * 1986-11-05 1988-05-19 Sumitomo Bakelite Company, Limited gamma-RAY STERILIZATION PROCESS FOR POLYVINYL ALCOHOL GEL
US12015383B2 (en) 2017-05-16 2024-06-18 PsiQuantum Corp. Superconducting signal amplifier
US10897235B2 (en) 2017-05-16 2021-01-19 PsiQuantum Corp. Superconducting signal amplifier
US11029203B2 (en) 2017-05-16 2021-06-08 PsiQuantum Corp. Gated superconducting photon detector
US10386229B2 (en) 2017-05-16 2019-08-20 PsiQuantum Corp. Gated superconducting photon detector
US10396733B2 (en) 2017-05-16 2019-08-27 PsiQuantum Corp. Superconducting signal amplifier
US11283001B2 (en) 2017-07-28 2022-03-22 PsiQuantum Corp. Photodetector with superconductor nanowire transistor based on interlayer heat transfer
US11805709B2 (en) 2017-07-28 2023-10-31 PsiQuantum Corp. Superconductor-based transistor
US10566516B2 (en) 2017-07-28 2020-02-18 PsiQuantum Corp. Photodetector with superconductor nanowire transistor based on interlayer heat transfer
US10944038B2 (en) 2017-07-28 2021-03-09 PsiQuantum Corp. Photodetector with superconductor nanowire transistor based on interlayer heat transfer
US10586910B2 (en) 2017-07-28 2020-03-10 PsiQuantum Corp. Superconductor-based transistor
US10361703B2 (en) 2017-10-05 2019-07-23 PsiQuantum Corp. Superconducting logic circuits
WO2019071005A1 (en) * 2017-10-05 2019-04-11 PsiQuantum Corp. Superconducting logic circuits
US10374611B2 (en) 2017-10-05 2019-08-06 PsiQuantum Corp. Superconducting logic components
US11621714B2 (en) 2017-10-05 2023-04-04 PsiQuantum Corp. Superconducting logic circuits
US11133805B2 (en) 2017-10-05 2021-09-28 PsiQuantum Corp. Superconducting logic circuits
US12095462B2 (en) 2017-10-05 2024-09-17 PsiQuantum Corp. Superconducting logic circuits
WO2019094957A1 (en) * 2017-11-13 2019-05-16 PsiQuantum Corp. Methods and devices for impedance multiplication
US12107375B2 (en) 2017-11-13 2024-10-01 PsiQuantum Corp. Methods and devices for impedance multiplication
US10461445B2 (en) 2017-11-13 2019-10-29 PsiQuantum Corp. Methods and devices for impedance multiplication
US11108172B2 (en) 2017-11-13 2021-08-31 PsiQuantum Corp. Methods and devices for impedance multiplication
US12061114B2 (en) 2018-02-06 2024-08-13 PsiQuantum Corp. Superconducting photon detector
US11473974B2 (en) 2018-02-06 2022-10-18 PsiQuantum Corp. Superconducting photon detector
US11811394B2 (en) 2018-02-14 2023-11-07 PsiQuantum Corp. Superconducting field-programmable gate array
US11362664B2 (en) 2018-02-14 2022-06-14 PsiQuantum Corp. Superconducting field-programmable gate array
US12119820B2 (en) 2018-02-14 2024-10-15 PsiQuantum Corp. Superconducting field-programmable gate array
US10972104B2 (en) 2018-02-14 2021-04-06 PsiQuantum Corp. Superconducting logic components
US12009819B2 (en) 2018-02-14 2024-06-11 PsiQuantum Corp. Superconducting logic components
US10879905B2 (en) 2018-02-14 2020-12-29 PsiQuantum Corp. Superconducting field-programmable gate array
US11629995B2 (en) 2018-05-01 2023-04-18 PsiQuantum Corp. Photon number resolving superconducting detector
US11988554B2 (en) 2018-05-01 2024-05-21 PsiQuantum Corp. Photon number resolving superconducting detector
US11313719B2 (en) 2018-05-01 2022-04-26 PsiQuantum Corp. Photon number resolving superconducting detector
US10984857B2 (en) 2018-08-16 2021-04-20 PsiQuantum Corp. Superconductive memory cells and devices
US11475945B2 (en) 2018-08-16 2022-10-18 PsiQuantum Corp. Superconductive memory cells and devices
US11972794B2 (en) 2018-08-16 2024-04-30 PsiQuantum Corp. Superconductive memory cells and devices
US10573800B1 (en) 2018-08-21 2020-02-25 PsiQuantum Corp. Superconductor-to-insulator devices
US11832532B2 (en) 2018-08-21 2023-11-28 PsiQuantum Corp. Superconductor-to-insulator devices
US11830811B2 (en) 2018-09-19 2023-11-28 PsiQuantum Corp. Tapered connectors for superconductor circuits
US11101215B2 (en) 2018-09-19 2021-08-24 PsiQuantum Corp. Tapered connectors for superconductor circuits
US11719653B1 (en) 2018-09-21 2023-08-08 PsiQuantum Corp. Methods and systems for manufacturing superconductor devices
US11936380B2 (en) 2018-10-27 2024-03-19 PsiQuantum Corp. Superconducting field-programmable gate array
US11980105B2 (en) 2018-10-27 2024-05-07 PsiQuantum Corp. Superconducting switch
US10944403B2 (en) 2018-10-27 2021-03-09 PsiQuantum Corp. Superconducting field-programmable gate array
US11601127B2 (en) 2018-10-27 2023-03-07 PsiQuantum Corp. Superconducting field-programmable gate array
US11289590B1 (en) 2019-01-30 2022-03-29 PsiQuantum Corp. Thermal diode switch
US11799020B1 (en) 2019-01-30 2023-10-24 PsiQuantum Corp. Thermal diode switch
US11569816B1 (en) 2019-04-10 2023-01-31 PsiQuantum Corp. Superconducting switch
US11009387B2 (en) 2019-04-16 2021-05-18 PsiQuantum Corp. Superconducting nanowire single photon detector and method of fabrication thereof
US11441941B2 (en) 2019-04-16 2022-09-13 PsiQuantum Corp. Superconducting nanowire single photon detector and method of fabrication thereof
US11793090B1 (en) 2019-09-26 2023-10-17 PsiQuantum Corp. Superconducting device with asymmetric impedance
US11380731B1 (en) 2019-09-26 2022-07-05 PsiQuantum Corp. Superconducting device with asymmetric impedance
US11994428B1 (en) 2019-10-21 2024-05-28 PsiQuantum Corp. Self-triaging photon detector
US11585695B1 (en) 2019-10-21 2023-02-21 PsiQuantum Corp. Self-triaging photon detector
US11994426B1 (en) 2019-11-13 2024-05-28 PsiQuantum Corp. Scalable photon number resolving photon detector

Also Published As

Publication number Publication date
JP3101362B2 (en) 2000-10-23

Similar Documents

Publication Publication Date Title
JP3101362B2 (en) Superconducting mixer element
US4316785A (en) Oxide superconductor Josephson junction and fabrication method therefor
EP0584410A1 (en) Superconducting electronic structures and methods of preparing same
US6806553B2 (en) Tunable thin film capacitor
JP3221403B2 (en) Oxide superconductor
US4891355A (en) Method for producing superconducting circuit
Mogro‐Campero et al. Superior microwave properties by post‐annealing YBa2Cu3O7 thin films at low oxygen partial pressure
JP2639961B2 (en) Superconducting element manufacturing method
JPH0714079B2 (en) Oxide superconducting three-terminal device
US6613463B1 (en) Superconducting laminated oxide substrate and superconducting integrated circuit
JPH04260378A (en) Superconducting electromagnetic wave detection element integrated with antenna
JP3059806B2 (en) Superconducting element and manufacturing method thereof
JPH05299914A (en) Superconducting high frequency resonator and filter
Jung et al. Improved microstructure of superconducting Y-Ba-Cu-O films deposited on LaAlO3 substrates
JP3213204B2 (en) High-frequency circuit device using superconductor
JPS6161555B2 (en)
JPH0697520A (en) Compound type josephson junction device and its manufacture
JP3167454B2 (en) Superconducting element and manufacturing method thereof
JPH0597590A (en) Production of oxide high-temperature superconducting thin film and optical element using the same
JPH0548166A (en) Manufacture of weak junction type josephson junction device
JP2540185B2 (en) Semiconductor device
JPH0669555A (en) Josephson junction element
JPH02260472A (en) Josephson junction element
JPH06112713A (en) Method for manufacture of high-temperature superconductor films on both opposite faces of substrate
JPS62248272A (en) Superconducting microbridge

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees