JPH0552740A - Nonlinear optical constant evaluating method - Google Patents

Nonlinear optical constant evaluating method

Info

Publication number
JPH0552740A
JPH0552740A JP21826491A JP21826491A JPH0552740A JP H0552740 A JPH0552740 A JP H0552740A JP 21826491 A JP21826491 A JP 21826491A JP 21826491 A JP21826491 A JP 21826491A JP H0552740 A JPH0552740 A JP H0552740A
Authority
JP
Japan
Prior art keywords
sample
prism
fundamental wave
nonlinear optical
total reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21826491A
Other languages
Japanese (ja)
Inventor
Masafumi Kiguchi
雅史 木口
Midori Katou
美登里 加藤
Masaaki Okunaka
正昭 奥中
Morio Taniguchi
彬雄 谷口
Naoki Tanaka
尚樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21826491A priority Critical patent/JPH0552740A/en
Publication of JPH0552740A publication Critical patent/JPH0552740A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To evaluate nonlinear optical constants by totally reflecting a fundamental wave with a prism, arranging a powder sample, using the evanescent wave caused by the total reflection, generating the high-order high frequency, and measuring the generating efficiency. CONSTITUTION:The output light of a laser 11 as a fundamental wave undergoes linear polarization. The light is cast into a total reflection prism 16 by using a rectangular prism 15. When the incident angle is made to be 80 degrees based on the refractive index of a sample 23, the intruding length becomes about 0.1mum. The length can be made sufficiently smaller in comparison with the average particle size and the coherence length. Then, the generated second high frequency is condensed 20. The fundamental wave is cut 17. The light is received with a photomultiplier tube 18 and integrated 19. A part of the fundamental wave is split 14 in order to correct the fluctuation of the intensity of the fundamental wave and cast into the quartz of a reference sample 21. The second high frequency is monitored and made to be the reference signal. The signal from the sample is divided by the reference signal. The powder sample 23, which is loaded in the central part of a sample stage 22, is obtained by grinding down the powder crystal of 2-methyl-4-nitroaniline, and the average particle size is made to be 10mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光の波長変換を行な
い、光通信、光コンピュータ、光記録、光計測などに利
用するところの、非線形光学材料の評価、探索のための
非線形光学定数評価方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention evaluates a nonlinear optical material used for optical communication, optical computer, optical recording, optical measurement, etc. by performing wavelength conversion of light, and evaluation of nonlinear optical constants for searching. Regarding the method.

【0002】[0002]

【従来の技術】従来、2次、あるいは3次の非線形光学
定数を評価する方法として、例えば、梅垣真祐著、有機
非線形光学材料(1990年1月31日 ぶんしん出版
発行)60頁から69頁に記述されているように、多結
晶粉末状の試料に基本波レーザ光を照射し、発生する高
調波を検出する粉末法と、単結晶試料に基本波レーザ光
を照射し、回転等により実効的な結晶長を変化させて高
調波強度を測定するメーカフリンジ法がある。
2. Description of the Related Art Conventional methods for evaluating second-order or third-order non-linear optical constants include, for example, Shinsuke Umegaki, Organic Non-linear Optical Materials (published by Bushin Publishing Co., January 31, 1990), pages 60 to 69. As described in, the powder method of irradiating a polycrystalline powder sample with a fundamental wave laser beam and detecting the generated harmonics, and the method of irradiating a single crystal sample with a fundamental wave laser beam and rotating it etc. There is a maker fringe method in which the harmonic intensity is measured by changing the typical crystal length.

【0003】[0003]

【発明が解決しようとする課題】従来、試料作製が簡便
な粉末法が用いられることが多かったが、粉末法におい
ては、結晶の平均粒径の、試料のコヒーレンス長に対す
る相対的大きさにより、高調波発生効率が変化するた
め、正しい評価ができない場合があった。一方、メーカ
フリンジ法は、このようなあいまいさは無く、正しい評
価が可能となる反面、試料を比較的大きな単結晶化する
必要があった。多くの材料の中から非線形光学定数の大
きなものを探索する場合、単結晶試料を作製するのは、
多くの時間と労力が必要となる。そこで、粉末試料を用
いて正しい結果が得られるような評価法が望まれてい
た。本発明の目的は、粉末試料を用いても結果が平均粒
径のコヒーレンス長に対する相対的大きさによって影響
を受けにくい簡便な評価方法を提供することにある。
Conventionally, a powder method, which is easy to prepare a sample, has often been used. However, in the powder method, the relative size of the average crystal grain size with respect to the coherence length of the sample causes In some cases, correct evaluation could not be performed because the harmonic generation efficiency changed. On the other hand, the maker fringe method does not have such ambiguity and enables a correct evaluation, but requires the sample to be made into a relatively large single crystal. When searching for a material with a large nonlinear optical constant from many materials, making a single crystal sample is
It takes a lot of time and effort. Therefore, an evaluation method that can obtain a correct result using a powder sample has been desired. An object of the present invention is to provide a simple evaluation method in which the result is not easily affected by the relative size of the average particle size to the coherence length even when using a powder sample.

【0004】[0004]

【課題を解決するための手段】基本波として、全反射に
よるエバネッセント波を用いることより、粉末試料を用
い、かつ粒径によらない評価が実現できる。エバネッセ
ント波の強度は小さいので高次高調波の検出には、高感
度な測定が必要であるが、光電子増倍管を用い、光子計
数法などと組合せることで容易に実現できる。さらに、
全反射面に金属層を設ければ、表面プラズモンを励起す
ることにより高次高調波強度を大きくすることができ、
検出を容易にすることが可能である。
By using an evanescent wave due to total internal reflection as the fundamental wave, it is possible to use a powder sample and perform evaluation independent of the particle size. Since the intensity of the evanescent wave is low, high-sensitivity measurement is required to detect high-order harmonics, but it can be easily realized by using a photomultiplier tube and combining it with a photon counting method. further,
If a metal layer is provided on the total reflection surface, high-order harmonic intensity can be increased by exciting surface plasmons,
It is possible to facilitate detection.

【0005】[0005]

【作用】非線形光学定数dを有する物質より発生する高
調波強度Iは、数1により与えられる。
The harmonic intensity I generated from the substance having the nonlinear optical constant d is given by the equation 1.

【0006】[0006]

【数1】 [Equation 1]

【0007】ここでLcは数2により定義されるコヒー
レンス長であり、Lは、相互作用長であり、従来の粉末
法、メーカフリンジ法の場合は、粒径あるいは結晶長に
あたる。
Here, Lc is a coherence length defined by the equation 2, L is an interaction length, and in the case of the conventional powder method and maker fringe method, it corresponds to the grain size or crystal length.

【0008】[0008]

【数2】 [Equation 2]

【0009】相互作用長Lのコヒーレンス長Lcに対す
る大きさにより、高調波強度Iは正弦関数の2乗で変化
する。このため粉末法では、Iの粒径依存性が問題とな
り、粒径がきちんとおさえられないと、正しい評価がで
きない。そこで、基本波として全反射によるエバネッセ
ント波を用いることによりこの問題を解決できる。屈折
率n1のプリズムから屈折率n2の媒体へ波長λの光が
入射し全反射する場合、入射角をθとすると、媒体中へ
エバネッセント波が侵入する距離ξは前述した数2で与
えられる。いまの場合、これが高次高調波発生の相互作
用長Lになる。ここで入射角θとはプリズムの全反射面
の法線と光軸のなす角度をいう。距離ξが、試料の粒径
やコヒーレンス長Lcに比べて充分小さければ、高調波
強度Iは粒径によらなくなる。距離ξとコヒーレンス長
Lcの相対的大きさと第2高調波強度の関係を図6に示
す。これより、距離ξは試料のコヒーレンス長Lcの1
/10以下にすることが望ましい。また、誤差を20%
まで許容するならば、1/3程度でもよい。実際には、
コヒーレンス長Lcは位相整合のとりにくいものでも、
およそ1μm程度、あるいはそれ以上であること多いの
で、ξは0.1から0.3μm程度にしておけばよい。
The harmonic intensity I changes with the square of the sine function depending on the magnitude of the interaction length L with respect to the coherence length Lc. Therefore, in the powder method, the particle size dependency of I becomes a problem, and correct evaluation cannot be performed unless the particle size is properly controlled. Therefore, this problem can be solved by using an evanescent wave due to total reflection as the fundamental wave. When light having a wavelength λ is totally reflected by a prism having a refractive index n1 and enters a medium having a refractive index n2, the distance ξ at which the evanescent wave penetrates into the medium is given by the above-described equation 2 when the incident angle is θ. In the present case, this is the interaction length L for generating higher harmonics. Here, the incident angle θ means an angle formed by the optical axis and the normal line of the total reflection surface of the prism. If the distance ξ is sufficiently smaller than the particle size of the sample or the coherence length Lc, the harmonic intensity I does not depend on the particle size. FIG. 6 shows the relationship between the relative magnitude of the distance ξ and the coherence length Lc and the second harmonic intensity. From this, the distance ξ is 1 of the coherence length Lc of the sample.
It is desirable to be / 10 or less. Also, the error is 20%
If it is allowed up to 1/3, it may be about 1/3. actually,
Even if the coherence length Lc is difficult to achieve phase matching,
Since it is often about 1 μm or more, ξ may be set to about 0.1 to 0.3 μm.

【0010】上記説明では、試料の密度は考慮していな
かった。いろいろな試料について測定を行なう場合、試
料の粒径により基本波が侵入する体積、つまり高次高調
波を発生する有効な体積が変化する。そのため信号強度
は、やはり粒径により違ってくる。よってフィルター等
を用いて粒径を揃えて、有効な体積を試料によらないよ
うにしておくのが有効である。これにより、粉末を用い
ても試料のコヒーレンス長Lcによらず、高次高調波発
生の能率、あるいは非線形光学定数dの評価を行なうこ
とができる。数2はs波の場合であるが、p波の場合で
も本質的には同じである。
In the above description, the density of the sample was not taken into consideration. When performing measurements on various samples, the volume into which the fundamental wave penetrates, that is, the effective volume for generating higher harmonics, changes depending on the particle size of the sample. Therefore, the signal strength also depends on the particle size. Therefore, it is effective to make the particle diameter uniform by using a filter or the like so that the effective volume does not depend on the sample. As a result, even if powder is used, it is possible to evaluate the efficiency of high-order harmonic generation or the nonlinear optical constant d, regardless of the coherence length Lc of the sample. Equation 2 is for the s-wave, but it is essentially the same for the p-wave.

【0011】全反射面に金属層を設ければ、表面プラズ
モンを励起することによりエバネッセント波の強度を高
くすることで高次高調波強度を大きくすることができ
る。これにより、高調波強度Iの検出を容易にすること
が可能である。
If a metal layer is provided on the total reflection surface, the intensity of the evanescent wave can be increased by exciting the surface plasmons, and the intensity of higher harmonics can be increased. This makes it possible to easily detect the harmonic intensity I.

【0012】試料が粉末であるので、その粒径が小さく
なると、プリズムの全反射面で散乱が生じ、全反射しな
い基本波による高調波が発生してしまうことがある。こ
れは、試料どうし、あるいは試料とプリズムとの隙間に
空気が存在するため、有効な屈折率が空間的に一様で無
くなるためである。これを防ぐには、試料の隙間や、試
料とプリズムとの間隙を、試料と同じか、近い値の屈折
率を有する液体で満たすとよい。液体は反転対称性を有
するため、第2高調波を発生しないので、2次の非線形
光学定数dの評価には問題がない。3次の場合は、試料
に比べて充分に小さな非線形光学定数を有するものを使
う必要がある。
Since the sample is a powder, if the particle size becomes small, scattering may occur at the total reflection surface of the prism, and harmonics due to the fundamental wave that is not totally reflected may occur. This is because the effective refractive index is not spatially uniform because air exists between the samples or in the gap between the samples and the prism. To prevent this, the gap between the sample and the gap between the sample and the prism should be filled with a liquid having a refractive index that is the same as or close to that of the sample. Since the liquid has the inversion symmetry and does not generate the second harmonic, there is no problem in evaluating the second-order nonlinear optical constant d. In the case of the third order, it is necessary to use a material having a nonlinear optical constant sufficiently smaller than that of the sample.

