JPH0549300B2 - - Google Patents

Info

Publication number
JPH0549300B2
JPH0549300B2 JP2180240A JP18024090A JPH0549300B2 JP H0549300 B2 JPH0549300 B2 JP H0549300B2 JP 2180240 A JP2180240 A JP 2180240A JP 18024090 A JP18024090 A JP 18024090A JP H0549300 B2 JPH0549300 B2 JP H0549300B2
Authority
JP
Japan
Prior art keywords
glass
dissolution rate
ions
copper
deodorization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2180240A
Other languages
Japanese (ja)
Other versions
JPH0467868A (en
Inventor
Koichi Yamamoto
Hisashi Nonoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishizuka Glass Co Ltd
Original Assignee
Ishizuka Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishizuka Glass Co Ltd filed Critical Ishizuka Glass Co Ltd
Priority to JP2180240A priority Critical patent/JPH0467868A/en
Publication of JPH0467868A publication Critical patent/JPH0467868A/en
Publication of JPH0549300B2 publication Critical patent/JPH0549300B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は窒素系および硫黄系の悪臭を分解する
ことにより消臭することができる消臭剤に関する
ものである。 (従来の技術) 従来一般に用いられている消臭手段としては、 香料よるマスキングを利用した感覚的消臭、 活性炭、ゼオライト、サイクロデキストリン
等の吸着作用を利用したた物理的消臭、 酸、アルカリによる中和、植物物精油との反
応、熱分解等を利用した化学的消臭、 曝気、スクラバー等を利用した生物的消臭、 がある。 ところがの感覚的消臭はマスキングのバラン
スが崩れると悪臭に戻り、根本的な悪臭対策とは
なり得ない。またの物理的消臭は吸着能力に限
界があり、特に多用されているゼオライトは水分
を選択的に吸収するうえ、吸着した悪臭成分を再
放出することもある。の化学的消臭は特定の臭
気にしか作作用せず、また酸、アルカリは取扱い
が危険である。さらにの生物的消臭は装置が大
掛かりになるとともに、維持に費用がかかるとい
う問題がある。 (発明が解決しようとする課題) 本発明は上記した従来の消臭手段の持つ欠点を
解消して、窒素系および硫黄系の悪臭を分解する
ことにより、安全かつ確実に優れた消臭効果果を
発揮することができる安価な消臭剤を提供するた
めに完成されたものである。 (課題を解決するための手段) 上記の課題を解決するためになされた第1の発
明は、P2O5を主成分とするガラス中に銀を含有
させ、このガラスからの20℃の純水中における
PO4 3-イオンの溶解速度を10-5〜10-1g/硝子1
g/Hr、Ag+イオンの溶解速度を10-8〜10-6g/硝
子1g/Hrに制御したことを特徴とするものであ
る。 また第2の発明は、P2O5を主成分とするガラ
ス中に銅を含有させ、このガラスからの20℃の純
水中におけるPO4 3-イオンの溶解速度を10-5
10-1g/硝子1g/Hr、Cu2+イオンの溶解速度を
10-7〜5×10-5g/硝子11g/Hrに制御したことを
特徴とするものである。 さらに第3の発明は、P2O5を主成分とするガ
ラス中に鉄を含有させ、このガラスからの20℃の
純水中におけるPO4 3-イオンの溶解速度を10-5
10-1g/硝子1g/Hr、Fe3+イオンの溶解速度を
10-7〜5×10-5g/硝子1g/Hrに制御したことを
特徴とするものである。 上記のように、本発明ではP2O5を主成分とす
る燐酸塩系のガラス中に銀、銅、鉄等の金属を含
有させたものを用いる。このガラスからの20℃の
純水中におけるPO4 3-イオンの溶解速度を10-5
10-1g/硝子1g/Hrとする。但しこの溶解速度の
測定はガラスの粒径を425〜600μmとして行うも
のとし、本明細書における全ての溶解速度の測定
は粒径を425〜600μmとしたガラスを20℃の純水
中に浸漬して行うものとする。 このように燐酸塩系のガラスを用いることによ
り、PO4 3-イオンの溶解速度を10-5〜10-1g/硝
子1g/Hrとしたのは、PO4 3-イオンがアンモニ
アを始めとする窒素系の悪臭を分解するのに適し
ているからである。ここでPO4 3-イオンの溶解速
度が10-5g/硝子1g/Hr未満であると悪臭物質と
の反応速度が遅く、十分な消臭効果を発揮させる
ことができず、逆に10-1g/硝子1g/Hrを越える
と空気中の水分との反応が生じて取扱が困難とな
るためである。 第1の発明においては、このようなガラス中に
銀を含有させ、ガラスからのAg+イオンの溶解速
度を10-8〜10-6g/硝子1g/Hrに制御する。また
第2の発明においては銅を含有させ、Cu2+イオ
ンの溶解速度を10-7〜5×10-5g/硝子1g/Hrに
制御する。さらに第3の発明においては鉄を含有
させ、Fe3+イオンの溶解速度を10-7〜5×
10-5g/硝子1g/Hrに制御する。なお同時に2以
上の金属を含有させることも可能であるが、この
場合には各金属について上記のイオン溶解速度を
持たせることが必要である。これらのAg+イオ
ン、Cu2+イオン、Fe3+イオンはいずれもH2S、
CH3SH等の硫黄系の悪臭を分解するのに適して
いる。ここで各イオンの溶解速度を上記のように
限定したのは、これらの数値限定範囲を下回ると
消臭効果が少なく、逆に数値限定範囲を上上回る
とガラス溶融の際に金属が析出し易くなり、ガラ
スの製造が困難となるためである。 また本発明の消臭剤は、比表面積を増大させる
ためにガラスの粒経を100μm以下として使用する
ことが好ましい。 なお、前記した各種イオンの溶解速度を所定範
囲内に制御するための具体的な方法は理論的に解
明されている訳ではないが、例えばガラス組成や
粒径などを経験則に基づいて調整することにより
ある程度任意に制御することが可能である。例え
ばガラス組成にあつては、P2O5を主成分とする
ガラスにおいてアルカリ金属を加えるとガラスの
溶解速度が速くなり、アルカリ土類金属を加える
