JPH0554784B2 - - Google Patents

Info

Publication number
JPH0554784B2
JPH0554784B2 JP60291773A JP29177385A JPH0554784B2 JP H0554784 B2 JPH0554784 B2 JP H0554784B2 JP 60291773 A JP60291773 A JP 60291773A JP 29177385 A JP29177385 A JP 29177385A JP H0554784 B2 JPH0554784 B2 JP H0554784B2
Authority
JP
Japan
Prior art keywords
sensor
solution
blood
sensors
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60291773A
Other languages
Japanese (ja)
Other versions
JPS62148648A (en
Inventor
Makoto Yano
Michihiro Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koden Corp
Original Assignee
Nippon Koden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koden Corp filed Critical Nippon Koden Corp
Priority to JP60291773A priority Critical patent/JPS62148648A/en
Publication of JPS62148648A publication Critical patent/JPS62148648A/en
Publication of JPH0554784B2 publication Critical patent/JPH0554784B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は血液等の体液のガス分圧を測定するた
めのセンサの保存方法に関する。 (従来の技術) 血液中の炭酸ガス分圧、酸素分圧、および水素
イオン濃度は血液ガスと総称され、生体の呼吸お
よび代謝機能の尺度として極めて重要である。従
来血液ガスの測定はもつぱら採決後血液ガス分析
装置を用いて行われてきた。しかしこの方法では
採血から測定完了までに時間がかゝること、連続
的測定が不可能なこと、患者の血液が失われるこ
と等の問題点があつた。このような問題点を解消
するものとして本発明者らはいわゆる輸液方式血
液ガス測定装置を特開昭59−155240号に開示し
た。 該装置は、血管内に挿入されるカテーテルまた
は該カテーテルに連結された測定室内に気体分圧
センサを装着し、該カテーテルまたは測定室と輸
液溜めを導管で連結して、該カテーテルまたは測
定室内に一定濃度の気体成分を含有する輸液を供
給するとともに、該カテーテルまたは測定室内の
輸液を吸引する手段により適宜血液をカテーテル
または/及び測定室内に吸引して、上記気体分圧
センサの少くとも検出部が血液と接触するよう構
成した装置である。 該装置は次の利点を有する。 センサは輸液と血液に交互に接触するために
輸液による較正を行なうことができ、センサの
ドリフトがあつても正確な測定が可能である。
また血液に触れる時間が短いために血栓が生じ
にくい。 センサは血管外にあるために極端に小さくな
くてもよい。従つていくつかの成分を同時に測
定するマルチセンサを組込むことが容易であ
る。 輸液を較正液として用いるために、特別な較
正液の滅菌を必要としない。血圧(動脈中心
圧)測定のラインを利用できる。 第1図に該装置の一例を示す。センサ6はセル
8内に収納され、セルには2つの開口部があり一
方は輸液ライン10、ローラーポンプ11を通じ
て輸液バツグ12につながつている。もう一つの
開口部は血管1に留置された留置針4と連結され
ている。センサの感応部は後者の開口部の付近に
あり、ローラーポンプ11を正転もしくは逆転さ
せることにより、輸液及び血液に接触させること
ができる。 このような装置に使用されるセンサは、単一の
成分のみでなくいくつかの成分を同時に測定でき
ることが望ましい。それは、該装置を用いる場合
比較的軽度であつても生体を浸襲するからそれに
見あう情報が得られる必要があり、またセンサが
体外にあるため少し位ならセンサのサイズが大き
くなつてもかまわないからである。この場合、測
定する項目の一つの組合せとしては酸素、炭酸ガ
ス分圧及びPHが重要である。これらは一般に血液
ガス分析とよばれ、これらを総合してはじめて全
身の呼吸状態及び酸塩基平衡が解析できるからで
ある。この三つの成分を測定できる輸液ガスモニ
タ用マルチセンサとして本発明者らは特願昭59−
225033号に第2図の如きセンサを提案した。これ
はFETPHセンサ21、クラーク型酸素センサ2
2及びFET炭酸ガスセンサ23をたばね、四角
柱状の樹脂9に先端の感応部を残して埋込まれて
いる。そして樹脂はコネクタ14に固定され、セ
ル8とコネクタ14はネジで止められている。こ
のようなマルチセンサは、その使用目的上滅菌状
態で保存する必要があり、また、これらのセンサ
のうち酸素センサ、PHセンサ、比較電極、炭酸ガ
スセンサはいずれも内部液を有しており湿潤状態
で保存する必要がある。 (発明が解決しようとする問題点) 従来、これらの保存液としては、PHセンサは
NaClを添加したりん酸緩衝液、炭酸ガスセンサ
は重炭酸ソーダ水溶液、酸素センサは生理食塩水
等個々のセンサの保存に適した液中に別々に保存
されていたが、マルチセンサは作製された例がな
く、どのセンサにも適した保存液を開発する必要
がある。この保存液の条件としては、1.オートク
レーブ滅菌をしてもセンサがこわれない。2.保存
液より測定液に移してもセンサのドリフトを引き
おこさない。3.長期にわたつて安定に保存でき
る。4.人体に無害である。血液に少量の混入がお
こつてもよい等の条件を満さなければならない。
本発明はこのような条件を満足するマルチセンサ
の保存法を見出すことを目的とする。 (問題点を解決するための手段) PH比較電極、炭酸ガスセンサ、酸素センサはい
ずれも内部液を含有するために乾燥状態で保存す
ると、電気的な連絡が断たれ、測定不能となる。
この中で比較電極は内部液と測定液が液絡部でつ
ながつているが、他のセンサは内部液と測定液は
ガス透過膜で隔てられているため、電解質の移動
はおこらない。そこで今までの保存液を用いた場
合のセンサの破損の原因を検討したところ、主と
して、保存液と内部液の浸透圧の差によりおこる
ことが判明した。また、ドリフトは、保存液より
測定液に移した時、浸透圧による水分の移動がお
こり、内部液の濃度が変化するためにおこること
が主な原因であることが判明した。このため、保
存液とセンサ内部液及び測定液の浸透圧を等しく
する必要がある。測定対象は主として生体である
からその塩濃度は生理食塩水濃度0.154Nにほぼ
等しい。従つて内部液の塩濃度は生理食塩水濃度
にほぼ等しいことが好ましい。実際には内部液の
塩濃度が0.10〜0.25Nの間にあれば顕著なセンサ
のドリフト、破損はおこらないことが確かめられ
た。また比較電極に関しては内部液と測定液間で
イオンの移動があるため、保存液の塩素イオンの
濃度が血中の塩素イオンのそれと等しいことが好
ましい。実際の血中の塩素イオン濃度は0.096〜
0.107Nであるが、実際には0.05〜0.25Nの間にあ
れば測定時の顕著なドリフトは見られない。しか
しこの場合内部液と保存液の塩濃度が異なれば、
その浸透圧の差により水蒸気の移動がおこり内部
液は保存液と等しい浸透圧になろうとする。従つ
て内部液と保存液の浸透圧は等しくなる。内部液
の塩濃度は0.1〜0.25Nであるから、保存液の塩素
濃度が0.05N〜0.1Nの時は内部液と浸透圧のバラ
ンスがとれなくなるためその差を硫酸塩、硝酸
塩、炭酸塩等の塩で、塩濃度の合計が0.1N〜
0.25Nになるように調整する必要がある。 さらに検討をすすめていくと、炭酸ガスセンサ
に関して、原因不明の感度低下が保存液に炭酸イ
オンを加えることで抑えられることが判明した。
この作用の機構は不明であるが、この効果は
0.01N(5mM)以上の炭酸イオンを加えること
によりあらわれる。しかし、あまりに多くの炭酸
イオンを加えることは前述の浸透圧に影響を及ぼ
し、またオートクレーブの際の炭酸ガス圧による
保存液のもれにもつながるので炭酸イオンの濃度
は高すぎてもよくなく、これらのイオン濃度は、
前述の全塩濃度の範囲内にある必要がある。この
ように保存液と測定液及びセンサ内部液の浸透
圧、塩素イオン濃度を調節することにより滅菌包
装よりとりだしてすぐ測定を行なつてもドリフト
や破損のないマルチガスセンサが提供できること
となつた。 (実施例) 第2図及び第3図に示すセンサを用いて実験を
行なつた。 第3図は、第2図のセンサ部の拡大図であり、
FETPHセンサ21、比較電極24、クラーク型
酸素センサ22およびFET炭酸ガスセンサ23
が組込まれている。22〜24はそれぞれ架橋さ
れた親水性ゲル33〜34を有し、ここに内部液
が吸収されている。これらの個々のセンサのうち
PHセンサ、炭酸ガスセンサは特開昭58−204363号
および実開昭59−196212号に記載されている方法
で行なつた。また酸素センサは次の方法で得た。
まず、外径0.5mm、内径0.3mmのナイロン−11カテ
ーテルに0.1mm白金線をエポキシ樹脂により埋込
んでカソードを作製した。別に、0.2mmの銀線外
径0.7mm、内径0.4mmの架橋されたPVA中空糸で囲
んだものをアノードとした。両者を軸方向にそろ
え、先端の白金露出部にポリヒドロキシエチルメ
タアクリレート(PHEMA)を塗布した後内部
液でPVA中空糸及びPHEMA内を置換し、最後
にガス透過膜であるシリコンチユーブで被覆し酸
素センサを得る。このセンサを第2図の如くセル
に組込み、セル内部に保存液を満たした後セルの
2つの開口部にロツク付の栓をし、オートクレー
ブ蒸気滅菌後、保存後のセンサの性能の変化をそ
れぞれ内部液、保存液を変えて測定した。結果を
第1表に示す。この結果より、本発明の保存法
(特定の塩濃度の内部液と保存液の組合せ)がセ
ンサの破損が少なく、ドリフトも小さいことがわ
かる。 (発明の効果) 以上のように本発明によりマルチガスセンサが
安定に滅菌状態に保存でき、開封後すぐ使用でき
るようになつた。
(Industrial Application Field) The present invention relates to a method for preserving a sensor for measuring gas partial pressure of a body fluid such as blood. (Prior Art) Carbon dioxide partial pressure, oxygen partial pressure, and hydrogen ion concentration in blood are collectively referred to as blood gases, and are extremely important as measures of the respiratory and metabolic functions of living organisms. Conventionally, blood gas measurements have been carried out using a blood gas analyzer after blood sampling. However, this method has problems such as the time it takes from blood collection to completion of measurement, the impossibility of continuous measurement, and the loss of blood from the patient. In order to solve these problems, the present inventors disclosed a so-called infusion type blood gas measuring device in Japanese Patent Laid-Open No. 155240/1983. In this device, a gas partial pressure sensor is installed in a catheter inserted into a blood vessel or a measurement chamber connected to the catheter, the catheter or measurement chamber and an infusion reservoir are connected with a conduit, and a gas partial pressure sensor is installed in the catheter or measurement chamber. In addition to supplying an infusion containing a gas component at a certain concentration, blood is appropriately sucked into the catheter or/and the measurement chamber by the means for sucking the infusion in the catheter or the measurement chamber, and at least the detection part of the gas partial pressure sensor is A device configured to bring the blood into contact with the blood. The device has the following advantages: Since the sensor alternately contacts infusion fluid and blood, it can be calibrated using infusion fluid, and even if the sensor drifts, accurate measurements can be made.
Also, because the contact time with blood is short, blood clots are less likely to occur. Since the sensor is located outside the blood vessel, it does not need to be extremely small. Therefore, it is easy to incorporate multiple sensors that measure several components simultaneously. In order to use the infusion as a calibrator, no special sterilization of the calibrator is required. A blood pressure (arterial central pressure) measurement line is available. FIG. 1 shows an example of the device. The sensor 6 is housed in a cell 8, which has two openings, one of which is connected to an infusion bag 12 through an infusion line 10 and a roller pump 11. The other opening is connected to an indwelling needle 4 placed in the blood vessel 1. The sensitive part of the sensor is located near the latter opening, and can be brought into contact with the infusion fluid and blood by rotating the roller pump 11 in the forward or reverse direction. It is desirable that the sensors used in such devices be able to measure not only a single component but several components simultaneously. When using this device, even if it is relatively mild, it will invade the living body, so it is necessary to obtain corresponding information, and since the sensor is located outside the body, the size of the sensor may be slightly larger. That's because there isn't. In this case, oxygen, carbon dioxide gas partial pressure, and PH are important as one combination of items to be measured. These are generally called blood gas analyses, and only by integrating them can the respiratory state and acid-base balance of the whole body be analyzed. As a multi-sensor for infusion gas monitoring that can measure these three components, the present inventors filed a patent application in 1983-
In No. 225033, we proposed a sensor as shown in Figure 2. This is FETPH sensor 21, Clark type oxygen sensor 2
2 and a FET carbon dioxide gas sensor 23 are embedded in a rectangular prism-shaped resin 9, leaving a sensitive part at the tip. Then, the resin is fixed to the connector 14, and the cell 8 and the connector 14 are fixed with screws. Such multi-sensors must be stored in a sterile state for their intended use, and among these sensors, the oxygen sensor, PH sensor, reference electrode, and carbon dioxide gas sensor all have internal liquid and must be stored in a moist state. You need to save it in . (Problem to be solved by the invention) Conventionally, as these storage solutions, PH sensors were
They were stored separately in a solution suitable for storing individual sensors, such as a phosphate buffer solution containing NaCl, a sodium bicarbonate aqueous solution for carbon dioxide sensors, and physiological saline for oxygen sensors, but there is no example of a multi-sensor being created. , it is necessary to develop a storage solution suitable for any sensor. The conditions for this storage solution are: 1. The sensor will not be damaged even after autoclave sterilization. 2.No sensor drift occurs even when transferred from storage solution to measurement solution. 3. Can be stored stably for a long period of time. 4.Harmless to human body. Conditions such as allowing small amounts of contamination with blood must be met.
The purpose of the present invention is to find a method for preserving multi-sensors that satisfies these conditions. (Means for solving the problem) The PH reference electrode, carbon dioxide sensor, and oxygen sensor all contain internal liquid, so if they are stored in a dry state, electrical communication will be cut off and measurements will be impossible.
Among these, in the reference electrode, the internal liquid and the measuring liquid are connected by a liquid junction, but in other sensors, the internal liquid and the measuring liquid are separated by a gas permeable membrane, so no electrolyte movement occurs. Therefore, we investigated the cause of sensor damage when using conventional storage solutions, and found that this is mainly caused by the difference in osmotic pressure between the storage solution and the internal solution. It was also found that the main cause of drift was that when the storage solution was transferred to the measurement solution, water moved due to osmotic pressure and the concentration of the internal solution changed. Therefore, it is necessary to equalize the osmotic pressures of the storage solution, the sensor internal solution, and the measurement solution. Since the object to be measured is mainly a living body, its salt concentration is approximately equal to the concentration of physiological saline, 0.154N. Therefore, the salt concentration of the internal fluid is preferably approximately equal to the physiological saline concentration. In fact, it was confirmed that if the salt concentration of the internal solution was between 0.10 and 0.25N, no significant sensor drift or damage would occur. Regarding the reference electrode, since ions move between the internal solution and the measurement solution, it is preferable that the concentration of chlorine ions in the storage solution is equal to that of chlorine ions in blood. Actual blood chloride ion concentration is 0.096~
Although it is 0.107N, in reality, if it is between 0.05 and 0.25N, no significant drift will be observed during measurement. However, in this case, if the salt concentrations of the internal solution and the storage solution are different,
The difference in osmotic pressure causes movement of water vapor, and the internal solution tries to have the same osmotic pressure as the storage solution. Therefore, the osmotic pressures of the internal solution and storage solution become equal. The salt concentration of the internal solution is 0.1 to 0.25N, so when the chlorine concentration of the storage solution is 0.05N to 0.1N, the balance between the internal solution and osmotic pressure cannot be maintained, so the difference is compensated for by sulfates, nitrates, carbonates, etc. of salt, the total salt concentration is 0.1N ~