【0013】[0013]

【実施例】【Example】

〔実施例1〕本発明の1実施例を図1を用いて説明す
る。基本波として、QスイッチNd:YAGレーザ11
の出力光(λ=1.064μm)を赤外透過フィルター
12、偏光子13を通して直線偏光にし、直角プリズム
15を用いて全反射プリズム16に入射する。全反射プ
リズム16は、図2のようにルチルを半円筒状に加工し
たもの(円筒プリズム)を用いた。ルチルの屈折率は
2.44であるので、MNA(2−メチル−4−ニトロ
アニリン)に対する臨界角は46.8度になる。MNA
の屈折率は、1.78とした。よって入射角θはこれ以
上にする必要がある。試料としてMNA(2−メチル−
4−ニトロアニリン)の粉末結晶を乳鉢ですりつぶし、
ふるいを用いて平均粒径10μmとしたものを用いた。
MNAのコヒーレンス長は非線形光学定数dが11に対
し、約0.7μmである。図3にルチルプリズムを用い
た場合の、入射角とエバネッセント波の侵入長の関係を
示す。これは、数2においてn1=2.44、n2=
1.78として計算したものである。実際には、試料は
粉末であるので隙間の空気が影響するため屈折率は異な
ってくる。しかし、試料の屈折率できまる角度を用いれ
ば、空気の部分では必ず全反射条件を満たしているの
で、ここでは上記条件を用いることにした。これより、
入射角を80度にすると、侵入長、すなわちLが約0.
1μmとなり、平均粒径やコヒーレンス長に比べ充分小
さくできる。発生した第2高調波(λ=0.532μ
m)をレンズ20で集光し、赤外カットフィルター17
で基本波をカットして、光電子増倍管18で受け、ボッ
クスカー積分器19で積分している。基本波の強度ふら
つきを補正するために、ビームスプリッタ14で基本波
の一部を分岐し、参照試料21の石英に入射し、その第
2高調波をモニターして参照信号とし、ボックスカー積
分器を用いて試料からの信号を参照信号で割算してい
る。赤外透過フィルター12は、QスイッチNd:YA
Gレーザの励起光をカットするためのものである。図2
に全反射プリズムと試料の詳細図を示す。ここではプリ
ズム16と試料台22の中央部に装填された粉末試料2
3を密着させたが、間に侵入長程度の間隙を設けてもよ
い。但しその場合は、臨界角、侵入長等が異なるので注
意が必要である。
[Embodiment 1] An embodiment of the present invention will be described with reference to FIG. As a fundamental wave, a Q-switched Nd: YAG laser 11
Output light (λ = 1.064 μm) is linearly polarized through the infrared transmission filter 12 and the polarizer 13, and is incident on the total reflection prism 16 using the rectangular prism 15. As the total reflection prism 16, a rutile processed into a semi-cylindrical shape (cylindrical prism) as shown in FIG. 2 was used. Since the refractive index of rutile is 2.44, the critical angle for MNA (2-methyl-4-nitroaniline) is 46.8 degrees. MNA
Has a refractive index of 1.78. Therefore, the incident angle θ needs to be larger than this. As a sample, MNA (2-methyl-
Grind powder crystals of 4-nitroaniline in a mortar,
A sieve having an average particle size of 10 μm was used.
The coherence length of MNA is about 0.7 μm when the nonlinear optical constant d is 11. FIG. 3 shows the relationship between the incident angle and the penetration length of the evanescent wave when the rutile prism is used. This is because n1 = 2.44 and n2 =
It is calculated as 1.78. In reality, since the sample is a powder, the air in the gap affects it, so that the refractive index is different. However, if the angle with which the refractive index of the sample can be used is used, the condition of total reflection is always satisfied in the air portion, so the above condition is used here. Than this,
When the incident angle is 80 degrees, the penetration length, that is, L is about 0.
It becomes 1 μm, which can be made sufficiently smaller than the average particle size and the coherence length. Second harmonic generated (λ = 0.532μ
m) is condensed by the lens 20, and the infrared cut filter 17
The fundamental wave is cut by, received by the photomultiplier tube 18, and integrated by the boxcar integrator 19. In order to correct the intensity fluctuation of the fundamental wave, a part of the fundamental wave is branched by the beam splitter 14 and is incident on the quartz of the reference sample 21, and the second harmonic thereof is monitored and used as a reference signal. Is used to divide the signal from the sample by the reference signal. The infrared transmission filter 12 is a Q switch Nd: YA
This is for cutting the excitation light of the G laser. Figure 2
Figure 2 shows a detailed view of the total reflection prism and the sample. Here, the powder sample 2 loaded in the central portion of the prism 16 and the sample table 22
Although 3 is closely contacted with each other, a gap having a penetration length may be provided therebetween. However, in that case, the critical angle, penetration depth, etc. are different, so care must be taken.