とガラスの溶解速度が遅くなる傾向にあることが
当業者間において経験則として知られている。ま
た、粒経においても小さくすればするほど比表面
積を増大させ反応表面が大きくなつてガラスの溶
解速度が速くなることも知られている。従つて、
これらガラス組成や粒径などを調整すればガラス
の溶解速度を任意に制御できることとなる。そし
て、所定の溶解速度を有するガラスの組成として
調整したうえ、経験則に基づきP2O5と金属成分
であるAg2O、Cu2O、FeOの含有量を一定の割合
となるよう調整すれば各種イオンの溶解速度を所
定範囲のものに容易に制御することができる。 以下に本発明の実施例を示す。 (実施例) 実施例 1 燐酸マグネシウム〔Mg3(PO42〕94.26gと、89
%の燐酸〔H3PO4〕157.76gと、酸化銀4.0gとを
混合して300℃にて3時間保持し、次にその乾燥
物を1300℃で1時間溶融してガラスを作成し、こ
れを粉砕して第1表の実施例1の試料とした。 実施例 2 燐酸カリウム〔K2HPO4〕71.36gと、第一燐酸
カルシウム〔Ca(H2PO42・H2O〕38.29gと、亜
酸化銅〔Cu2O〕23.54gと、カーボン0.2gと、89
%の燐酸〔H3PO4〕117.72gとを混合して300℃℃
にて3時間保持し、次にその乾燥物を1200℃で1
時間溶融してガラスを作成し、これを粉砕して第
1表の実施例2の試料とした。 また作成したガラス中の銅の価数を求めるため
に、粉末0.5gを1/10K2Cr2O7・(1+4)H2SO4
25mlで完全に溶かし、指示薬としてオーフエナン
トロリン薬を3滴加えた後、1/10FeSO4
(NH42SO4・6H2Oにて滴定を行つたところ、ガ
ラス中の銅のうち一価の銅イオンが71%であつ
た。 実施例 3 燐酸カリウム71.36gと、第一燐酸カルシウム
38.05gと、酸化銅26.17gと燐酸117.72gを混合し、
実施例2と同様にガラスを作成し、これを粉砕し
て第1表の実施例3の試料とした。またガラス中
の銅のうち一価の銅イオンを測定したところ、9
%であつた。 以下同様にして実施例4〜5および比較例1〜
3の燐酸系ガラスを作成した。これを第1表に示
す。なお比較例4は通常の食器用ガラスである。 第1表の溶解速度は粒径425〜600μmのガラス
0.6gを20℃の蒸留水100mlに浸漬し、重量減少率
から算出したもので、上段の値はPO4 3-イオンの
溶解速度であり、下段の値は金属イオンの溶解速
度である。
(Industrial Application Field) The present invention relates to a deodorizer capable of deodorizing nitrogen-based and sulfur-based malodors by decomposing them. (Prior art) Conventionally commonly used deodorization methods include sensory deodorization using masking with fragrances, physical deodorization using the adsorption effect of activated carbon, zeolite, cyclodextrin, etc., and acids and alkalis. There are two types of deodorization: chemical deodorization using chemical deodorization, reaction with plant essential oils, thermal decomposition, etc., and biological deodorization using aeration, scrubbers, etc. However, when the balance of masking is disrupted, sensory deodorization returns to a bad odor, and cannot be a fundamental countermeasure against bad odors. In addition, physical deodorization has a limited adsorption capacity, and zeolite, which is particularly widely used, selectively absorbs water and may re-release adsorbed malodorous components. Chemical deodorization works only on specific odors, and acids and alkalis are dangerous to handle. Furthermore, biological deodorization requires large-scale equipment and is expensive to maintain. (Problems to be Solved by the Invention) The present invention solves the drawbacks of the conventional deodorizing means described above and decomposes nitrogen-based and sulfur-based bad odors, thereby safely and reliably achieving excellent deodorizing effects. This product was developed to provide an inexpensive deodorant that can provide the following benefits. (Means for Solving the Problems) The first invention made to solve the above problems is to contain silver in glass containing P 2 O 5 as a main component, and to produce pure silver at 20°C from this glass. underwater
The dissolution rate of PO 4 3- ion is 10 -5 to 10 -1 g/1 glass.
g/Hr, and the dissolution rate of Ag + ions is controlled to 10 -8 to 10 -6 g/1 g of glass/Hr. In addition, the second invention includes copper in a glass containing P 2 O 5 as a main component, and increases the dissolution rate of PO 4 3- ions from this glass in pure water at 20°C to 10 -5 ~
10 -1 g/1 g of glass/Hr, the dissolution rate of Cu 2+ ions is
It is characterized by being controlled to 10 -7 to 5 x 10 -5 g/11 g/Hr of glass. Furthermore, in the third invention, iron is contained in a glass mainly composed of P 2 O 5 , and the dissolution rate of PO 4 3- ions from this glass in pure water at 20°C is increased to 10 -5 ~
10 -1 g/1 g of glass/Hr, the dissolution rate of Fe 3+ ions is
It is characterized by being controlled to 10 -7 to 5×10 -5 g/1 g of glass/Hr. As described above, in the present invention, a phosphate glass containing P 2 O 5 as a main component and containing metals such as silver, copper, and iron is used. The dissolution rate of PO 4 3- ions in pure water at 20 °C from this glass is 10 -5 ~
10 -1 g/glass 1g/Hr. However, this measurement of dissolution rate is performed with glass particle size of 425 to 600 μm, and all dissolution rate measurements in this specification are performed by immersing glass with particle size of 425 to 600 μm in pure water at 20°C. shall be carried out. By using phosphate-based glass in this way, the dissolution rate of PO 4 3- ions was set at 10 -5 to 10 -1 g/1 g of glass/Hr because PO 4 3- ions are dissolved in ammonia and other substances. This is because it is suitable for decomposing nitrogen-based odors. If the dissolution rate of PO 4 3- ions is less than 10 -5 g/1 g of glass/Hr, the reaction rate with malodorous substances will be slow and sufficient deodorizing effect will not be achieved ; This is because if the amount exceeds 1 g/glass/1 g/Hr, a reaction with moisture in the air will occur, making handling difficult. In the first invention, silver is contained in such a glass, and the dissolution rate of Ag + ions from the glass is controlled to 10 -8 to 10 -6 g/1 g of glass/Hr. Further, in the second invention, copper is contained and the dissolution rate of Cu 2+ ions is controlled to 10 −7 to 5×10 −5 g/1 g of glass/Hr. Furthermore, in the third invention, iron is contained, and the dissolution rate of Fe 3+ ions is increased from 10 -7 to 5×
Control at 10 -5 g/glass 1g/Hr. It is also possible to contain two or more metals at the same time, but in this case it is necessary for each metal to have the above-mentioned ion dissolution rate. These Ag + ions, Cu 2+ ions, and Fe 3+ ions are all H 2 S,
Suitable for decomposing sulfur-based odors such as CH 3 SH. The reason for limiting the dissolution rate of each ion as described above is that if it falls below these numerically limited ranges, the deodorizing effect will be small, and conversely, if it exceeds the numerically limited ranges, metals will easily precipitate during glass melting. This is because it becomes difficult to manufacture glass. Further, in the deodorant of the present invention, it is preferable to use glass having a grain size of 100 μm or less in order to increase the specific surface area. Although the specific method for controlling the dissolution rate of the various ions mentioned above within a predetermined range has not been theoretically elucidated, for example, the glass composition and particle size may be adjusted based on empirical rules. This allows arbitrary control to some extent. For example, in terms of glass composition, when an alkali metal is added to a glass whose main component is P 2 O 5 , the dissolution rate of the glass increases, and when an alkaline earth metal is added, the dissolution rate of the glass tends to slow down. is known as a rule of thumb among those skilled in the art. It is also known that the smaller the particle size, the greater the specific surface area, the larger the reaction surface, and the faster the glass melting rate. Therefore,
By adjusting the glass composition, particle size, etc., the melting rate of the glass can be controlled arbitrarily. Then, the composition of the glass is adjusted to have a predetermined dissolution rate, and the contents of P 2 O 5 and the metal components Ag 2 O, Cu 2 O, and FeO are adjusted to a constant ratio based on empirical rules. For example, the dissolution rate of various ions can be easily controlled within a predetermined range. Examples of the present invention are shown below. (Example) Example 1 Magnesium phosphate [Mg 3 (PO 4 ) 2 ] 94.26 g and 89
% phosphoric acid [H 3 PO 4 ] and 4.0 g of silver oxide were mixed and held at 300°C for 3 hours, and then the dried product was melted at 1300°C for 1 hour to create glass. This was crushed to obtain the sample of Example 1 in Table 1. Example 2 71.36 g of potassium phosphate [K 2 HPO 4 ], 38.29 g of monobasic calcium phosphate [Ca(H 2 PO 4 ) 2.H 2 O], 23.54 g of cuprous oxide [Cu 2 O], and carbon 0.2g and 89
% phosphoric acid [H 3 PO 4 ] 117.72g and heated to 300℃℃
The dried product was kept at 1200°C for 3 hours, and then the dried product was
A glass was prepared by melting for a period of time, which was crushed to form the sample of Example 2 in Table 1. Also, in order to find the valence of copper in the created glass, 0.5g of powder was mixed with 1/10K 2 Cr 2 O 7 (1+4)H 2 SO 4
After completely dissolving in 25ml and adding 3 drops of Orphenanthroline medicine as an indicator, 1/10FeSO 4
Titration with (NH 4 ) 2 SO 4 .6H 2 O revealed that monovalent copper ions accounted for 71% of the copper in the glass. Example 3 71.36g of potassium phosphate and monobasic calcium phosphate
38.05g, 26.17g of copper oxide and 117.72g of phosphoric acid,
A glass was prepared in the same manner as in Example 2, and it was crushed to obtain the sample of Example 3 in Table 1. Furthermore, when we measured monovalent copper ions among the copper in the glass, we found that 9
It was %. Similarly, Examples 4 to 5 and Comparative Examples 1 to
No. 3 phosphoric acid glass was prepared. This is shown in Table 1. Note that Comparative Example 4 is a normal tableware glass. The dissolution rate in Table 1 is for glass with a particle size of 425 to 600 μm.
Calculated from the weight loss rate after immersing 0.6 g in 100 ml of distilled water at 20°C. The upper value is the dissolution rate of PO 4 3- ions, and the lower value is the dissolution rate of metal ions.

【表】 第1表に示された実施例および比較例の試料
1gを容量が2000mlのガラス容器に入れ、アンモ
ニア、硫化水素、メチルメルタプタンの各悪臭物
質を注射器を用いて一定量注入した。次に注入直
後および1時間経過後の悪臭物質の濃度を北川式
ガラス検知管を用いて測定した。その結果は第2
表、第3表、第4表を示す通りである。なお、い
ずれの数値も2回測定した値の平均値である。 このように、本発明の消臭剤は窒素系の悪臭お
よび硫黄系の悪臭のいずれに対しても優れた消臭
効果を発揮することがわかる。
[Table] Samples of Examples and Comparative Examples shown in Table 1
1 g was placed in a glass container with a capacity of 2000 ml, and a fixed amount of each malodorous substance of ammonia, hydrogen sulfide, and methyl mertaptan was injected using a syringe. Next, the concentration of the malodorous substance immediately after injection and after 1 hour was measured using a Kitagawa glass detection tube. The result is the second
Tables 3 and 4 are as shown. Note that all numerical values are average values of values measured twice. Thus, it can be seen that the deodorant of the present invention exhibits an excellent deodorizing effect on both nitrogen-based and sulfur-based malodors.

【表】【table】

【表】【table】

【表】【table】

【表】 (発明の効果) 以上のデータおよび説明から明らかなように、
本発明の消臭剤は燐酸塩系のガラスに銀、銅、鉄
を含有させ、PO4 3-イオン、Ag+イオン、Cu2 +
オン、Fe3+イオンの溶解速度を特定の範囲に設
定することにより、窒素系および硫黄系の悪臭を
分解し、優れた消臭効果を発揮することができる
ものであり、ガラスの組成を調整することにより
消臭効果を自由に換えることができる。また本発
明の消臭剤は酸、アルカリ等のような危険性がな
く、溶解速度をコントロールすることにより長期
間にわたり安定した効果を発揮することができ
る。さらに本発明の消臭剤は価格が安価であり、
経済性にも優れたものである。 よつて本発明は従来の問題点を一掃した消臭剤
として、産業の発展に寄与するところは極めて大
きいものがある。
[Table] (Effects of the invention) As is clear from the above data and explanation,
The deodorant of the present invention contains silver, copper, and iron in phosphate-based glass, and sets the dissolution rate of PO 4 3- ions, Ag + ions, Cu 2 + ions, and Fe 3+ ions within a specific range. By doing so, it is possible to decompose nitrogen-based and sulfur-based malodors and exhibit an excellent deodorizing effect, and the deodorizing effect can be freely changed by adjusting the composition of the glass. Furthermore, the deodorant of the present invention does not have the dangers of acids, alkalis, etc., and can exhibit stable effects over a long period of time by controlling the dissolution rate. Furthermore, the deodorant of the present invention is inexpensive;
It is also highly economical. Therefore, the present invention greatly contributes to the development of industry as a deodorant that eliminates the problems of the conventional deodorizers.

Claims (1)