It is necessary to adjust it to 0.25N. Further investigation revealed that the unexplained decrease in sensitivity of carbon dioxide sensors can be suppressed by adding carbonate ions to the storage solution.
Although the mechanism of this effect is unknown, this effect
It appears by adding carbonate ions of 0.01N (5mM) or more. However, adding too many carbonate ions will affect the aforementioned osmotic pressure, and will also lead to leakage of the storage solution due to carbon dioxide pressure during autoclaving, so it is not good to have a carbonate ion concentration that is too high. The concentration of these ions is
The total salt concentration must be within the range mentioned above. In this way, by adjusting the osmotic pressure and chloride ion concentration of the storage solution, measurement solution, and sensor internal solution, it has become possible to provide a multi-gas sensor that does not drift or break even when measurements are performed immediately after taking it out of the sterilized package. (Example) Experiments were conducted using the sensors shown in FIGS. 2 and 3. FIG. 3 is an enlarged view of the sensor section in FIG. 2,
FETPH sensor 21, reference electrode 24, Clark type oxygen sensor 22, and FET carbon dioxide sensor 23
is incorporated. 22 to 24 have crosslinked hydrophilic gels 33 to 34, respectively, into which the internal liquid is absorbed. Of these individual sensors
The PH sensor and carbon dioxide sensor were measured using the methods described in Japanese Patent Application Laid-open No. 58-204363 and Japanese Utility Model Application No. 59-196212. Moreover, the oxygen sensor was obtained by the following method.
First, a cathode was prepared by embedding a 0.1 mm platinum wire into a nylon-11 catheter with an outer diameter of 0.5 mm and an inner diameter of 0.3 mm using epoxy resin. Separately, a 0.2 mm silver wire surrounded by crosslinked PVA hollow fibers with an outer diameter of 0.7 mm and an inner diameter of 0.4 mm was used as an anode. After aligning both in the axial direction and applying polyhydroxyethyl methacrylate (PHEMA) to the exposed platinum part at the tip, the inside of the PVA hollow fiber and PHEMA were replaced with the internal solution, and finally covered with a silicon tube, which is a gas permeable membrane. Obtain an oxygen sensor. This sensor was assembled into a cell as shown in Figure 2, and after filling the inside of the cell with a storage solution, the two openings of the cell were plugged with locks, and the changes in the performance of the sensor after autoclave steam sterilization and storage were measured. Measurements were made by changing the internal solution and storage solution. The results are shown in Table 1. These results show that the preservation method of the present invention (combining an internal solution with a specific salt concentration and a preservation solution) causes less damage to the sensor and less drift. (Effects of the Invention) As described above, according to the present invention, a multi-gas sensor can be stably stored in a sterile state and can be used immediately after opening.

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は輸液方式マルチモニターの概略図であ
り、第2図は本発明の方法により保存されるセン
サーの断面図であり、第3図はセンサ部の拡大断
面図である。 図において、1……血管、4……留置針、6…
…センサ、8……セル、9……樹脂、10……輸
液ライン、11……ローラーポンプ、12……輸
液バツグ、14……コネクター、21……FET
PHセンサ、22……クラーク型酸素センサ、23
……FET炭酸ガスセンサ、24……比較電極、
32……親水性ゲル、33……親水性ゲル、34
……親水性ゲル。
FIG. 1 is a schematic diagram of an infusion type multi-monitor, FIG. 2 is a sectional view of a sensor stored by the method of the present invention, and FIG. 3 is an enlarged sectional view of the sensor section. In the figure, 1... blood vessel, 4... indwelling needle, 6...
...Sensor, 8...Cell, 9...Resin, 10...Infusion line, 11...Roller pump, 12...Infusion bag, 14...Connector, 21...FET
PH sensor, 22... Clark type oxygen sensor, 23
...FET carbon dioxide sensor, 24... Reference electrode,
32...Hydrophilic gel, 33...Hydrophilic gel, 34
...Hydrophilic gel.

Claims (1)

【特許請求の範囲】 1 酸素センサ、炭酸ガスセンサおよびPHセンサ
からなる群から選ばれた少なくとも2つのセンサ
を有し、かつ、比較電極をそなえたマルチセンサ
を保存するに際し、PHセンサを除く他のセンサお
よび比較電極のそれぞれの内部液の塩濃度を0.10
〜0.25Nとするとともに、保存液の塩素イオン濃
度を0.05〜0.25Nとし、塩成分の全濃度を0.10〜
0.25Nとすることを特徴とするマルチセンサの保
存法。 2 該マルチセンサを構成するセンサの1つが炭
酸ガスセンサであるマルチセンサを保存するに際
し、該保存液にさらにCO3 --イオンが0.01N以上
含有されている特許請求の範囲第1項記載の保存
法。
[Claims] 1. When storing a multi-sensor that has at least two sensors selected from the group consisting of an oxygen sensor, a carbon dioxide sensor, and a PH sensor, and is equipped with a comparison electrode, other than the PH sensor The salt concentration of the internal solution of the sensor and reference electrode was set to 0.10.
~0.25N, the chlorine ion concentration of the storage solution is 0.05~0.25N, and the total concentration of salt components is 0.10~0.25N.
A method of preserving multi-sensors characterized by setting the pressure to 0.25N. 2. Storage according to claim 1, wherein when storing a multi-sensor in which one of the sensors constituting the multi-sensor is a carbon dioxide gas sensor, the storage solution further contains 0.01N or more of CO 3 -- ions. Law.
JP60291773A 1985-12-23 1985-12-23 Method for preserving multisensor Granted JPS62148648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60291773A JPS62148648A (en) 1985-12-23 1985-12-23 Method for preserving multisensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60291773A JPS62148648A (en) 1985-12-23 1985-12-23 Method for preserving multisensor

Publications (2)

Publication Number Publication Date
JPS62148648A JPS62148648A (en) 1987-07-02
JPH0554784B2 true JPH0554784B2 (en) 1993-08-13

Family

ID=17773232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60291773A Granted JPS62148648A (en) 1985-12-23 1985-12-23 Method for preserving multisensor

Country Status (1)

Country Link
JP (1) JPS62148648A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9206198A (en) * 1991-06-26 1994-11-29 Ppg Industries Inc Integrated circuit hydrated sensor device
JP5144829B1 (en) 2012-07-23 2013-02-13 株式会社堀場製作所 Ion electrode
JP6226324B2 (en) * 2014-01-14 2017-11-08 東亜ディーケーケー株式会社 Storage method of measuring instrument and sensor unit

Also Published As

Publication number Publication date
JPS62148648A (en) 1987-07-02

Similar Documents

Publication Publication Date Title
EP0958499B1 (en) Method for calibrating sensors used in diagnostic testing
ES2307254T3 (en) PROCEDURE FOR RESTORING THE FUNCTIONAL PROPERTIES OF AN ELECTROCHEMICAL SENSOR.
US4834101A (en) Catheter-type electrochemical sensors
US5505828A (en) Calibration solutions useful for analysis of biological fluids and methods employing same
US5749832A (en) Monitoring systems
ES2614936T3 (en) Composite membrane for an enzymatic sensor
US5697366A (en) In situ calibration system for sensors located in a physiologic line
US7826880B2 (en) Electrochemical sensor for in-vivo or ex-vivio measurements of the carbon dioxide partial pressure of living tissue
US5346604A (en) Self-activating chemical sensor system
JPS6356498B2 (en)
Meruva et al. Catheter-type sensor for potentiometric monitoring of oxygen, pH and carbon dioxide
JPH021258B2 (en)
Collison et al. Potentiometric combination ion-carbon dioxide sensors for in vitro and in vivo blood measurements
ES2372252T3 (en) METHOD FOR REDUCING THE OXYGEN LOSS RATE OF WATER SOLUTIONS.
JPH0554784B2 (en)
Holmes et al. Evaluation of methods for calibration of O2 and CO2 electrodes
JP2000504606A (en) Brain pO2 lower 2 measuring device
Johnstone Measurement of arterial and capillary blood oxygen tension
FuJIMoTo et al. Dependence of cell pH and buffer capacity on the extracellular acid-base change in the skeletal muscle of bullfrog
JPS618028A (en) Apparatus for measuring concentration of ion in blood
JPH0453381B2 (en)
JPH0244725Y2 (en)
JPS58111750A (en) Reference electrode for ion electrode
WO2004058057A1 (en) Sensor device for monitoring perfusion of tissue
JPS60116332A (en) Apparatus for measuring gas concentration in blood