JPH0555647A - Superconducting mixer element - Google Patents
Superconducting mixer elementInfo
- Publication number
- JPH0555647A JPH0555647A JP3240539A JP24053991A JPH0555647A JP H0555647 A JPH0555647 A JP H0555647A JP 3240539 A JP3240539 A JP 3240539A JP 24053991 A JP24053991 A JP 24053991A JP H0555647 A JPH0555647 A JP H0555647A
- Authority
- JP
- Japan
- Prior art keywords
- intermediate frequency
- superconducting
- mixer element
- impedance matching
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D7/00—Transference of modulation from one carrier to another, e.g. frequency-changing
- H03D7/005—Transference of modulation from one carrier to another, e.g. frequency-changing by means of superconductive devices
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、ジョセフソン接合か
らなる超電導ミキサ素子に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting mixer element having a Josephson junction.
【0002】[0002]
【従来の技術】超電導体特有の現象であるジョセフソン
効果を利用した超電導ミキサ素子の研究は早くからなさ
れている。特にジョセフソン素子の研究においては、超
電導体/絶縁体/超電導体の積層構造を持つ、いわゆる
SISトンネル接合素子が中心になり、超電導ミキサ素
子の研究もSIS準粒子ミキサに関するものが中心とな
っている(特公昭60−3797号公報および特開昭6
1−733691号公報参照)。2. Description of the Related Art Research on superconducting mixer elements utilizing the Josephson effect, which is a phenomenon peculiar to superconductors, has been made for a long time. In particular, research on Josephson devices is centered on so-called SIS tunnel junction devices having a laminated structure of superconductor / insulator / superconductor, and research on superconducting mixer devices is also centered on SIS quasi-particle mixers. (Japanese Patent Publication No. 60-3797 and Japanese Unexamined Patent Publication No. Sho 6)
No. 1-733691).
【0003】しかし、昨今の電気通信技術の発達にとも
ない、通信衛生等を利用した情報通信分野においては、
より高い周波数帯域の需要が多くなり、それにともない
ミリ波、サブミリ波帯における受信器、すなわちジョセ
フソンミキサの重要性も見直されてきている。However, with the recent development of telecommunication technology, in the field of information communication utilizing communication hygiene,
With the increasing demand for higher frequency bands, the importance of receivers in the millimeter wave and sub-millimeter wave bands, that is, Josephson mixers, has been reviewed.
【0004】従来、Nb等の金属系超電導体あるいはY
BaCuO系、BiSrCaCuO系、TlSrCaC
uO系などに代表される酸化物超電導体において作製さ
れたジョセフソンミキサは、実験室レベルにおいては、
ポイントコンタクト型やクラックジャンクション型の素
子でその特性が得られている。Conventionally, a metallic superconductor such as Nb or Y
BaCuO type, BiSrCaCuO type, TlSrCaC
At the laboratory level, Josephson mixers made of oxide superconductors represented by uO system are
Its characteristics have been obtained with point contact type and crack junction type elements.
【0005】[0005]
【発明が解決しようとする課題】しかし、ポイントコン
タクト型素子の欠点である接触部における表面酸化(劣
化)、ヒートサイクルにおける特性の劣化や経時変化、
再現性が得られないなどの種々の問題からそれらの実用
化は難しい。However, surface oxidation (deterioration) at the contact portion, which is a drawback of the point contact type element, deterioration of characteristics in the heat cycle and change with time,
Due to various problems such as lack of reproducibility, it is difficult to put them into practical use.
【0006】また、これらの問題が比較的少ないウイー
クリンク型の素子(弱結合素子)に関しては、その素子
インピーダンスが低いため、ミキシング後の中間周波出
力を効率良く取出し、後段の中間周波増幅器へ導くこと
が難しいという欠点を持っている。With regard to the weak link type element (weakly coupled element), which has relatively few of these problems, the element impedance is low, so that the intermediate frequency output after mixing is efficiently taken out and led to the intermediate frequency amplifier in the subsequent stage. It has the drawback of being difficult.
【0007】この発明は、中間周波出力を効率よく取り
出すことができる超電導ミキサ素子を提供することを目
的とする。An object of the present invention is to provide a superconducting mixer element which can efficiently take out an intermediate frequency output.
【0008】[0008]
【課題を解決するための手段】この発明による超電導ミ
キサ素子は、ジョセフソン接合からなる超電導ミキサ素
子において、中間周波出力取出部にチューナブルインピ
ーダンスマッチング回路を設けたことを特徴とする。A superconducting mixer element according to the present invention is characterized in that a tunable impedance matching circuit is provided in an intermediate frequency output extraction portion of the superconducting mixer element composed of a Josephson junction.
【0009】チューナブルインピーダンスマッチング回
路は、たとえば、一対のミアンダータイプの超電導薄膜
インダクタから構成され、一対の超電導薄膜インダクタ
のうち少なくとも一方が、薄膜ヒータ上に絶縁膜を介し
て形成される。The tunable impedance matching circuit is composed of, for example, a pair of meander type superconducting thin film inductors, and at least one of the pair of superconducting thin film inductors is formed on the thin film heater via an insulating film.
【0010】[0010]
【作用】ジョセフソン接合からなる超電導ミキサ素子に
おいて、中間周波出力取出部にチューナブルインピーダ
ンスマッチング回路が設けられているので、中間周波出
力を効率よく取り出すことができる。In the superconducting mixer element having the Josephson junction, since the tunable impedance matching circuit is provided in the intermediate frequency output extraction section, the intermediate frequency output can be extracted efficiently.
【0011】[0011]
【実施例】以下、この発明の実施例について説明する。Embodiments of the present invention will be described below.
【0012】図1は、超電導ミキサ素子を示している。FIG. 1 shows a superconducting mixer element.
【0013】超電導ミキサ素子は、基板1上に形成され
た超電導体からなる検出素子2と、基板1上に形成され
かつ検出素子2と超電導ミキサ素子に接続される図示し
ない中間周波数増幅器とのインピーダンスマッチングを
行うためのチューナブルインピーダンスマツチング回路
3とからなる。The superconducting mixer element has an impedance of a detecting element 2 made of a superconductor formed on a substrate 1 and an intermediate frequency amplifier (not shown) formed on the substrate 1 and connected to the detecting element 2 and the superconducting mixer element. It comprises a tunable impedance matching circuit 3 for matching.
【0014】チューナブルインピーダンスマツチング回
路3は一対のミアンダータイプの超電導薄膜インダクタ
4および5を備えている。出力側のインダクタ5は、基
板1上に形成された薄膜ヒータ6上に絶縁層を介して形
成されている。The tunable impedance matching circuit 3 comprises a pair of meander type superconducting thin film inductors 4 and 5. The inductor 5 on the output side is formed on the thin film heater 6 formed on the substrate 1 via an insulating layer.
【0015】検出素子2は、次のようにして作成され
る。The detecting element 2 is produced as follows.
【0016】まず、Y2 O3 とBaCO3 とCuO粉末
を用意し、Y:Ba:Cu=1:2:3の比率で秤量
後、約1トン/cm2 の圧力でプレスして原材料ペレッ
トを形成する。このペレットをアルゴンアークなどによ
って2000℃以上に加熱して数秒間溶融し、続いてこ
の溶融ペレットを103 ℃/sec程度で急冷して酸化
物超電導体素材を得る。First, Y 2 O 3 , BaCO 3 and CuO powder were prepared, weighed at a ratio of Y: Ba: Cu = 1: 2: 3, and then pressed at a pressure of about 1 ton / cm 2 to form raw material pellets. To form. The pellets are heated to 2000 ° C. or higher by an argon arc or the like to be melted for several seconds, and then the molten pellets are rapidly cooled at about 10 3 ° C./sec to obtain an oxide superconductor material.