【特許請求の範囲】 1 P2O5を主成分とするガラス中に銀を含有さ
せ、このガラスからの20℃の純水中における
PO4 3-イオンの溶解速度を10-5〜10-1g/硝子1
g/Hr、Ag+イオンの溶解速度を10-8〜10-6g/硝
子1g/Hrに制御したことを特徴とする消臭剤。 2 P2O5を主成分とするガラス中に銅を含有さ
せ、このガラスからの20℃の純水中における
PO4 3-イオンの溶解速度を10-5〜10-1g/硝子1
g/Hr、Cu2+イオンの溶解速度を10-7〜5×
10-5g/硝子1g/Hrに制御したことを特徴とする
消臭剤。 3 P2O5を主成分とするガラス中に鉄を含有さ
せ、このガラスからの20℃の純水中における
PO4 3-イオンの溶解速度を10-5〜10-1g/硝子1
g/Hr、Fe3+イオンの溶解速度を10-7〜5×
10-5g/硝子1g/Hrに制御したことを特徴とする
消臭剤。
[Claims] 1. Silver is contained in a glass whose main component is P 2 O 5 , and silver from this glass in pure water at 20°C is
The dissolution rate of PO 4 3- ion is 10 -5 to 10 -1 g/1 glass.
A deodorant characterized in that the dissolution rate of Ag + ions is controlled to 10 -8 to 10 -6 g/1 g of glass/Hr. 2 Copper is contained in glass whose main component is P 2 O 5 , and the glass is dissolved in pure water at 20°C.
The dissolution rate of PO 4 3- ion is 10 -5 to 10 -1 g/1 glass.
g/Hr, the dissolution rate of Cu 2+ ions is 10 -7 ~ 5×
A deodorant characterized by controlling the concentration to 10 -5 g/1 g of glass/Hr. 3 Iron is contained in a glass whose main component is P 2 O 5 , and the glass is dissolved in pure water at 20°C.
The dissolution rate of PO 4 3- ion is 10 -5 to 10 -1 g/1 glass.
g/Hr, the dissolution rate of Fe 3+ ions is 10 -7 ~ 5×
A deodorant characterized by controlling the concentration to 10 -5 g/1 g of glass/Hr.
JP2180240A 1990-07-07 1990-07-07 Deodorizer Granted JPH0467868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2180240A JPH0467868A (en) 1990-07-07 1990-07-07 Deodorizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2180240A JPH0467868A (en) 1990-07-07 1990-07-07 Deodorizer

Publications (2)

Publication Number Publication Date
JPH0467868A JPH0467868A (en) 1992-03-03
JPH0549300B2 true JPH0549300B2 (en) 1993-07-23

Family

ID=16079817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2180240A Granted JPH0467868A (en) 1990-07-07 1990-07-07 Deodorizer

Country Status (1)

Country Link
JP (1) JPH0467868A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107427596A (en) * 2015-03-17 2017-12-01 石塚硝子株式会社 Deodorization vitrifying agent

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004026433A1 (en) * 2004-05-29 2005-12-22 Schott Ag Nanoglass powder and its use
JP5784848B1 (en) * 2014-07-10 2015-09-24 石塚硝子株式会社 Deodorants
JP6399977B2 (en) * 2015-07-22 2018-10-03 石塚硝子株式会社 Deodorant glass container
JPWO2018185948A1 (en) * 2017-04-04 2020-02-13 石塚硝子株式会社 Material showing deodorant effect

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107427596A (en) * 2015-03-17 2017-12-01 石塚硝子株式会社 Deodorization vitrifying agent
CN107427596B (en) * 2015-03-17 2020-10-02 石塚硝子株式会社 Deodorizing glass agent

Also Published As

Publication number Publication date
JPH0467868A (en) 1992-03-03

Similar Documents

Publication Publication Date Title
JPS59132937A (en) Deodorant
JPH0657240B2 (en) Deodorant
JP2017025190A (en) Deodorant film and bag having deodorant function
CA2073059C (en) Adsorbent composition and method of producing same
JPH0549300B2 (en)
CA2511497A1 (en) Carbon nanoball for deodorization
JP2745424B2 (en) Deodorant
JPH0222668B2 (en)
US2464043A (en) Air-deodorizing compositions
JPH0222669B2 (en)
JPWO2018185948A1 (en) Material showing deodorant effect
JPS63258644A (en) Deodorizer
JPH01119255A (en) Deodorant composition
JPS6324963B2 (en)
JPS62286464A (en) Deodorant
JPS6013702B2 (en) liquid deodorant
JPS62101251A (en) Deodorant
JPS62101253A (en) Deodorant
JPH04114734A (en) Deodorant
JPH05176978A (en) Deodorant
JPS62258665A (en) Deodorant composition
JPH01170462A (en) Granular deodorant
KR810001714B1 (en) Composition of deodorant
JPS63161969A (en) Liquid deodorant
JPS62101250A (en) Deodorant

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070723

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 15

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 16

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees