JPH0552896B2 - - Google Patents

Info

Publication number
JPH0552896B2
JPH0552896B2 JP60007038A JP703885A JPH0552896B2 JP H0552896 B2 JPH0552896 B2 JP H0552896B2 JP 60007038 A JP60007038 A JP 60007038A JP 703885 A JP703885 A JP 703885A JP H0552896 B2 JPH0552896 B2 JP H0552896B2
Authority
JP
Japan
Prior art keywords
light
objective lens
focus
flow cell
photometric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60007038A
Other languages
Japanese (ja)
Other versions
JPS61165637A (en
Inventor
Juji Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60007038A priority Critical patent/JPS61165637A/en
Priority to US06/818,263 priority patent/US4690561A/en
Publication of JPS61165637A publication Critical patent/JPS61165637A/en
Publication of JPH0552896B2 publication Critical patent/JPH0552896B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1456Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • G01N2015/1452Adjustment of focus; Alignment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6421Measuring at two or more wavelengths

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、フローサイトメータ等において、測
光用対物レンズの合焦状態の判定を可能とした粒
子解析装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a particle analysis device that is capable of determining the in-focus state of a photometric objective lens in a flow cytometer or the like.

[従来の技術] フローサイトメータ等に用いられる従来の粒子
解析装置では、フローセルの中央部の例えば70μ
m×20μmの微小な短形断面を有する流通部内
を、シース液に包まれて通過する血球細胞などの
検体に照射光を照射し、その結果生ずる前方及び
側方散乱光により、検体の形状・大きさ・屈折率
等の粒子的性質を得ることが可能である。また、
蛍光剤により染色され得る検体に対しては、照射
光とほぼ直角方向の側方散乱光から検体の蛍光を
検出することにより、検体を解析するための重要
な情報を求めることができる。
[Prior art] In conventional particle analysis devices used in flow cytometers, etc., a particle size of 70 μm, for example,
Irradiation light is irradiated onto a specimen such as blood cells wrapped in sheath liquid and passing through a flow section with a minute rectangular cross section of m x 20 μm, and the resulting forward and side scattered light is used to determine the shape and shape of the specimen. It is possible to obtain particle properties such as size and refractive index. Also,
For specimens that can be stained with a fluorescent agent, important information for analyzing the specimen can be obtained by detecting the fluorescence of the specimen from side-scattered light in a direction substantially perpendicular to the irradiated light.

フローサイトメータ等において正確な測定を行
うためには、検体粒子以外の物体からの疑似信号
が混入しないように、測光用の対物レンズにより
正確に検体粒子或いはその極く近傍のみを集光さ
せなければならない。そのために、対物レンズの
焦点調整を行う必要があるが、従来装置において
は測定前に操作者が目視により手動で焦点調整を
行つているので、操作が繁雑である上に、操作者
によつて個人差が生じ、十分に正確な焦点調整を
行うことが困難であるのが現状である。
In order to perform accurate measurements with a flow cytometer, etc., the photometric objective lens must accurately focus only on the sample particles or their immediate vicinity to prevent spurious signals from objects other than the sample particles from being mixed in. Must be. For this purpose, it is necessary to adjust the focus of the objective lens, but in conventional devices, the operator manually adjusts the focus by visual inspection before measurement, which is not only complicated, but also requires the operator to manually adjust the focus. At present, it is difficult to perform sufficiently accurate focus adjustment due to individual differences.

また、測定中に焦点の移動が生じた場合に、そ
の確認が不可能なため、測定途中に疑似信号が混
入したか否かを判別できず、データの信頼性につ
いての不安がある。
Furthermore, if the focal point moves during measurement, it is impossible to confirm this, so it is impossible to determine whether or not a spurious signal has been mixed in during the measurement, leading to concerns about the reliability of the data.

更に、ノズルやフローセル等を交換するごとに
焦点調整を必要とし、測定に手間が掛かる欠点が
ある。また、蛍光測定を行う場合に微弱な蛍光信
号を強化する必要があるが、そのために蛍光を検
出する光電検出器をフオトマルにすること・蛍光
剤の発光能率を向上させること・照射光源のパワ
ーを増大させること・対物レンズの集光効率を向
上させること等が考えられている。蛍光剤の発光
能率は現在のところ盛んに研究されており、照射
光源のパワーの増大は製造コストを無視すれば相
当に増大させることができるが、反面で極端にパ
ワーを増大させ過ぎると検体粒子を傷付けること
にもなり良い方法とは云い難い。
Furthermore, it requires focus adjustment every time the nozzle, flow cell, etc. are replaced, which has the disadvantage that measurement is time-consuming. In addition, when performing fluorescence measurements, it is necessary to strengthen weak fluorescence signals, and for this purpose it is necessary to make the photoelectric detector that detects fluorescence more formal, improve the luminous efficiency of the fluorescent agent, and increase the power of the irradiation light source. Consideration has been given to increasing the amount of light and improving the light collection efficiency of the objective lens. The luminescence efficiency of fluorescent agents is currently being actively researched, and increasing the power of the irradiation light source can be considerably increased if manufacturing costs are ignored, but on the other hand, if the power is increased too much, the sample particles It is hard to say that this is a good method as it may cause damage to the person.

対物レンズの集光効率の向上は、対物レンズの
開口数を上げれば達成されるが、その代償とし
て、焦点深度が浅くなるという逆効果を伴うこと
になる。焦点深度が浅くなれば、検体流通部と測
光対物レンズとの間の距離が僅かに移動しただけ
でも、検体粒子からの信号だけでなく、他の物体
からの信号が混入してしまい、正確な測定を行う
ことができない。このように、従来装置では焦点
調整が繁雑である上に、十分な蛍光信号強度が得
られず、解析精度が向上しないという欠点を有し
ている。
Improving the light collection efficiency of the objective lens can be achieved by increasing the numerical aperture of the objective lens, but this comes with the opposite effect of decreasing the depth of focus. If the depth of focus becomes shallow, even if the distance between the sample flow section and the photometric objective lens moves slightly, not only signals from the sample particles but also signals from other objects will be mixed in, making it difficult to obtain accurate Unable to perform measurements. As described above, the conventional apparatus has the disadvantage that focus adjustment is complicated, and sufficient fluorescence signal intensity cannot be obtained, so that analysis accuracy cannot be improved.

[発明の目的] 本発明の目的は、測光用対物レンズの焦点を合
わせる合焦光学系を設け、焦点調整を容易にしか
も正確に行うと共に、十分な蛍光信号強度を得る
ことによつて測定精度を向上させる粒子解析装置
を提供することにある。
[Object of the Invention] An object of the present invention is to provide a focusing optical system that focuses a photometric objective lens, to easily and accurately adjust the focus, and to obtain sufficient fluorescence signal intensity to improve measurement accuracy. The purpose of the present invention is to provide a particle analysis device that improves particle analysis.

[発明の概要] 上述の目的を達成するための本発明の要旨は、
フローセル内の流通部を流れる検体粒子に光ビー
ムを照射する照射光学系と、前記光ビームの検体
粒子への照射によつて発生する光を測光用対物レ
ンズを介して測光する測光光学系と、前記測光用
対物レンズの合焦状態を前記フローセルの表面反
射を利用して検出する焦点検出手段とを設けたこ
とを特徴とする粒子解析装置である。
[Summary of the invention] The gist of the present invention for achieving the above object is as follows:
an irradiation optical system that irradiates a light beam onto the analyte particles flowing through a flow section in the flow cell; a photometric optical system that measures light generated by irradiating the analyte particles with the light beam through a photometric objective lens; The particle analysis apparatus is characterized in that it is provided with a focus detection means for detecting a focused state of the photometric objective lens using surface reflection of the flow cell.

[発明の実施例] 本発明を図示の実施例に基づいて詳細に説明す
る。
[Embodiments of the Invention] The present invention will be described in detail based on illustrated embodiments.

第1図は粒子解析装置の構成図であり、フロー
セル1の中央部の紙面に垂直の流通部2内を検体
粒子Sが通過し、この流れと直交する方向にレー
ザー光源3が配置されている。このレーザー光源
3から出射されたレーザー光Lの光軸O上に、検
出粒子Sに対してレーザー光源3側に2組のシリ
ンドリカルレンズを直交させて成る結像レンズ4
が配置されている。また、検体粒子Sに対してレ
ーザー光源3と反対側の光軸O上に、遮光板5、
集光レンズ6、光電検出部7が順次に配列されて
いる。
FIG. 1 is a configuration diagram of a particle analysis device, in which sample particles S pass through a flow section 2 perpendicular to the paper plane in the center of a flow cell 1, and a laser light source 3 is arranged in a direction perpendicular to this flow. . On the optical axis O of the laser light L emitted from the laser light source 3, an imaging lens 4 is formed by making two sets of cylindrical lenses perpendicular to the laser light source 3 side with respect to the detection particles S.
is located. Further, a light shielding plate 5,
A condenser lens 6 and a photoelectric detection section 7 are arranged in sequence.

また、レーザー光Lの光軸O及び検体粒子Sの
流れの中心方向のそれぞれとほぼ直交する方向
に、対物レンズ8を含むオートフオーカスユニツ
ト(以下AFユニツトと云う)9、集光レンズ1
0、絞り板11、集光レンズ12、ダイクロイツ
クミラー等から成る波長選別手段13,14,1
5が順次に配列され、光軸に対して斜設されたこ
れらの波長選別手段13,14,15により反射
された方向の光軸上に、パリヤフイルタ16・光
電検出器17、バリヤフイルタ18・光電検出器
19、バリヤフイルタ20・光電検出器21がそ
れぞれ配置されている。そして、これらの光電検
出器17,19,21には、例えば微弱光が検出
可能なフオトマルが使用されている。
Further, an autofocus unit (hereinafter referred to as AF unit) 9 including an objective lens 8 and a condenser lens 1 are arranged in a direction substantially perpendicular to the optical axis O of the laser beam L and the central direction of the flow of the sample particles S.
0, wavelength selection means 13, 14, 1 consisting of a diaphragm plate 11, a condensing lens 12, a dichroic mirror, etc.
A pariah filter 16, a photoelectric detector 17, a barrier filter 18, and a photoelectric detector are arranged on the optical axis in the direction reflected by these wavelength selection means 13, 14, and 15, which are arranged obliquely with respect to the optical axis. A detector 19, a barrier filter 20, and a photoelectric detector 21 are respectively arranged. For these photoelectric detectors 17, 19, and 21, for example, photomals that can detect weak light are used.

従つて、レーザー光源3から出射されたレーザ
ー光Lは、2組のシリンドリカルレンズを直交さ
せた結像レンズ4により任意の長径・短径の結像
ビームに成形され、流通部2内を流れる検体粒子
Sに照射される。検体粒子Sに照射させ散乱され
た散乱光のうち、前方散乱光は遮光板5によつて
検体粒子Sが無い位置を通過した照射光が取り除
かれ、集光レンズ6を介して光電検出器7に集光
され、検体粒子Sの性状が測定される。
Therefore, the laser beam L emitted from the laser light source 3 is formed into an imaging beam with arbitrary major and minor axes by the imaging lens 4 made up of two sets of cylindrical lenses orthogonal to each other, and the laser beam L is formed into an imaging beam having arbitrary major and minor axes. Particles S are irradiated. Among the scattered light irradiated onto the sample particles S, the forward scattered light is removed by the light shielding plate 5, and the irradiated light that has passed through the position where there is no sample particle S is removed, and the forward scattered light is sent to the photoelectric detector 7 via the condenser lens 6. The properties of the sample particles S are measured.

また、各種蛍光剤により染色された検体粒子S
については、側方散乱光としてAFユニツト9内
の対物レンズ8を介して集光レンズ10により絞
り板11に集光される。側方散乱光及び蛍光は、
検体粒子Sに共役な位置に設置されたこの絞り板
11を通過させることにより、雑音の少ない測光
信号を得ることができる。絞り板11を通過後の
光束を集光レンズ12により平行光束とし、適当
な分光特性を持たせた波長選別手段13によつて
側方散乱光と蛍光とに分光し、側方散乱光はバリ
ヤフイルタ16及び光電検出器17で検出され、
検体粒子S内部の顆粒性が観測できる。一方、蛍
光は波長選別手段13を通過し、波長選別手段1
4によつて例えば緑色蛍光と赤色蛍光とに分光さ
れ、緑色蛍光はバリヤフイルタ18を介して光電
検出器19で検出され、赤色蛍光は波長選別手段
15とバリイフイルタ20を介して光電検出器2
1で検出され、検出粒子の生化学的性質が観測さ
れる。
In addition, sample particles S stained with various fluorescent agents
The light is focused as side scattered light onto the aperture plate 11 by the condenser lens 10 via the objective lens 8 in the AF unit 9. Side scattered light and fluorescence are
By passing the diaphragm plate 11 installed at a position conjugate to the sample particles S, a photometric signal with less noise can be obtained. The light beam after passing through the diaphragm plate 11 is made into a parallel light beam by a condenser lens 12, and separated into side scattered light and fluorescence by a wavelength selection means 13 having appropriate spectral characteristics, and the side scattered light is separated into side scattered light and fluorescence. Detected by filter 16 and photoelectric detector 17,
The granularity inside the sample particles S can be observed. On the other hand, the fluorescence passes through the wavelength selection means 13 and the wavelength selection means 1
4, the green fluorescence is detected by the photoelectric detector 19 via the barrier filter 18, and the red fluorescence is detected by the photoelectric detector 2 via the wavelength selection means 15 and the variable filter 20.
1, and the biochemical properties of the detected particles are observed.

なお、蛍光を選別する波長選別手段14,15
としては緑赤二色のダイクロイツクミラーが使用
されているが、例えば波長を連続的に分光できる
分光プリズム或いは回折格子等の波長選別手段を
用いてもよい。また、光源3と結像レンズ4との
間に、ビームエキスパンダ又はビームコンプレツ
サ等のビーム径可変手段を挿入することもでき
る。
In addition, wavelength selection means 14 and 15 for selecting fluorescence
Although a dichroic mirror of green and red is used as a dichroic mirror, for example, a wavelength selection means such as a spectroscopic prism or a diffraction grating that can continuously separate wavelengths may also be used. Further, a beam diameter variable means such as a beam expander or a beam compressor may be inserted between the light source 3 and the imaging lens 4.

ここで、微弱光の集光効率を上げ、なおかつ正
確に合焦状態を得ることのできるAFユニツト9
について、第2図、第3図により説明する。第2
図はAFユニツト9を側方から見た構成図であり、
第3図は上方から見た構成図である。AFユニツ
ト9内の下部には対物レンズ8が設置され上部に
は光源22がフローセル1に光を照射するように
設置され、光源22の光軸上に開口23、凸レン
ズ24,25が順次に配置されている。更に、開
口23と凸レンズ24との間で光軸に対して水平
方向の片側にミラー26が、凸レンズ24と凸レ
ンズ25との間で光軸に対して水平方向の他側に
絞り27が設けられ、ミラー26によつて反射さ
れた光束が入射する位置に位置検出器28が配置
されている。
Here, we introduced the AF unit 9, which can increase the efficiency of focusing weak light and achieve accurate focusing.
This will be explained with reference to FIGS. 2 and 3. Second
The figure is a configuration diagram of the AF unit 9 seen from the side.
FIG. 3 is a configuration diagram seen from above. An objective lens 8 is installed in the lower part of the AF unit 9, and a light source 22 is installed in the upper part to irradiate the flow cell 1 with light, and an aperture 23 and convex lenses 24 and 25 are arranged in sequence on the optical axis of the light source 22. has been done. Furthermore, a mirror 26 is provided on one side in the horizontal direction with respect to the optical axis between the aperture 23 and the convex lens 24, and an aperture 27 is provided on the other side in the horizontal direction with respect to the optical axis between the convex lenses 24 and 25. , a position detector 28 is arranged at a position where the light beam reflected by the mirror 26 is incident.

この場合に、対物レンズ8は流通部2の中心に
焦点が合う状態で、流通部2からの集光光束が対
物レンズ8により平行光束になるように配置され
ており、この状態のときAFユニツト9上部の光
学系は、フローセル1の表面を検出するように配
置されている。即ち、光源22により凸レンズ2
4、絞り27、凸レンズ25を介して、開口23
をフローセル1の表面に投影し、フローセル1の
表面で反射された開口23のスリツト像が、凸レ
ンズ24,25、ミラー26を介して位置検出器
28上に結像される。第2図、第3図の状態で
は、対物レンズ8は合焦しているため、このとき
開口23のスリツトが結像した位置検出器28上
のビツト位置が、対物レンズ8が合焦しているこ
とを示すことになる。
In this case, the objective lens 8 is arranged so that the focus is on the center of the flow section 2 and the condensed light beam from the flow section 2 becomes a parallel light beam by the objective lens 8. In this state, the AF unit The optical system on the upper part of the flow cell 9 is arranged to detect the surface of the flow cell 1 . That is, the convex lens 2 is
4. Aperture 23 via aperture 27 and convex lens 25
is projected onto the surface of the flow cell 1, and a slit image of the aperture 23 reflected from the surface of the flow cell 1 is formed on a position detector 28 via convex lenses 24, 25 and a mirror 26. In the states shown in FIGS. 2 and 3, the objective lens 8 is in focus, so the bit position on the position detector 28 on which the slit of the aperture 23 is imaged is the same as the one in focus of the objective lens 8. This will show that there is.

このように、予めフローセル1の流通部2の中
心から表面までの距離が判つていれば、開口23
の凸レンズ24,25によりフローセル1の表面
で合焦したときには、必ず対物レンズ8も流通部
2の中心に合焦し、常に対物レンズ8からは検体
粒子S像の平行光束が得られることになる。ま
た、焦光レンズ10の焦光位置に絞り板11が配
置されているので、AFユニツト9の移動によつ
て合焦したときには、流通部2は絞り板11と共
役関係になり、検体粒子Sによる散乱光が正確に
絞り板11の位置に焦光される。
In this way, if the distance from the center to the surface of the flow cell 1 is known in advance, the opening 23
When the convex lenses 24 and 25 focus on the surface of the flow cell 1, the objective lens 8 is always focused on the center of the flow section 2, and a parallel beam of the image of the sample particle S is always obtained from the objective lens 8. . Furthermore, since the diaphragm plate 11 is arranged at the focal position of the focusing lens 10, when focusing is achieved by moving the AF unit 9, the flow section 2 is in a conjugate relationship with the diaphragm plate 11, and the sample particles S The scattered light is accurately focused on the position of the diaphragm plate 11.

ここで、対物レンズ8と集光レンズ10とは、
その間が平行光束になるように組み合わされてい
るため、フローセル1等の交換時等にフローセル
1の表面から流通部2までの寸法が若干異なつて
も、AFユニツト9を移動させて、位置検出器2
8の合焦位置に開口23のスリツト像を結像させ
るだけで焦点を合わせることができる。
Here, the objective lens 8 and the condensing lens 10 are
Since the beams between them are combined so that the beam becomes parallel, even if the dimensions from the surface of the flow cell 1 to the flow section 2 are slightly different when replacing the flow cell 1, etc., the AF unit 9 can be moved and the position detector 2
Focusing can be achieved simply by forming the slit image of the aperture 23 on the focal position 8.

このように、実施例では容易にしかも正確に焦
点を合わせることができるため、正確なピントを
保持させたまま対物レンズ8の開口数を上げ、光
学系の集光効率を向上させて、信号強度を増大さ
せることができることになる。
In this way, in the embodiment, it is possible to focus easily and accurately, so the numerical aperture of the objective lens 8 is increased while maintaining accurate focus, the light collection efficiency of the optical system is improved, and the signal strength is increased. This means that it is possible to increase the

第4図は上述のAFユニツト9に適合するよう
に改良されたフローセル1の斜視図であり、レー
ザー光Lの入射面29にはレーザー光Lの波長に
適した透過膜のコーテイングが施され、入射面2
9と直交する面の下部の測光用面30には、測光
波長域が効率良く透過する透過膜がコーテイング
されている。更に、測光用面30の上部の合焦検
知用面31には、合焦用光源22から出射される
光の波長を効率良く反射する反射膜がコーテイン
グされている。
FIG. 4 is a perspective view of a flow cell 1 improved to be compatible with the above-mentioned AF unit 9, in which the incident surface 29 of the laser beam L is coated with a transparent film suitable for the wavelength of the laser beam L. Incidence surface 2
The photometric surface 30 below the surface perpendicular to 9 is coated with a transmission film that efficiently transmits the photometric wavelength range. Further, the focus detection surface 31 above the photometry surface 30 is coated with a reflective film that efficiently reflects the wavelength of the light emitted from the focusing light source 22.

合焦用光源22の波長は、レーザー光源3の波
長や蛍光の波長と分離している方が好ましいの
で、赤外光源を使用することが好適である。従つ
て、検知用面31の反射膜は赤外光を効率良く反
射する膜を選択すればよい。このようなフローセ
ル1を使用することにより、位置検出器28に開
口23の鮮明なスリツト像を得ることができる。
Since it is preferable that the wavelength of the focusing light source 22 is separated from the wavelength of the laser light source 3 and the wavelength of fluorescence, it is preferable to use an infrared light source. Therefore, as the reflective film of the detection surface 31, a film that efficiently reflects infrared light may be selected. By using such a flow cell 1, a clear slit image of the aperture 23 can be obtained on the position detector 28.

なお、位置検出器28の出力信号によつて駆動
される機構を設け、位置検出器28の所定位置に
開口23のスリツトが結像されるまで、AFユニ
ツト9を駆動機構により光軸上を探索移動させ、
合焦した信号により駆動機構を停止させるように
すれば、自動的に合焦状態が得られ、更に操作性
が良くなる。また、AFユニツト9の駆動機構が
停止した状態の信号、或いは合焦時の位置検出器
28の出力信号により、粒子解析装置の測定開始
信号を発するようにすれば、対物レンズ8が合焦
していないときには、不正確な測定が行われない
で済む。更に、位置検出器28の所定位置に開口
23のスリツトが結像したことを知らせる合焦信
号を表示する手段を設けることもでき、手動で
AFユニツト9を操作する場合には、合焦信号が
出力した時点で測定を始めるようにすればよい。
A mechanism is provided that is driven by the output signal of the position detector 28, and the AF unit 9 is searched on the optical axis by the drive mechanism until the slit of the aperture 23 is imaged at a predetermined position of the position detector 28. move it,
If the drive mechanism is stopped in response to a focused signal, a focused state can be automatically obtained, further improving operability. Furthermore, if the measurement start signal of the particle analyzer is generated by the signal indicating that the drive mechanism of the AF unit 9 is stopped or the output signal of the position detector 28 at the time of focusing, the objective lens 8 can be focused. Inaccurate measurements can be avoided when the measurement is not performed. Further, a means for displaying a focusing signal indicating that the slit of the aperture 23 has been imaged at a predetermined position of the position detector 28 may be provided, and the focus signal may be manually operated.
When operating the AF unit 9, measurement may be started when the focus signal is output.

なお実施例においては、側方散乱光の測光光学
系内にAFユニツト9を設置した場合を説明した
が、前方散乱光用の測光光学系においても、遮光
板5と集光レンズ6との間にAFユニツトを配置
し、同様の効果を得ることができる。このような
AFユニツトを側方・前方の両測光光学系に設置
すれば、更に良好な結果が得られることは当然で
ある。
In the embodiment, a case has been described in which the AF unit 9 is installed in the photometric optical system for side scattered light, but in the photometric optical system for forward scattered light, the AF unit 9 is also installed between the light shielding plate 5 and the condenser lens 6. A similar effect can be obtained by placing an AF unit in the like this
It goes without saying that even better results can be obtained if the AF unit is installed in both the side and front photometric optical systems.

[発明の効果] 以上説明したように本発明に係る粒子解析装置
光学系は、測光光学系内に焦点検出手段を設置す
ることによつて、測光用対物レンズの焦点調整を
容易にかつ正確に行うことを可能とし、測定精度
を向上させ、対物レンズの開口数を増すこともで
き、これによつて蛍光測光強度を向上させ、高精
度な解析を可能としている。
[Effects of the Invention] As explained above, the particle analyzer optical system according to the present invention can easily and accurately adjust the focus of the photometric objective lens by installing the focus detection means in the photometric optical system. This makes it possible to improve measurement accuracy and increase the numerical aperture of the objective lens, thereby improving fluorescence photometry intensity and enabling highly accurate analysis.

また所望によつては、焦点検出手段を駆動する
機構を設けることによつて、全自動的に焦点調整
を行うことも可能となり、更に合焦信号表示機構
を設けることによつて、手動でも容易に焦点調整
を行うことを可能とし、また合焦状態にのみ装置
が可動する機構を設けて、測定を更に容易にする
ことができる。
In addition, if desired, by providing a mechanism that drives the focus detection means, it is possible to perform focus adjustment fully automatically, and by providing a focus signal display mechanism, it is possible to easily adjust the focus manually. In addition, a mechanism that allows the device to move only when in focus can be provided to further facilitate measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る粒子解析装置の一実施例を
示し、第1図は光学系の構成図、第2図はAFユ
ニツトを側方から見た光学系配置図、第3図は
AFユニツトを上方から見た光学系配置図、第4
図は各種コーテイングを施したフローセルの斜視
図である。 符号1はフローセル、2は流通部、3はレーザ
ー光源、4は結像レンズ、5は遮光板、6,1
0,12は集光レンズ、7,17,19,21は
光電検出器、8は対物レンズ、9はAFユニツト、
11は絞り板、13,14,15は波長選別手
段、16,18,20はバリヤフイルタ、22は
光源、23は開口、24,25は凸レンズ、26
はミラー、27は絞り、28は位置検出器であ
る。
The drawings show an embodiment of the particle analysis device according to the present invention, in which Fig. 1 is a configuration diagram of the optical system, Fig. 2 is a layout diagram of the optical system as seen from the side of the AF unit, and Fig. 3 is a diagram showing the arrangement of the optical system.
Optical system layout diagram of the AF unit viewed from above, No. 4
The figure is a perspective view of a flow cell with various coatings. 1 is a flow cell, 2 is a flow section, 3 is a laser light source, 4 is an imaging lens, 5 is a light shielding plate, 6, 1
0 and 12 are condenser lenses, 7, 17, 19, and 21 are photoelectric detectors, 8 is an objective lens, 9 is an AF unit,
11 is a diaphragm plate, 13, 14, 15 are wavelength selection means, 16, 18, 20 are barrier filters, 22 is a light source, 23 is an aperture, 24, 25 are convex lenses, 26
27 is a mirror, 27 is a diaphragm, and 28 is a position detector.

Claims (1)

【特許請求の範囲】 1 フローセル内の流通部を流れる検体粒子に光
ビームを照射する照射光学系と、前記光ビームの
検体粒子への照射によつて発生する光を測光用対
物レンズを介して測光する測光光学系と、前記測
光用対物レンズの合焦状態を前記フローセルの表
面反射を利用して検出する焦点検出手段とを設け
たことを特徴とする粒子解析装置。 2 前記フローセルの表面に前記焦点検出手段で
使用する波長域の光を反射する特性を持つ反射膜
を施した特許請求の範囲第1項に記載の粒子解析
装置。 3 前記焦点検出手段のは検体粒子への照射する
前記光ビームの波長領域外の光を使用するように
した特許請求の範囲第2項に記載の粒子解析装
置。
[Scope of Claims] 1. An irradiation optical system that irradiates a light beam onto sample particles flowing through a flow section in a flow cell, and a light beam generated by the irradiation of the light beam onto the sample particles through a photometric objective lens. 1. A particle analysis apparatus comprising: a photometric optical system for measuring light; and a focus detection means for detecting a focused state of the photometric objective lens using surface reflection of the flow cell. 2. The particle analysis device according to claim 1, wherein a reflective film having a characteristic of reflecting light in a wavelength range used by the focus detection means is provided on the surface of the flow cell. 3. The particle analysis apparatus according to claim 2, wherein the focus detection means uses light outside the wavelength range of the light beam irradiated onto the sample particles.
JP60007038A 1985-01-18 1985-01-18 Particle analyser Granted JPS61165637A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60007038A JPS61165637A (en) 1985-01-18 1985-01-18 Particle analyser
US06/818,263 US4690561A (en) 1985-01-18 1986-01-13 Particle analyzing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60007038A JPS61165637A (en) 1985-01-18 1985-01-18 Particle analyser

Publications (2)

Publication Number Publication Date
JPS61165637A JPS61165637A (en) 1986-07-26
JPH0552896B2 true JPH0552896B2 (en) 1993-08-06

Family

ID=11654870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60007038A Granted JPS61165637A (en) 1985-01-18 1985-01-18 Particle analyser

Country Status (1)

Country Link
JP (1) JPS61165637A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111833A (en) * 2007-10-02 2008-05-15 Toyobo Co Ltd Apparatus for classifying formed component in urine
US10184879B2 (en) * 2015-02-18 2019-01-22 Becton, Dickinson And Company Optical detection systems and methods of using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322787A (en) * 1976-08-16 1978-03-02 Hitachi Ltd Measuring apparatus for corpuscle
JPS5386298A (en) * 1976-11-05 1978-07-29 Leeds & Northrup Co Measuring method and apparatus for volume and volumetric distribution of fine particles
JPS59107238A (en) * 1982-12-10 1984-06-21 Hitachi Ltd Particle measuring device using light scattering
JPS59184840A (en) * 1983-04-06 1984-10-20 Mitsubishi Chem Ind Ltd Method and device for measuring dust in liquid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322787A (en) * 1976-08-16 1978-03-02 Hitachi Ltd Measuring apparatus for corpuscle
JPS5386298A (en) * 1976-11-05 1978-07-29 Leeds & Northrup Co Measuring method and apparatus for volume and volumetric distribution of fine particles
JPS59107238A (en) * 1982-12-10 1984-06-21 Hitachi Ltd Particle measuring device using light scattering
JPS59184840A (en) * 1983-04-06 1984-10-20 Mitsubishi Chem Ind Ltd Method and device for measuring dust in liquid

Also Published As

Publication number Publication date
JPS61165637A (en) 1986-07-26

Similar Documents

Publication Publication Date Title
US4690561A (en) Particle analyzing apparatus
US6130745A (en) Optical autofocus for use with microtiter plates
US4732479A (en) Particle analyzing apparatus
US4715708A (en) Particle analyzing apparatus with index projecting optical system for detecting a focusing state of the measuring system
JPS61153546A (en) Particle analyzer
JPH05340865A (en) Measuring instrument
JPH10253624A (en) Particle measuring device
JPS62168033A (en) Particle analyzing device
KR950014849A (en) Photometric detectors scattered by thin films of colloidal media
JPH061241B2 (en) Particle analyzer
JPH0224535A (en) Particle analyzing apparatus
JP5052318B2 (en) Fluorescence detection device
JPS61167838A (en) Particle analyzer
JPH0552896B2 (en)
JP4262380B2 (en) Light intensity measuring device
JPS61165639A (en) Particle analyser
JPH03154850A (en) Specimen inspecting device
JPH01270644A (en) Particle analyser
JPH0552897B2 (en)
JPS61294334A (en) Particle analyzer
WO1991014935A1 (en) A method and an apparatus for cleaning control
JPH0566980B2 (en)
JPH03214038A (en) Instrument for measuring aerosol, dust and the like spreaded in the air
JPS62245942A (en) Particle analyzer
JPS6244649A (en) Particle analyzing device