JPH0554277B2 - - Google Patents

Info

Publication number
JPH0554277B2
JPH0554277B2 JP58144186A JP14418683A JPH0554277B2 JP H0554277 B2 JPH0554277 B2 JP H0554277B2 JP 58144186 A JP58144186 A JP 58144186A JP 14418683 A JP14418683 A JP 14418683A JP H0554277 B2 JPH0554277 B2 JP H0554277B2
Authority
JP
Japan
Prior art keywords
light
photovoltaic device
filler
photovoltaic
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58144186A
Other languages
Japanese (ja)
Other versions
JPS6034080A (en
Inventor
Tadashi Oohayashi
Kazunaga Tsushimo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP58144186A priority Critical patent/JPS6034080A/en
Publication of JPS6034080A publication Critical patent/JPS6034080A/en
Publication of JPH0554277B2 publication Critical patent/JPH0554277B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 本発明はシリコン結晶またはアモルフアスシリ
コンを主成分とする半導体より構成された光起電
力素子に関する。さらに詳しくは入射光を有効に
発電のために吸収することのできるシリコン結晶
またはアモルフアスシリコンを主成分とする半導
体より構成された光起電力素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photovoltaic device made of a semiconductor whose main component is silicon crystal or amorphous silicon. More specifically, the present invention relates to a photovoltaic element made of a semiconductor mainly composed of silicon crystal or amorphous silicon that can effectively absorb incident light for power generation.

現在太陽エネルギーは無尽蔵でクリーンで石油
代替エネルギー源として集目され、そのより良い
有効利用のための技術開発が活発に行なわれてい
る。
Currently, solar energy is attracting attention as an inexhaustible and clean energy source that replaces petroleum, and technological development for its better and more effective use is actively underway.

たとえば従来より使用されている典型的な太陽
電池にはp−n接合太陽電池、ヘテロ接合太陽電
池、シヨツトキー障壁太陽電池などのようにシヨ
ツトキー障壁、MIS、p−i−n接合またはp−
n接合のホモ接合構造またはヘテロ接合構造のい
ずれかの接合構造を単独または組合せて有するも
のが例示できる。
For example, typical solar cells conventionally used include Schottky barrier, MIS, p-i-n junction or p-n junction solar cells, such as p-n junction solar cells, heterojunction solar cells, Schottky barrier solar cells, etc.
Examples include those having either a homozygous n-junction structure or a heterozygous structure singly or in combination.

かかる太陽電池の一例としては可視光を透過す
るガラス基板上に透明電極を設け、該透明電極上
にアモルフアスシリコンからなるp型層、ノンド
ープ層およびn型層を順次形成したうえにオーミ
ツクコンタクト用電極を設けてなるものが例示で
きる。
As an example of such a solar cell, a transparent electrode is provided on a glass substrate that transmits visible light, and a p-type layer, a non-doped layer, and an n-type layer made of amorphous silicon are sequentially formed on the transparent electrode, and then an ohmic contact is formed. An example is one provided with an electrode for use.

上記太陽電池においては太陽光がガラス基板お
よび透明電極を介してアモルフアスシリコンから
なるp型層、ノンドープ層およびn型層に照射さ
れると主としてノンドープ層において電子−正孔
対が発生し、該光生成キヤリアは上記各層よりな
るP−i−n接合の遷移領域で発生する電界に従
つて移動し透明電極またはオーミツクコンタクト
用電極にそれぞれ分離して集まり荷電キヤリアの
分極が起こることにより上記電極間に電圧が発生
する。
In the solar cell described above, when sunlight is irradiated on the p-type layer, non-doped layer and n-type layer made of amorphous silicon through the glass substrate and transparent electrode, electron-hole pairs are generated mainly in the non-doped layer. The photogenerated carriers move in accordance with the electric field generated in the transition region of the P-i-n junction made up of the above-mentioned layers, and are separated and collected at the transparent electrode or the ohmic contact electrode, respectively, due to the polarization of the charged carriers. A voltage is generated between the two.

しかしながらこのような構成では実際の発電に
用いられる光量の全入射光量に対する割合は低く
なつて入射光が有効に利用されているとはいえな
いのが現状である。とくに可視領域の短波長側の
光において反射による損失が大きい。
However, in such a configuration, the ratio of the amount of light used for actual power generation to the total amount of incident light is low, and the current situation is that the incident light cannot be said to be used effectively. In particular, the loss due to reflection is large in light on the short wavelength side of the visible region.

上記問題を解決するために、たとえばSi3N4
SiOなどを用いた無反射コーテイングを光起電力
素子の受光面に施すことにより光の入射率をアツ
プして光起電力素子の電気的特性を改善する試み
がなされているが依然として可視領域の短波長側
の光で反射による損失が大きい。上記問題を回避
する方法としては前記無反射コーテイングを何回
も行なう多層無反射コーテイングが有効である
が、当然コスト高という欠点を伴う。
In order to solve the above problem, for example, Si 3 N 4 ,
Attempts have been made to improve the electrical characteristics of photovoltaic elements by increasing the incidence of light by applying non-reflective coatings using materials such as SiO to the light-receiving surfaces of photovoltaic elements, but they still remain short in the visible region. The loss due to reflection is large for light on the wavelength side. As a method for avoiding the above-mentioned problem, multilayer anti-reflection coating in which the anti-reflection coating is applied many times is effective, but this naturally has the drawback of high cost.

本発明者らは叙上の実情に鑑み、短波長光の半
導体層中への入射効率をも向上せしめる単層の無
反射コーテイング薄膜の開発を目的として鋭意研
究を重ねた結果、 (A) エポキシ樹脂、アクリル樹脂、シリコーン樹
脂、EVA、PVAおよびPVBのいずれか単独ま
たは2種以上の混合物であるマトリツクス樹脂
および (B) マトリツクス樹脂との屈折率の差が0.01以上
であり、かつ光起電力素子が吸収し発電しうる
波長範囲内の光に対して実質的に透明である充
填剤 からなり、マトリツクス樹脂および充填剤の合計
量に対する充填剤の割合が1〜30%(重量%、以
下同様)である透明樹脂組成物を光起電力素子の
受光面に密着被覆して入射光有効利用膜とするこ
とを特徴とするシリコン結晶またはアモルフアス
シリコンを主成分とする半導体より構成された光
起電力素子(以下、単に光起電力素子ともいう)
においては、受光面にコーテイングされた薄膜が
単層であるにもかかわらず光起電力素子が発電に
利用しうる波長範囲内、とくに可視領域内におい
て短波長側の光を反射、吸収などにより損失する
ことなく有効に反導体層まで至らしめることがで
きることを見出し、本発明を完成するに至つた。
In view of the above-mentioned circumstances, the inventors of the present invention have conducted extensive research with the aim of developing a single-layer non-reflection coating thin film that also improves the incidence efficiency of short-wavelength light into the semiconductor layer. (B) a matrix resin that is any one of resin, acrylic resin, silicone resin, EVA, PVA, and PVB alone or a mixture of two or more thereof; and (B) a photovoltaic element in which the difference in refractive index between the matrix resin and the matrix resin is 0.01 or more; Comprising a filler that is substantially transparent to light within a wavelength range that can be absorbed and generate electricity, and the proportion of the filler to the total amount of matrix resin and filler is 1 to 30% (wt%, the same applies hereinafter). A photovoltaic device composed of a semiconductor whose main component is silicon crystal or amorphous silicon, characterized in that the light-receiving surface of a photovoltaic device is closely coated with a transparent resin composition, which forms a film for effectively utilizing incident light. element (hereinafter also simply referred to as photovoltaic element)
Although the thin film coated on the light-receiving surface is a single layer, the photovoltaic element loses light within the wavelength range that can be used for power generation, especially in the visible region, due to reflection and absorption. The present inventors have discovered that it is possible to effectively form an anticonductor layer without having to do so, and have completed the present invention.

すなわち本発明は、光起電力素子表面にコーテ
イングされた入射光有効利用膜中の充填剤が入射
光または反射光を吸収することなく乱反射せしめ
ることにより散乱光を光エネルギーとして素子内
部の半導体層まで送込み、入射光を有効に利用さ
せる効果をうることができることを見出したもの
である。
In other words, in the present invention, the filler in the incident light effective utilization film coated on the surface of the photovoltaic element diffusely reflects the incident light or reflected light without absorbing it, thereby converting the scattered light into light energy and transmitting it to the semiconductor layer inside the element. It has been discovered that the effect of effectively utilizing the transmitted and incident light can be obtained.

以下、本発明の好ましい実施態様を示す図面を
参照しながらさらに詳しく説明する。
Hereinafter, the present invention will be described in more detail with reference to the drawings showing preferred embodiments.

第1A図および第1B図はそれぞれ本発明の光
起電力素子の代表的な実施態様を例示する概略縦
断面図である。第1A図および第1B図において
光起電力素子はそれぞれ一例としてp−i−n接
合型を示すが、もちろん他の接合型であつてもよ
くシヨツトキー障壁、MISまたp−n接合のホモ
接合構造またはヘテロ接合構造のうちいずれか1
種またはそれらを組合せた構造のものであつても
よい。
FIG. 1A and FIG. 1B are schematic vertical cross-sectional views each illustrating a typical embodiment of the photovoltaic device of the present invention. In FIGS. 1A and 1B, the photovoltaic elements each show a p-i-n junction type as an example, but of course other junction types may be used as well, such as a Schottky barrier, an MIS, or a p-n junction homojunction structure. or any one of heterojunction structure
The structure may be a species or a combination thereof.

第1A図はp−型半導体1側から、第1B図は
n−型半導体2側からそれぞれ本発明における入
射光有効利用膜3を介して光を照射するタイプの
光起電力素子を示すが、それらの光起電力素子の
構造は従来からよく知られたものである。
FIG. 1A shows a photovoltaic element of the type in which light is irradiated from the p-type semiconductor 1 side, and FIG. 1B from the n-type semiconductor 2 side via the incident light effective utilization film 3 according to the present invention. The structures of these photovoltaic devices are well known.

たとえば第1A図を例にとればステンレス板な
どの基板4、絶縁膜5、下部電極6、n−型半導
体2、I層7、p−型半導体1、透明電極8およ
び入射光有効利用膜3という構成であり、第1B
図は半導体層9における順序を第1A図のものと
逆転した構成である。
For example, taking FIG. 1A as an example, a substrate 4 such as a stainless steel plate, an insulating film 5, a lower electrode 6, an n-type semiconductor 2, an I layer 7, a p-type semiconductor 1, a transparent electrode 8, and a film 3 for effectively utilizing incident light. This is the configuration, and the 1st B
The figure shows a configuration in which the order of the semiconductor layers 9 is reversed from that of FIG. 1A.

本発明に用いられる半導体層9としてはシリコ
ン結晶またはアモルフアスシリコンを主成分とし
て構成され、その他Ge、C、N、Snなどを含ん
でもよい結晶構造または非晶質性構造を有する半
導体層、あるいはそれらの混合体からなる半導体
層が好適である。
The semiconductor layer 9 used in the present invention is a semiconductor layer mainly composed of silicon crystal or amorphous silicon and having a crystalline or amorphous structure that may also contain Ge, C, N, Sn, etc., or Semiconductor layers made of mixtures thereof are preferred.

かかる半導体層9としては、たとえば結晶シリ
コン半導体、非晶質シリコン(a−Si)半導体、
微結晶シリコン半導体およびそれらの水素または
フツ素半導体などがあげられる。また一般式a−
SiC:a−SiN:H、a−SiO:H、a−SiON:
H、a−SiGe:H、a−SiSn:Hなどで例示さ
れる化合物も好ましく用いられる。
Such semiconductor layer 9 includes, for example, a crystalline silicon semiconductor, an amorphous silicon (a-Si) semiconductor,
Examples include microcrystalline silicon semiconductors and their hydrogen or fluorine semiconductors. Also, the general formula a-
SiC:a-SiN:H, a-SiO:H, a-SiON:
Compounds exemplified by H, a-SiGe:H, a-SiSn:H, etc. are also preferably used.

かかる光起電力素子の受光面10に、たとえば
スクリーン印刷などによつて入射光有効利用膜3
を密着形成することにより本発明の光起電力素子
をうる。
A film 3 for effectively utilizing incident light is formed on the light-receiving surface 10 of such a photovoltaic element by, for example, screen printing.
The photovoltaic device of the present invention can be obtained by closely forming the photovoltaic device.

本発明における入射光有効利用膜3はマトリツ
クス樹脂として、エポキシ樹脂、アクリル樹脂、
シリコーン樹脂、EVA、PVAおよびPVBのいず
れか単独または2種以上の混合物を含有する。
The film 3 for effectively utilizing incident light in the present invention uses epoxy resin, acrylic resin,
Contains silicone resin, EVA, PVA, and PVB alone or in a mixture of two or more.

本発明において前記マトリツクス樹脂中に分散
せしめる充填剤としては、該マトリツクス樹脂と
の屈折率の差が0.01以上であり、かつ光起電力素
子が吸収し発電しうる波長範囲内の光に対して実
質的に透明である充填剤が使用される。なお、前
記実質的に透明であるとは、表面反射率(素子外
に逃げる光の率)を減少させて実質的に半導体層
に吸収される光量(有効に利用できる光量)を増
加させる機能を有することをいう。該充填剤とし
ては平均粒径が約10Å〜50μm、マトリツクス樹
脂との屈折率の差が約0.01以上、かつ光起電力素
子が吸収し発電しうる波長範囲内なかんづく可視
領域内において光学的吸収のない光学特性を示す
結晶構造または無定形構造を有するものが好まし
く用いられる。
In the present invention, the filler to be dispersed in the matrix resin has a refractive index difference of 0.01 or more with the matrix resin, and is substantially effective against light within a wavelength range that can be absorbed by the photovoltaic element to generate electricity. A filler that is transparent is used. Note that the term "substantially transparent" refers to the function of reducing the surface reflectance (the rate of light escaping to the outside of the element) and substantially increasing the amount of light absorbed by the semiconductor layer (the amount of light that can be effectively used). It means to have. The filler has an average particle size of about 10 Å to 50 μm, a difference in refractive index from the matrix resin of about 0.01 or more, and a material that has optical absorption properties within the wavelength range in which the photovoltaic element can absorb and generate electricity, especially in the visible region. Those having a crystal structure or an amorphous structure exhibiting no optical properties are preferably used.

かかる充填剤としては、たとえば氷晶石
(AlF3・3NaF)、CaF2、MgF2、BaF2、LiFなど
のハロゲン化物、酸化マグネシウム、Al2O3、溶
融石英(SiO2)、水晶(SiO2)、TiO2などの金属
または非金属酸化物のうち、その光透過範囲が半
導体の光吸収領域内にあつてそれ自身光吸収のな
いものまたは小さいものがあげられ、それらの単
独または2種以上の混合物が本発明に用いられて
よい。
Examples of such fillers include cryolite ( AlF3.3NaF ), halides such as CaF2 , MgF2 , BaF2 , and LiF, magnesium oxide, Al2O3 , fused silica ( SiO2 ), and quartz (SiO2) . 2 ) Among metal or non-metal oxides such as TiO2 , those whose light transmission range is within the light absorption region of the semiconductor and have no or small light absorption themselves, and these may be used singly or in combination. Mixtures of the above may be used in the present invention.

本発明において充填剤のマトリツクス樹脂への
配合量はえられる入射光有効利用膜3に対し1〜
30%となるのが好ましい。その配合量が約1%未
満であると入射光有効利用膜としての効果が小さ
くなり、一方約30%を超えると入射光有効利用膜
と素子受光面との密着力が低下、または光透過率
が低下していずれも好ましくない。
In the present invention, the amount of the filler added to the matrix resin is 1 to 1 for the film 3 that effectively utilizes incident light.
Preferably it is 30%. If the amount is less than about 1%, the effect as a film for effectively utilizing incident light will be reduced, while if it exceeds about 30%, the adhesion between the film for effectively utilizing incident light and the light-receiving surface of the element will decrease, or the light transmittance will decrease. decreases, which is not preferable.

また前記充填剤の平均粒径が小さすぎると可視
光範囲の波長に対して散乱の効果がえられなくな
り、一方大きすぎると充填剤の樹脂中での充填率
が小さくなり、可視光範囲の波長に対して反射、
散乱領域が狭くなるので、通常10Å〜50μmの微
粒子を膜内で凝集したときの粒径が50Å以上とな
るように充填するのがよい。
In addition, if the average particle size of the filler is too small, it will not be possible to obtain a scattering effect for wavelengths in the visible light range, while if it is too large, the filling rate of the filler in the resin will be small, reflection against,
Since the scattering region becomes narrow, it is preferable to fill the film with fine particles of 10 Å to 50 μm so that the particle size when aggregated within the film is 50 Å or more.

さらに前記屈折率の差が約0.01未満であると充
填剤と樹脂との界面で反射の効果が抑えられ、充
填剤の効果が顕著でなくなり、やはり好ましくな
い。
Furthermore, if the difference in refractive index is less than about 0.01, the effect of reflection at the interface between the filler and the resin will be suppressed, and the effect of the filler will not be significant, which is also undesirable.

本発明では入射光有効利用膜3の密着被覆する
厚さは約1μm〜10mmが好ましい。約1μm未満で
あると本来保護膜としての絶縁性が不充分とな
り、一方約10mmを超えると樹脂によつては光透過
率の低下が大きくなつていずれも好ましくない。
In the present invention, the thickness of the tightly coated film 3 for effectively utilizing incident light is preferably about 1 μm to 10 mm. If it is less than about 1 μm, the insulating properties as a protective film will be insufficient, while if it exceeds about 10 mm, the light transmittance will be greatly reduced depending on the resin, which is not preferable.

かかる入射光有効利用膜3は既述したごとくマ
トリツクス樹脂中に分散した充填剤による入射光
または反射光の乱反射を利用して、生ずる散乱光
を光エネルギーとして素子内部に至らしめること
によりとくに可視領域内の短波長側の光の損失を
減少せしめ半導体層9で発生する光起電力に対し
て入射光を有効利用するものであり、太陽電池に
適用されたばあい受光面に達する太陽輻射エネル
ギーの電気エネルギーへの変換効率を向上せしめ
今後増々太陽電池の幅広い研究開発の進むなかで
その利用価値は大きい。
As described above, this film 3 that effectively utilizes incident light utilizes the diffuse reflection of incident light or reflected light by the filler dispersed in the matrix resin, and converts the resulting scattered light into optical energy that reaches the inside of the element, thereby improving the optical efficiency, especially in the visible region. This method reduces the loss of light on the short wavelength side of the semiconductor layer 9 and effectively utilizes the incident light against the photovoltaic force generated in the semiconductor layer 9. When applied to a solar cell, it reduces the amount of solar radiant energy that reaches the light receiving surface. It will improve the efficiency of conversion into electrical energy and will have great utility as a wide range of research and development on solar cells continues to progress.

しかも本発明の光起電力素子においてはただ一
層の入射光有効利用膜を被覆するだけでよく、か
つその材料は従来からよく知られている安価で豊
富な高分子樹脂や無機化合物であるので材料価格
や製造面でコスト的に有利であるという利点もあ
る。
Furthermore, the photovoltaic device of the present invention only needs to be coated with a single layer of a film for effectively utilizing incident light, and the material used for that film is a well-known inexpensive and abundant polymer resin or inorganic compound. It also has the advantage of being cost-effective in terms of price and manufacturing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図はp−型半導体側から光が入射するタ
イプの本発明の光起電力素子の好ましい実施態様
を例示する概略縦断面図および第1B図はn−型
半導体側から光が入射するタイプの本発明の光起
電力素子の好ましい実施態様を例示する概略縦断
面図である。 (図面の符号)、1:p−型半導体、2:n−
型半導体、3:入射光有効利用膜、4:基板、
5:絶縁層、6:下部電極、7:I層、8:透明
電極、9:半導体層、10:受光面。
FIG. 1A is a schematic longitudinal sectional view illustrating a preferred embodiment of the photovoltaic device of the present invention of a type in which light enters from the p-type semiconductor side, and FIG. 1B shows a type in which light enters from the n-type semiconductor side. 1 is a schematic vertical cross-sectional view illustrating a preferred embodiment of the photovoltaic device of the present invention. (Symbols in the drawing), 1: p-type semiconductor, 2: n-
type semiconductor, 3: Film effectively utilizing incident light, 4: Substrate,
5: Insulating layer, 6: Lower electrode, 7: I layer, 8: Transparent electrode, 9: Semiconductor layer, 10: Light receiving surface.

Claims (1)

【特許請求の範囲】 1 (A) エポキシ樹脂、アクリル樹脂、シリコー
ン樹脂、EVA、PVAおよびPVBのいずれか単
独または2種以上の混合物であるマトリツクス
樹脂および (B) 該マトリツクス樹脂との屈折率の差が0.01以
上であり、かつ光起電力素子が吸収し発電しう
る波長範囲内の光に対して実質的に透明である
充填剤 からなり、マトリツクス樹脂および充填剤の合計
量に対する充填剤の割合が1〜30重量%である透
明樹脂組成物を光起電力素子の受光面に密着被覆
して入射光有効利用膜とすることを特徴とするシ
リコン結晶またはアモルフアスシリコンを主成分
とする半導体より構成された光起電力素子。 2 充填剤が光起電力素子が吸収し発電しうる波
長範囲内の光を光学的に実質的に吸収しない結晶
構造または無定形構造を有するものである特許請
求の範囲第1項記載の光起電力素子。 3 充填剤がハロゲン化物、金属酸化物、非金属
酸化物またはそれらの混合物である特許請求の範
囲第1項記載の光起電力素子。 4 前記ハロゲン化物が氷晶石、CaF2、MgF2
BaF2およびLiFである特許請求の範囲第1項記
載の光起電力素子。 5 前記金属酸化物および非金属酸化物がシリ
カ、アルミナ、マグネシアおよびチタニアである
特許請求の範囲第3項記載の光起電力素子。 6 入射光有効利用膜の被覆厚さが1μm〜10mm
である特許請求の範囲第1項記載の光起電力素
子。 7 光起電力素子がシヨツトキー障壁、MIS、p
−i−n接合またはp−n接合のホモ接合構造ま
たはヘテロ接合構造のうちいずれか1種またはそ
れらを組合せたものからなる特許請求の範囲第1
項記載の光起電力素子。
[Scope of Claims] 1. (A) A matrix resin that is any one of epoxy resin, acrylic resin, silicone resin, EVA, PVA, and PVB alone or a mixture of two or more thereof, and (B) a matrix resin that has a refractive index with the matrix resin. Comprising a filler that has a difference of 0.01 or more and is substantially transparent to light within the wavelength range that the photovoltaic element can absorb and generate electricity, and the ratio of the filler to the total amount of matrix resin and filler. from a semiconductor mainly composed of silicon crystal or amorphous silicon, characterized in that the light-receiving surface of a photovoltaic element is closely coated with a transparent resin composition having 1 to 30% by weight of The constructed photovoltaic device. 2. The photovoltaic device according to claim 1, wherein the filler has a crystal structure or an amorphous structure that does not optically substantially absorb light within a wavelength range that the photovoltaic device can absorb and generate electricity. power element. 3. The photovoltaic device according to claim 1, wherein the filler is a halide, a metal oxide, a nonmetal oxide, or a mixture thereof. 4 The halide is cryolite, CaF 2 , MgF 2 ,
The photovoltaic device according to claim 1, which is BaF 2 and LiF. 5. The photovoltaic device according to claim 3, wherein the metal oxide and non-metal oxide are silica, alumina, magnesia, and titania. 6 Coating thickness of film that effectively utilizes incident light is 1 μm to 10 mm
A photovoltaic device according to claim 1. 7 Photovoltaic element is Schottky barrier, MIS, p
Claim 1 consisting of any one type of homozygous structure or heterozygous structure of -i-n junction or p-n junction or a combination thereof
The photovoltaic device described in .
JP58144186A 1983-08-05 1983-08-05 Optical amplifying photovoltaic element Granted JPS6034080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58144186A JPS6034080A (en) 1983-08-05 1983-08-05 Optical amplifying photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58144186A JPS6034080A (en) 1983-08-05 1983-08-05 Optical amplifying photovoltaic element

Publications (2)

Publication Number Publication Date
JPS6034080A JPS6034080A (en) 1985-02-21
JPH0554277B2 true JPH0554277B2 (en) 1993-08-12

Family

ID=15356198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58144186A Granted JPS6034080A (en) 1983-08-05 1983-08-05 Optical amplifying photovoltaic element

Country Status (1)

Country Link
JP (1) JPS6034080A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8881039B2 (en) 2009-03-13 2014-11-04 Fisher-Rosemount Systems, Inc. Scaling composite shapes for a graphical human-machine interface
US9046881B2 (en) 2002-10-22 2015-06-02 Fisher-Rosemount Systems, Inc. Updating and utilizing dynamic process simulation in an operating process environment
US9069344B2 (en) 2002-10-22 2015-06-30 Fisher-Rosemount Systems, Inc. Smart process modules and objects in process plants

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2756050B2 (en) * 1992-03-03 1998-05-25 キヤノン株式会社 Photovoltaic device
US5656098A (en) * 1992-03-03 1997-08-12 Canon Kabushiki Kaisha Photovoltaic conversion device and method for producing same
JP2003037281A (en) 2001-05-17 2003-02-07 Canon Inc Covering material and photovoltaic element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352390A (en) * 1976-10-22 1978-05-12 Matsushita Electric Ind Co Ltd Anti-reflective transparent materialand its production
JPS53138287A (en) * 1977-05-10 1978-12-02 Agency Of Ind Science & Technol Solar battery
JPS57124483A (en) * 1980-12-16 1982-08-03 Siemens Ag High efficiency solar battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352390A (en) * 1976-10-22 1978-05-12 Matsushita Electric Ind Co Ltd Anti-reflective transparent materialand its production
JPS53138287A (en) * 1977-05-10 1978-12-02 Agency Of Ind Science & Technol Solar battery
JPS57124483A (en) * 1980-12-16 1982-08-03 Siemens Ag High efficiency solar battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9046881B2 (en) 2002-10-22 2015-06-02 Fisher-Rosemount Systems, Inc. Updating and utilizing dynamic process simulation in an operating process environment
US9069344B2 (en) 2002-10-22 2015-06-30 Fisher-Rosemount Systems, Inc. Smart process modules and objects in process plants
US8881039B2 (en) 2009-03-13 2014-11-04 Fisher-Rosemount Systems, Inc. Scaling composite shapes for a graphical human-machine interface

Also Published As

Publication number Publication date
JPS6034080A (en) 1985-02-21

Similar Documents

Publication Publication Date Title
US5261970A (en) Optoelectronic and photovoltaic devices with low-reflectance surfaces
US4166919A (en) Amorphous silicon solar cell allowing infrared transmission
JP2738557B2 (en) Multilayer solar cell
Dominé et al. Optical management in high‐efficiency thin‐film silicon micromorph solar cells with a silicon oxide based intermediate reflector
US20080223436A1 (en) Back reflector for use in photovoltaic device
US20100163104A1 (en) Solar cell
WO2007040065A1 (en) Solar battery and solar battery module
CN110061088B (en) CIGS solar thin film cell with flexible substrate and preparation method thereof
JP2011129925A (en) Solar cell module using semiconductor nanocrystal
CN101286531A (en) Solar battery
CN101257055A (en) Silicon thin-film photocell with light trapping structure
JPH09162435A (en) Filter for solar battery
WO2006046397A1 (en) Substrate for thin film photoelectric converter and integrated thin film photoelectric converter employing it
JPH0554277B2 (en)
JPH07321362A (en) Photovoltaic device
KR101814821B1 (en) Solar cell module
TW201238062A (en) Photovoltaic cell module
JP5490031B2 (en) Photovoltaic device and photovoltaic module
KR20110092706A (en) Silicon thin film solar cell
TW201344939A (en) A reflective concentrating photovoltaic module with an infrared light shielding component
Devi et al. Internal versus external quantum efficiency of luminescent materials, photovoltaic cells, photodetectors and photoelectrocatalysis
CN219419049U (en) Photovoltaic cell component with double glass surfaces
Thorp et al. Absorption enhancement in conformally textured thin-film Silicon solar cells
KR101645532B1 (en) Solar cell module having an improved generation efficiency by stacking multilayer on surface
Bittkau et al. Geometrical light trapping in thin c-Si solar cells beyond lambertian limit