【0014】〔実施例2〕本発明の別の実施例を図4を
用いて説明する。実施例1と同様の全体構成で、図4の
ようにプリズム16の平面部に銀蒸着膜31(真空蒸
着)を設けたものを用いた。膜厚は、約500Åとし
た。反射光強度を観測しながら入射角を変化させていく
と、ある角度で反射光強度が急に減少する。このとき、
表面プラズモンが励起されている。この状態では、第2
高調波強度が約5倍になった。これにより、金属層を設
けない時より高感度な測定が可能となる。本実施例で
は、金属層として銀を用いたが、金やアルミ等でもよ
く、またプリズム表面をグレーティングのような周期構
造にしても表面プラズモンが励起できる。
[Embodiment 2] Another embodiment of the present invention will be described with reference to FIG. An overall structure similar to that of Example 1 was used in which the silver vapor deposition film 31 (vacuum vapor deposition) was provided on the plane portion of the prism 16 as shown in FIG. The film thickness was about 500Å. When the incident angle is changed while observing the reflected light intensity, the reflected light intensity suddenly decreases at a certain angle. At this time,
Surface plasmons are excited. In this state, the second
Harmonic intensity is about 5 times. As a result, it becomes possible to perform measurement with higher sensitivity than when the metal layer is not provided. In this embodiment, silver is used as the metal layer, but gold or aluminum may be used, and surface plasmons can be excited even if the prism surface has a periodic structure such as a grating.

【0015】ここでは、実施例として第2高調波発生に
よる2次非線形感受率の評価を行なったが、同様に第3
高調波を測定して3次非線形感受率を評価することもで
きる。
Here, the second-order nonlinear susceptibility due to the generation of the second harmonic is evaluated as an example.
It is also possible to measure harmonics to evaluate the third-order nonlinear susceptibility.

【0016】〔実施例3〕本発明の別の実施例を図5を
用いて説明する。測定系の構成は、図1とほぼ同じで、
第2高調波を集光する方向が異なる。図1の構成では、
基本波の反射光が直接光電子増倍管に入射されるので、
実施例2に示すようなプリズムを使用して、表面プラズ
モンの励起を観測するのに便利であるが、反面、赤外カ
ットフィルター17として、干渉フィルターや色ガラス
フィルターを数枚組合せないと基本波を除去しきれな
い。図5に示す実施例3のような構成にすると、光電子
増倍管に入射されるのは散乱光なので基本波の除去が容
易になる。本発明の実施例では、全反射プリズムとして
ルチルを用いたが、屈折率が試料より大きく、基本波と
高調波にたいして透明ならばよいので、高屈折率ガラス
やサファイヤなどを使うこともできる。
[Embodiment 3] Another embodiment of the present invention will be described with reference to FIG. The configuration of the measurement system is almost the same as in Fig. 1,
The direction of collecting the second harmonic is different. In the configuration of FIG.
Since the reflected light of the fundamental wave is directly incident on the photomultiplier tube,
Although it is convenient to observe the excitation of surface plasmons by using a prism as shown in Example 2, on the other hand, the infrared cut filter 17 must be combined with several interference filters and colored glass filters to obtain the fundamental wave. Cannot be completely removed. With the configuration of the third embodiment shown in FIG. 5, since the scattered light enters the photomultiplier tube, the fundamental wave can be easily removed. In the embodiment of the present invention, rutile was used as the total reflection prism, but since it has a larger refractive index than the sample and is transparent to the fundamental wave and higher harmonics, high refractive index glass or sapphire can also be used.

【0017】実施例1から3において、試料台に屈折率
マッチングオイル(n=1.8)と粉末試料を入れるこ
とにより、測定の再現性が向上した。屈折率が1.75
のものを用いても同様の結果を得ることができた。
In Examples 1 to 3, the reproducibility of the measurement was improved by putting the refractive index matching oil (n = 1.8) and the powder sample in the sample stage. Refractive index 1.75
Similar results could be obtained by using the above.

【0018】[0018]

【発明の効果】本発明によれば、結晶成長を行なわず
に、粉末状の試料を用いて簡便に非線形感受率の評価を
行なうことができ、材料の探索や選別の能率が向上す
る。
According to the present invention, the nonlinear susceptibility can be easily evaluated using a powdery sample without performing crystal growth, and the efficiency of material search and selection is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例である測定系の構成図FIG. 1 is a configuration diagram of a measurement system that is a first embodiment of the present invention.

【図2】本発明の第1の実施例の試料台と全反射プリズ
ムの説明図
FIG. 2 is an explanatory diagram of a sample stage and a total reflection prism according to the first embodiment of the present invention.

【図3】ルチルプリズムと真空界面における入射角とエ
バネッセント波のしみだし長の関係を示す特性図
FIG. 3 is a characteristic diagram showing a relationship between an incident angle at a rutile prism and a vacuum interface and a seeping length of an evanescent wave.

【図4】本発明の第2の実施例である試料台と金属層を
設けた全反射プリズムの説明図
FIG. 4 is an explanatory diagram of a sample stage and a total reflection prism provided with a metal layer, which is a second embodiment of the present invention.

【図5】本発明の第3の実施例である測定系の構成図FIG. 5 is a configuration diagram of a measurement system that is a third embodiment of the present invention.

【図6】侵入長とコヒーレンス長の相対的大きさと第2
高調波強度の関係を示す特性図
FIG. 6 Relative magnitude of penetration depth and coherence length and second
Characteristic diagram showing the relationship of harmonic intensity

【符号の説明】[Explanation of symbols]

11…QスイッチNd:YAGレーザ、14…ビームス
プリッタ、16…全反射プリズム、18…光電子増倍
管、19…ボックスカー積分器、21…参照試料、22
…試料台、23…粉末試料。
11 ... Q-switch Nd: YAG laser, 14 ... Beam splitter, 16 ... Total reflection prism, 18 ... Photomultiplier tube, 19 ... Boxcar integrator, 21 ... Reference sample, 22
… Sample stand, 23… Powder sample.

フロントページの続き (72)発明者 谷口 彬雄 埼玉県比企郡鳩山町赤沼2520番地 株式会 社日立製作所基礎研究所内 (72)発明者 田中 尚樹 埼玉県比企郡鳩山町赤沼2520番地 株式会 社日立製作所基礎研究所内Front page continuation (72) Inventor, Akio Taniguchi, 2520, Akanuma, Hatoyama-cho, Hiki-gun, Saitama, Ltd., Hitachi Research Laboratories, Inc. Basic Research Center

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基本波をプリズムにより全反射せしめ、試
料をプリズムに密着させるか、あるいは微小間隙を設け
て配置し、全反射によるエバネッセント波を用いて、高
次高調波を発生せしめ、その発生効率を測定することを
特徴とする非線形光学定数評価方法。
1. A fundamental wave is totally reflected by a prism, and a sample is brought into close contact with the prism or arranged with a minute gap, and an evanescent wave by total reflection is used to generate a high-order harmonic wave. A non-linear optical constant evaluation method characterized by measuring efficiency.
【請求項2】請求項1に記載の非線形光学定数評価方法
において、プリズムの反射表面に金属薄膜層を設けたこ
とを特徴とする非線形光学定数評価方法。
2. The nonlinear optical constant evaluation method according to claim 1, wherein a metal thin film layer is provided on the reflecting surface of the prism.
【請求項3】請求項1または2のいずれかに記載の非線
形光学定数評価方法において、試料の隙間や、試料とプ
リズムあるいは金属薄膜層との間隙を、試料と同じか、
近い値の屈折率を有する液体で満たすことを特徴とする
非線形光学定数評価方法。
3. The nonlinear optical constant evaluation method according to claim 1, wherein the gap between the sample and the gap between the sample and the prism or the metal thin film layer is the same as that of the sample,
A method for evaluating a nonlinear optical constant, characterized by filling with a liquid having a refractive index of a close value.
JP21826491A 1991-08-29 1991-08-29 Nonlinear optical constant evaluating method Pending JPH0552740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21826491A JPH0552740A (en) 1991-08-29 1991-08-29 Nonlinear optical constant evaluating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21826491A JPH0552740A (en) 1991-08-29 1991-08-29 Nonlinear optical constant evaluating method

Publications (1)

Publication Number Publication Date
JPH0552740A true JPH0552740A (en) 1993-03-02

Family

ID=16717149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21826491A Pending JPH0552740A (en) 1991-08-29 1991-08-29 Nonlinear optical constant evaluating method

Country Status (1)

Country Link
JP (1) JPH0552740A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149826A (en) * 1991-11-28 1993-06-15 Hitachi Ltd Evaluating method for nonlinear optical constant
JPH1078390A (en) * 1996-09-04 1998-03-24 Fuji Photo Film Co Ltd Surface plasmon sensor
JP2002296176A (en) * 2001-01-25 2002-10-09 Fuji Photo Film Co Ltd Sensor utilizing total reflection attenuation
JP2007512539A (en) * 2003-11-25 2007-05-17 ザ・ボード・オブ・トラスティーズ・オブ・ザ・レランド・スタンフォード・ジュニア・ユニバーシティ Method for determining the optical nonlinearity profile of a material
WO2010087142A1 (en) * 2009-01-27 2010-08-05 パナソニック株式会社 Surface plasmon resonance sensor, localized plasmon resonance sensor, and method for manufacturing same
CN102192899A (en) * 2010-03-02 2011-09-21 中国科学院福建物质结构研究所 Double-channel second-order nonlinear optical test system
US8032322B2 (en) 2005-03-17 2011-10-04 The Board Of Trustees Of The Leland Stanford Junior University Apparatus for measuring a frequency-domain optical coherence tomography power spectrum from a sample
US8082117B2 (en) 2005-04-05 2011-12-20 The Board Of Trustees Of The Leland Stanford Junior University Optical image processing using minimum phase functions
US8150644B2 (en) 2005-03-17 2012-04-03 The Board Of Trustees Of The Leland Stanford Junior University Femtosecond spectroscopy using minimum or maximum phase functions
WO2014027448A1 (en) * 2012-08-15 2014-02-20 富士フイルム株式会社 Optical electric field amplification device, and light measurement apparatus and method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149826A (en) * 1991-11-28 1993-06-15 Hitachi Ltd Evaluating method for nonlinear optical constant
JPH1078390A (en) * 1996-09-04 1998-03-24 Fuji Photo Film Co Ltd Surface plasmon sensor
JP2002296176A (en) * 2001-01-25 2002-10-09 Fuji Photo Film Co Ltd Sensor utilizing total reflection attenuation
JP2007512539A (en) * 2003-11-25 2007-05-17 ザ・ボード・オブ・トラスティーズ・オブ・ザ・レランド・スタンフォード・ジュニア・ユニバーシティ Method for determining the optical nonlinearity profile of a material
JP4818122B2 (en) * 2003-11-25 2011-11-16 ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティ Method for determining the optical nonlinearity profile of a material
US8874403B2 (en) 2005-03-17 2014-10-28 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and method for processing optical coherence tomography imaging data
US8032322B2 (en) 2005-03-17 2011-10-04 The Board Of Trustees Of The Leland Stanford Junior University Apparatus for measuring a frequency-domain optical coherence tomography power spectrum from a sample
US8150644B2 (en) 2005-03-17 2012-04-03 The Board Of Trustees Of The Leland Stanford Junior University Femtosecond spectroscopy using minimum or maximum phase functions
US8219350B2 (en) 2005-03-17 2012-07-10 The Board Of Trustees Of The Leland Stanford Junior University Apparatus for measuring a frequency-domain optical coherence tomography power spectrum from a sample
US9170599B2 (en) 2005-04-05 2015-10-27 The Board Of Trustees Of The Leland Stanford Junior University Optical image processing using maximum or minimum phase functions
US8082117B2 (en) 2005-04-05 2011-12-20 The Board Of Trustees Of The Leland Stanford Junior University Optical image processing using minimum phase functions
WO2010087142A1 (en) * 2009-01-27 2010-08-05 パナソニック株式会社 Surface plasmon resonance sensor, localized plasmon resonance sensor, and method for manufacturing same
US8699032B2 (en) 2009-01-27 2014-04-15 Panasonic Corporation Surface plasmon resonance sensor, localized plasmon resonance sensor, and method for manufacturing same
CN102192899A (en) * 2010-03-02 2011-09-21 中国科学院福建物质结构研究所 Double-channel second-order nonlinear optical test system
JP2014055930A (en) * 2012-08-15 2014-03-27 Fujifilm Corp Optical field enhancement device, and light measuring device and method
WO2014027448A1 (en) * 2012-08-15 2014-02-20 富士フイルム株式会社 Optical electric field amplification device, and light measurement apparatus and method
US9575003B2 (en) 2012-08-15 2017-02-21 Fujifilm Corporation Optical field enhancement device, light measurement apparatus and method

Similar Documents

Publication Publication Date Title
Wokaun et al. Surface second-harmonic generation from metal island films and microlithographic structures
Trebino et al. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating
US5437840A (en) Apparatus for intracavity sensing of macroscopic properties of chemicals
US4905169A (en) Method and apparatus for simultaneously measuring a plurality of spectral wavelengths present in electromagnetic radiation
US5538850A (en) Apparatus and method for intracavity sensing of microscopic properties of chemicals
Coutaz et al. Experimental study of surface-enhanced second-harmonic generation on silver gratings
US5986768A (en) Intra-cavity total reflection for high sensitivity measurement of optical properties
JPH06174640A (en) Transient diffraction grating spectorscopy
JPH0552740A (en) Nonlinear optical constant evaluating method
US20140354993A1 (en) Localized surface plasmon resonance sensing system with anisotropic particles
US9678009B2 (en) Method for localized surface plasmon resonance sensing system
Groenzin et al. Sum-frequency generation: Polarization surface spectroscopy analysis of the vibrational surface modes on the basal face of ice Ih
Kiguchi et al. Technique for evaluating second‐order nonlinear optical materials in powder form
Gupta et al. A compact collinear AOTF Raman spectrometer
Lu et al. Phase measurement in nonlinear optics of molecules at air/water interface with femtosecond laser pulses
JPH10115573A (en) Method and apparatus for measurement of tertiary nonlinear susceptibility rate
JP2734843B2 (en) Nonlinear optical constant evaluation method and apparatus
Etchepare et al. Molecular dynamics of liquid benzene via femtosecond pulses laser excitation
Bailey et al. Assessment of optically nonlinear organic crystals
Kuczyński et al. Interference method for the determination of refractive indices and birefringence of liquid crystals
JP2850856B2 (en) Interface analysis method
Morozov et al. Analysis of nonlinear optical materials properties by simple powder technique
Chao et al. Local refractive index measurement on a cholesteric liquid crystal using the surface plasmon technique
Martin Filling the spectroscopic gap between microwaves and the infra-red. Part I
Heisler et al. Spectrally resolved femtosecond Maker fringes technique