【0017】次に、この素材を1mm以下、好ましくは
0.3mm以下の厚みにスライスし、そのスライス素材
を酸素、あるいは空気などの酸化雰囲気中で、該スライ
ス素材の融点以下の、例えば1000℃、3時間のアニ
ール処理を施してそのスライス内に酸素を均一に取り込
んでYBa2 Cu3 O7-r で表される単一相の酸化物超
電導スライスを形成する。Next, this material is sliced to a thickness of 1 mm or less, preferably 0.3 mm or less, and the sliced material is heated in an oxidizing atmosphere such as oxygen or air to a temperature below the melting point of the sliced material, for example, 1000 ° C. Annealing is performed for 3 hours to uniformly incorporate oxygen into the slice to form a single-phase oxide superconducting slice represented by YBa 2 Cu 3 O 7-r .
【0018】次に、酸化物超電導スライスを基板1に接
着する。上記方法で得られたYBa2 Cu3 O7-r のス
ライスの熱膨張係数は、160×10-7/℃前後であ
る。基板1としては、熱膨張係数がスライスの熱膨張係
数とほぼ等しいZnO−Al2 O3 −SiO2 系が用い
られる。すなわち、このZnO−Al2 O3 −SiO2
系結晶化ガラスの熱膨張係数は、140〜160×10
-7/℃であり、スライスのそれと極めて近似している。Next, the oxide superconducting slice is bonded to the substrate 1. The thermal expansion coefficient of the slice of YBa 2 Cu 3 O 7-r obtained by the above method is around 160 × 10 -7 / ° C. As the substrate 1, a ZnO—Al 2 O 3 —SiO 2 system having a thermal expansion coefficient substantially equal to that of the slice is used. That is, the ZnO-Al 2 O 3 -SiO 2
The coefficient of thermal expansion of the system crystallized glass is 140 to 160 × 10.
-7 / ° C, which is very close to that of slices.
【0019】そして、このスライスと基板1との接着に
は、PbO−ZnO−Al2 O−SiO2 系であって、
PbOが20〜70原子%の組成を有するフリットガラ
ス(図示略)を用いて行われる。この組成のフリットガ
ラスの熱膨張係数は、上記スライスおよび基板1のそれ
と近似した、120×10-7/℃であり、また、その軟
化温度は300℃程度である。The PbO-ZnO-Al 2 O-SiO 2 system was used for bonding the slice and the substrate 1.
Fb glass (not shown) having a composition of PbO of 20 to 70 atomic% is used. The thermal expansion coefficient of the frit glass having this composition is 120 × 10 −7 / ° C., which is similar to that of the slice and the substrate 1, and the softening temperature thereof is about 300 ° C.
【0020】基板1にスライスを接着するには、ZnO
−Al2 O3 −SiO2 系結晶化ガラスからなる基板1
の表面にPbO−ZnO−Al2 O−SiO2 系フリッ
トガラスを塗布し、その上に酸化物超電導スライス4を
載置した状態で400℃〜500℃で約30分間加熱
し、常温に戻す。この系のフリットガラスは、結晶化ガ
ラス基板1に対しても、また酸化物超電導スライスに対
しても良好な接着状態を呈するので、結果的にスライス
は基板1に強固に接着される。To bond the slices to the substrate 1, ZnO
Substrate consisting -Al 2 O 3 -SiO 2 based crystallized glass 1
Of PbO-ZnO-Al 2 O- SiO 2 system frit glass was applied to the surface, the oxide superconductor slice 4 while was placed and heated for about 30 minutes at 400 ° C. to 500 ° C. thereon, back to room temperature. The frit glass of this system exhibits a good adhesion state not only to the crystallized glass substrate 1 but also to the oxide superconducting slice, so that the slice is firmly adhered to the substrate 1.
【0021】このように基板1とスライスとこの両者を
接着するフリットガラスの熱膨張係数が似通っているの
で、接着工程での加熱処理およびその後の冷却時におい
てもスライスにはほとんど歪みは生じない。As described above, since the substrate 1 and the slice and the frit glass for adhering both the substrate 1 and the slice have similar thermal expansion coefficients, almost no distortion occurs in the slice during the heat treatment in the adhering step and the subsequent cooling.
【0022】次に、スライスを基板1に接着した状態
で、スライス表面を厚さ10〜50μm程度研磨する。
この後、イオンビームスパッタや化学エッチング、ある
いはレーザバターニングなどの方法を用いて、図1に示
すように中央部に両端部より幅狭のくびれ部2aを形成
する。くびれ部2aの寸法は、例えば幅0.03〜0.
3mm、長さ0.05〜0.5mm程度である。これに
より、検出素子2が得られる。図1において、2bはバ
イアス電流端子部であり、2cは中間周波出力端子部で
ある。Next, with the slice adhered to the substrate 1, the slice surface is polished to a thickness of about 10 to 50 μm.
After that, a constricted portion 2a narrower than both end portions is formed in the central portion as shown in FIG. 1 by using a method such as ion beam sputtering, chemical etching, or laser patterning. The constricted portion 2a has, for example, a width of 0.03 to 0.
It is 3 mm and the length is about 0.05 to 0.5 mm. Thereby, the detection element 2 is obtained. In FIG. 1, 2b is a bias current terminal portion, and 2c is an intermediate frequency output terminal portion.
【0023】チューナブルインピーダンスマツチング回
路3は、次のようにして作られる。基板1上における検
出素子2の中間周波出力取出部に、検出素子2の中間周
波出力端子部2cに両端が接続されるように、第1のミ
アンダータイプの超電導薄膜インダクタ4を形成する。
さらに、基板3上における中間増幅器接続側に、ニクロ
ム等の高抵抗材料からなる薄膜ヒータ6を形成する。こ
のヒータ6の上面に絶縁層を形成したのち、インダクタ
4に対向する第2のミアンダータイプの超電導薄膜イン
ダクタ5を形成する。6aはヒータ電流端子部である。
インダクタ5の両端には、図示しない中間周波増幅器が
接続される。The tunable impedance matching circuit 3 is manufactured as follows. A first meandering type superconducting thin film inductor 4 is formed in the intermediate frequency output extraction portion of the detection element 2 on the substrate 1 so that both ends thereof are connected to the intermediate frequency output terminal portion 2c of the detection element 2.
Further, the thin film heater 6 made of a high resistance material such as nichrome is formed on the side of the substrate 3 where the intermediate amplifier is connected. After forming an insulating layer on the upper surface of the heater 6, a second meander type superconducting thin film inductor 5 facing the inductor 4 is formed. 6a is a heater current terminal portion.
An intermediate frequency amplifier (not shown) is connected to both ends of the inductor 5.
【0024】検出素子2と中間周波増幅器とのインピー
ダンスマッチングは、インダクタ4とインダクタ5のL
結合により行われる。その際、ヒータ6の温度が制御さ
れることにより、インダクタ4、5間の結合度が調整さ
れ、中間周波出力が効果的に取り出される。Impedance matching between the detecting element 2 and the intermediate frequency amplifier is performed by the L of the inductor 4 and the inductor 5.
It is done by combining. At that time, by controlling the temperature of the heater 6, the coupling degree between the inductors 4 and 5 is adjusted, and the intermediate frequency output is effectively taken out.
【0025】上記実施例では、基板1としてガラス基板
が用いられているが、アルミナ、MgO等の絶縁単結晶
基板を用いてもよい。In the above embodiment, the glass substrate is used as the substrate 1, but an insulating single crystal substrate such as alumina or MgO may be used.
【0026】絶縁単結晶基板を用いた場合には、検出素
子2、インダクタ4およびヒータ6は、たとえば、基板
上にスパッタリング法で形成される。また、インダクタ
5は、ヒータ6に絶縁層を形成した後、たとえば、スパ
ッタリング法で形成される。When an insulating single crystal substrate is used, the detection element 2, the inductor 4 and the heater 6 are formed on the substrate by sputtering, for example. The inductor 5 is formed by, for example, a sputtering method after forming an insulating layer on the heater 6.
【0027】図2は、上記超電導ミキサ素子を用いた検
出回路を示している。FIG. 2 shows a detection circuit using the above superconducting mixer element.
【0028】超電導ミキサ素子10には、信号波RFと
局部発信波LOが入力される。超電導ミキサ素子10の
出力は、バンドパスフィルタ11を介して中間周波増幅
器12に送られ、中間周波増幅器12から中間周波出力
が得られる。The signal wave RF and the local oscillation wave LO are input to the superconducting mixer element 10. The output of the superconducting mixer element 10 is sent to the intermediate frequency amplifier 12 via the bandpass filter 11, and an intermediate frequency output is obtained from the intermediate frequency amplifier 12.
【0029】表1には、チューナブルインピーダンスマ
ッチング回路3が設けられていない従来の超電導ミキサ
素子(従来例)の中間周波増幅器(IF増幅器)の出力
と、チューナブルインピーダンスマッチング回路3を有
する超電導ミキサ素子であってヒータ電流が異なる複数
の実施例の中間周波増幅器の出力を示している。中間周
波出力の周波数は50MHzである。Table 1 shows the output of the intermediate frequency amplifier (IF amplifier) of the conventional superconducting mixer element (conventional example) without the tunable impedance matching circuit 3 and the superconducting mixer having the tunable impedance matching circuit 3. The output of the intermediate frequency amplifier of a plurality of examples which are elements and differ in heater current is shown. The frequency of the intermediate frequency output is 50 MHz.
【0030】[0030]
【表1】 [Table 1]
【0031】表1からわかるように、チューナブルイン
ピーダンスマッチング回路3を有する超電導ミキサ素子
においては、ヒータ電流を調整することにより、ミキシ
ング出力が従来より8dB向上した。As can be seen from Table 1, in the superconducting mixer element having the tunable impedance matching circuit 3, by adjusting the heater current, the mixing output was improved by 8 dB as compared with the conventional one.
【0032】[0032]
【発明の効果】この発明によれば、中間周波出力を効率
よく取り出すことができる。According to the present invention, the intermediate frequency output can be taken out efficiently.
【図1】この発明の実施例を示す超電導ミキサ素子の斜
視図である。FIG. 1 is a perspective view of a superconducting mixer element showing an embodiment of the present invention.
【図2】超電導ミキサ素子を用いた検出回路を示す回路
図である。FIG. 2 is a circuit diagram showing a detection circuit using a superconducting mixer element.
1 基板 2 検出素子 3 チューナブルインピーダンスマッチング回路 4 インダクタ 5 インダクタ 6 ヒータ 1 substrate 2 detection element 3 tunable impedance matching circuit 4 inductor 5 inductor 6 heater
Claims (2)
素子において、中間周波出力取出部にチューナブルイン
ピーダンスマッチング回路を設けたことを特徴とする超
電導ミキサ素子。1. A superconducting mixer element comprising a Josephson junction, wherein a tunable impedance matching circuit is provided in an intermediate frequency output extraction section.
ング回路が、一対のミアンダータイプの超電導薄膜イン
ダクタからなり、上記一対の超電導薄膜インダクタのう
ち少なくとも一方が、薄膜ヒータ上に絶縁膜を介して形
成されていることを特徴とする請求項1記載の超電導ミ
キサ素子。2. The tunable impedance matching circuit comprises a pair of meander type superconducting thin film inductors, and at least one of the pair of superconducting thin film inductors is formed on a thin film heater via an insulating film. The superconducting mixer element according to claim 1, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03240539A JP3101362B2 (en) | 1991-08-26 | 1991-08-26 | Superconducting mixer element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03240539A JP3101362B2 (en) | 1991-08-26 | 1991-08-26 | Superconducting mixer element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0555647A true JPH0555647A (en) | 1993-03-05 |
JP3101362B2 JP3101362B2 (en) | 2000-10-23 |
Family
ID=17061041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03240539A Expired - Fee Related JP3101362B2 (en) | 1991-08-26 | 1991-08-26 | Superconducting mixer element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3101362B2 (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1988003414A1 (en) * | 1986-11-05 | 1988-05-19 | Sumitomo Bakelite Company, Limited | gamma-RAY STERILIZATION PROCESS FOR POLYVINYL ALCOHOL GEL |
WO2019071005A1 (en) * | 2017-10-05 | 2019-04-11 | PsiQuantum Corp. | Superconducting logic circuits |
WO2019094957A1 (en) * | 2017-11-13 | 2019-05-16 | PsiQuantum Corp. | Methods and devices for impedance multiplication |
US10386229B2 (en) | 2017-05-16 | 2019-08-20 | PsiQuantum Corp. | Gated superconducting photon detector |
US10396733B2 (en) | 2017-05-16 | 2019-08-27 | PsiQuantum Corp. | Superconducting signal amplifier |
US10566516B2 (en) | 2017-07-28 | 2020-02-18 | PsiQuantum Corp. | Photodetector with superconductor nanowire transistor based on interlayer heat transfer |
US10573800B1 (en) | 2018-08-21 | 2020-02-25 | PsiQuantum Corp. | Superconductor-to-insulator devices |
US10879905B2 (en) | 2018-02-14 | 2020-12-29 | PsiQuantum Corp. | Superconducting field-programmable gate array |
US10944403B2 (en) | 2018-10-27 | 2021-03-09 | PsiQuantum Corp. | Superconducting field-programmable gate array |
US10984857B2 (en) | 2018-08-16 | 2021-04-20 | PsiQuantum Corp. | Superconductive memory cells and devices |
US11009387B2 (en) | 2019-04-16 | 2021-05-18 | PsiQuantum Corp. | Superconducting nanowire single photon detector and method of fabrication thereof |
US11101215B2 (en) | 2018-09-19 | 2021-08-24 | PsiQuantum Corp. | Tapered connectors for superconductor circuits |
US11289590B1 (en) | 2019-01-30 | 2022-03-29 | PsiQuantum Corp. | Thermal diode switch |
US11313719B2 (en) | 2018-05-01 | 2022-04-26 | PsiQuantum Corp. | Photon number resolving superconducting detector |
US11380731B1 (en) | 2019-09-26 | 2022-07-05 | PsiQuantum Corp. | Superconducting device with asymmetric impedance |
US11473974B2 (en) | 2018-02-06 | 2022-10-18 | PsiQuantum Corp. | Superconducting photon detector |
US11569816B1 (en) | 2019-04-10 | 2023-01-31 | PsiQuantum Corp. | Superconducting switch |
US11585695B1 (en) | 2019-10-21 | 2023-02-21 | PsiQuantum Corp. | Self-triaging photon detector |
US11719653B1 (en) | 2018-09-21 | 2023-08-08 | PsiQuantum Corp. | Methods and systems for manufacturing superconductor devices |
US11980105B2 (en) | 2018-10-27 | 2024-05-07 | PsiQuantum Corp. | Superconducting switch |
US11994426B1 (en) | 2019-11-13 | 2024-05-28 | PsiQuantum Corp. | Scalable photon number resolving photon detector |
-
1991
- 1991-08-26 JP JP03240539A patent/JP3101362B2/en not_active Expired - Fee Related
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1988003414A1 (en) * | 1986-11-05 | 1988-05-19 | Sumitomo Bakelite Company, Limited | gamma-RAY STERILIZATION PROCESS FOR POLYVINYL ALCOHOL GEL |
US12015383B2 (en) | 2017-05-16 | 2024-06-18 | PsiQuantum Corp. | Superconducting signal amplifier |
US10897235B2 (en) | 2017-05-16 | 2021-01-19 | PsiQuantum Corp. | Superconducting signal amplifier |
US11029203B2 (en) | 2017-05-16 | 2021-06-08 | PsiQuantum Corp. | Gated superconducting photon detector |
US10386229B2 (en) | 2017-05-16 | 2019-08-20 | PsiQuantum Corp. | Gated superconducting photon detector |
US10396733B2 (en) | 2017-05-16 | 2019-08-27 | PsiQuantum Corp. | Superconducting signal amplifier |
US11283001B2 (en) | 2017-07-28 | 2022-03-22 | PsiQuantum Corp. | Photodetector with superconductor nanowire transistor based on interlayer heat transfer |
US11805709B2 (en) | 2017-07-28 | 2023-10-31 | PsiQuantum Corp. | Superconductor-based transistor |
US10566516B2 (en) | 2017-07-28 | 2020-02-18 | PsiQuantum Corp. | Photodetector with superconductor nanowire transistor based on interlayer heat transfer |
US10944038B2 (en) | 2017-07-28 | 2021-03-09 | PsiQuantum Corp. | Photodetector with superconductor nanowire transistor based on interlayer heat transfer |
US10586910B2 (en) | 2017-07-28 | 2020-03-10 | PsiQuantum Corp. | Superconductor-based transistor |
US10361703B2 (en) | 2017-10-05 | 2019-07-23 | PsiQuantum Corp. | Superconducting logic circuits |
WO2019071005A1 (en) * | 2017-10-05 | 2019-04-11 | PsiQuantum Corp. | Superconducting logic circuits |
US10374611B2 (en) | 2017-10-05 | 2019-08-06 | PsiQuantum Corp. | Superconducting logic components |
US11621714B2 (en) | 2017-10-05 | 2023-04-04 | PsiQuantum Corp. | Superconducting logic circuits |
US11133805B2 (en) | 2017-10-05 | 2021-09-28 | PsiQuantum Corp. | Superconducting logic circuits |
US12095462B2 (en) | 2017-10-05 | 2024-09-17 | PsiQuantum Corp. | Superconducting logic circuits |
WO2019094957A1 (en) * | 2017-11-13 | 2019-05-16 | PsiQuantum Corp. | Methods and devices for impedance multiplication |
US12107375B2 (en) | 2017-11-13 | 2024-10-01 | PsiQuantum Corp. | Methods and devices for impedance multiplication |
US10461445B2 (en) | 2017-11-13 | 2019-10-29 | PsiQuantum Corp. | Methods and devices for impedance multiplication |
US11108172B2 (en) | 2017-11-13 | 2021-08-31 | PsiQuantum Corp. | Methods and devices for impedance multiplication |
US12061114B2 (en) | 2018-02-06 | 2024-08-13 | PsiQuantum Corp. | Superconducting photon detector |
US11473974B2 (en) | 2018-02-06 | 2022-10-18 | PsiQuantum Corp. | Superconducting photon detector |
US11811394B2 (en) | 2018-02-14 | 2023-11-07 | PsiQuantum Corp. | Superconducting field-programmable gate array |
US11362664B2 (en) | 2018-02-14 | 2022-06-14 | PsiQuantum Corp. | Superconducting field-programmable gate array |
US12119820B2 (en) | 2018-02-14 | 2024-10-15 | PsiQuantum Corp. | Superconducting field-programmable gate array |
US10972104B2 (en) | 2018-02-14 | 2021-04-06 | PsiQuantum Corp. | Superconducting logic components |
US12009819B2 (en) | 2018-02-14 | 2024-06-11 | PsiQuantum Corp. | Superconducting logic components |
US10879905B2 (en) | 2018-02-14 | 2020-12-29 | PsiQuantum Corp. | Superconducting field-programmable gate array |
US11629995B2 (en) | 2018-05-01 | 2023-04-18 | PsiQuantum Corp. | Photon number resolving superconducting detector |
US11988554B2 (en) | 2018-05-01 | 2024-05-21 | PsiQuantum Corp. | Photon number resolving superconducting detector |
US11313719B2 (en) | 2018-05-01 | 2022-04-26 | PsiQuantum Corp. | Photon number resolving superconducting detector |
US10984857B2 (en) | 2018-08-16 | 2021-04-20 | PsiQuantum Corp. | Superconductive memory cells and devices |
US11475945B2 (en) | 2018-08-16 | 2022-10-18 | PsiQuantum Corp. | Superconductive memory cells and devices |
US11972794B2 (en) | 2018-08-16 | 2024-04-30 | PsiQuantum Corp. | Superconductive memory cells and devices |
US10573800B1 (en) | 2018-08-21 | 2020-02-25 | PsiQuantum Corp. | Superconductor-to-insulator devices |
US11832532B2 (en) | 2018-08-21 | 2023-11-28 | PsiQuantum Corp. | Superconductor-to-insulator devices |
US11830811B2 (en) | 2018-09-19 | 2023-11-28 | PsiQuantum Corp. | Tapered connectors for superconductor circuits |
US11101215B2 (en) | 2018-09-19 | 2021-08-24 | PsiQuantum Corp. | Tapered connectors for superconductor circuits |
US11719653B1 (en) | 2018-09-21 | 2023-08-08 | PsiQuantum Corp. | Methods and systems for manufacturing superconductor devices |
US11936380B2 (en) | 2018-10-27 | 2024-03-19 | PsiQuantum Corp. | Superconducting field-programmable gate array |
US11980105B2 (en) | 2018-10-27 | 2024-05-07 | PsiQuantum Corp. | Superconducting switch |
US10944403B2 (en) | 2018-10-27 | 2021-03-09 | PsiQuantum Corp. | Superconducting field-programmable gate array |
US11601127B2 (en) | 2018-10-27 | 2023-03-07 | PsiQuantum Corp. | Superconducting field-programmable gate array |
US11289590B1 (en) | 2019-01-30 | 2022-03-29 | PsiQuantum Corp. | Thermal diode switch |
US11799020B1 (en) | 2019-01-30 | 2023-10-24 | PsiQuantum Corp. | Thermal diode switch |
US11569816B1 (en) | 2019-04-10 | 2023-01-31 | PsiQuantum Corp. | Superconducting switch |
US11009387B2 (en) | 2019-04-16 | 2021-05-18 | PsiQuantum Corp. | Superconducting nanowire single photon detector and method of fabrication thereof |
US11441941B2 (en) | 2019-04-16 | 2022-09-13 | PsiQuantum Corp. | Superconducting nanowire single photon detector and method of fabrication thereof |
US11793090B1 (en) | 2019-09-26 | 2023-10-17 | PsiQuantum Corp. | Superconducting device with asymmetric impedance |
US11380731B1 (en) | 2019-09-26 | 2022-07-05 | PsiQuantum Corp. | Superconducting device with asymmetric impedance |
US11994428B1 (en) | 2019-10-21 | 2024-05-28 | PsiQuantum Corp. | Self-triaging photon detector |
US11585695B1 (en) | 2019-10-21 | 2023-02-21 | PsiQuantum Corp. | Self-triaging photon detector |
US11994426B1 (en) | 2019-11-13 | 2024-05-28 | PsiQuantum Corp. | Scalable photon number resolving photon detector |
Also Published As
Publication number | Publication date |
---|---|
JP3101362B2 (en) | 2000-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3101362B2 (en) | Superconducting mixer element | |
US4316785A (en) | Oxide superconductor Josephson junction and fabrication method therefor | |
EP0584410A1 (en) | Superconducting electronic structures and methods of preparing same | |
US6806553B2 (en) | Tunable thin film capacitor | |
JP3221403B2 (en) | Oxide superconductor | |
US4891355A (en) | Method for producing superconducting circuit | |
Mogro‐Campero et al. | Superior microwave properties by post‐annealing YBa2Cu3O7 thin films at low oxygen partial pressure | |
JP2639961B2 (en) | Superconducting element manufacturing method | |
JPH0714079B2 (en) | Oxide superconducting three-terminal device | |
US6613463B1 (en) | Superconducting laminated oxide substrate and superconducting integrated circuit | |
JPH04260378A (en) | Superconducting electromagnetic wave detection element integrated with antenna | |
JP3059806B2 (en) | Superconducting element and manufacturing method thereof | |
JPH05299914A (en) | Superconducting high frequency resonator and filter | |
Jung et al. | Improved microstructure of superconducting Y-Ba-Cu-O films deposited on LaAlO3 substrates | |
JP3213204B2 (en) | High-frequency circuit device using superconductor | |
JPS6161555B2 (en) | ||
JPH0697520A (en) | Compound type josephson junction device and its manufacture | |
JP3167454B2 (en) | Superconducting element and manufacturing method thereof | |
JPH0597590A (en) | Production of oxide high-temperature superconducting thin film and optical element using the same | |
JPH0548166A (en) | Manufacture of weak junction type josephson junction device | |
JP2540185B2 (en) | Semiconductor device | |
JPH0669555A (en) | Josephson junction element | |
JPH02260472A (en) | Josephson junction element | |
JPH06112713A (en) | Method for manufacture of high-temperature superconductor films on both opposite faces of substrate | |
JPS62248272A (en) | Superconducting microbridge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |