JPH0548833A - Chromatic aberration correcting structure - Google Patents

Chromatic aberration correcting structure

Info

Publication number
JPH0548833A
JPH0548833A JP3285400A JP28540091A JPH0548833A JP H0548833 A JPH0548833 A JP H0548833A JP 3285400 A JP3285400 A JP 3285400A JP 28540091 A JP28540091 A JP 28540091A JP H0548833 A JPH0548833 A JP H0548833A
Authority
JP
Japan
Prior art keywords
color
sensors
optical system
image
chromatic aberration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3285400A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hirano
博幸 平野
Yasunori Arai
保則 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP3285400A priority Critical patent/JPH0548833A/en
Publication of JPH0548833A publication Critical patent/JPH0548833A/en
Pending legal-status Critical Current

Links

Landscapes

  • Facsimile Heads (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PURPOSE:To form an image of high definition with a low cost by giving different wavelength selectivities to color sensors and making positions of color sensors different from one another in the optical axis direction. CONSTITUTION:Color sensors have wavelength selectivities different from one another, and their positions are made different from one another in the optical axis direction so that the chromatic aberration in an image forming optical system is compensated. That is, a picture sensor consists of combination of color filters 7 and CCD sensors 8, and for example, three CCD line sensors 8a to 8c are arranged in parallel as CCD sensors 8, and color filters 7a to 7c are allowed to correspond to line sensors 8a to 8c respectively, and a supporting body 9 which supports line sensors 8a to 8c is provided with steps 9a to 9c so that the focal length different by colors can be corrected. As the result, a maximum field depth of the image forming optical system is obtained with respect to light of each color, and the out-of-focus state due to aberrations on the axis is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、デジタル複写機、ファ
クシミリ、イメージスキャナ等のカラー画像入力装置の
光学系に於ける色収差補正構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chromatic aberration correcting structure in an optical system of a color image input device such as a digital copying machine, a facsimile, an image scanner and the like.

【0002】[0002]

【従来の技術】種々の画像入力装置のカラー化が進行し
ているが、より高い精細度及び読取原稿サイズの大型化
が要望されるようになってきたのに伴って、長焦点距離
の結像光学系が要求されるようになってきた。結像光学
系の焦点距離が長くなると、それに比例して軸上色収差
が大きくなるため、検出される画像のピントが合わなく
なり、画像性能が劣化する。また、光学系の調整及びレ
ンズ設計が困難となる。
2. Description of the Related Art Although various types of image input devices have been developed in color, with the demand for higher definition and larger read document size, there has been a demand for a long focal length. Image optics have come to be required. When the focal length of the imaging optical system becomes long, the axial chromatic aberration increases in proportion thereto, so that the detected image is out of focus and the image performance deteriorates. In addition, it becomes difficult to adjust the optical system and design the lens.

【0003】そこで、1つのCCDセンサ等からなるセ
ンサを用いて、原稿の読み取りを3回或いは4回に分け
て、光源或いはフィルタを交換し、各色毎にピント調整
を行うことが考えられる。この構造によれば、1つのセ
ンサのみで済み、基本的にはモノクロ画像入力装置と同
様の構造を備えるものであって良いため、比較的コスト
は少くて済む。しかしながら、原稿を数回に分けてスキ
ャンするために、スキャンの開始位置のずれ等による劣
化が発生し易く、また読み取りに比較的長時間を要す
る。
Therefore, it is conceivable to use a single sensor such as a CCD sensor to read the original document three or four times, replace the light source or the filter, and adjust the focus for each color. According to this structure, only one sensor is required, and basically the same structure as that of the monochrome image input device may be provided, so that the cost is relatively low. However, since the document is scanned several times, deterioration is likely to occur due to a shift in the scan start position, and reading takes a relatively long time.

【0004】第2の方法として、3つのセンサと、色分
解プリズムとを用いて画像を検出する方法も考えられ、
この場合、1回のスキャンで画像を読み取れることに加
え、プリズムにより各色(波長)による結像光学系の焦
点の調整も可能である。しかしながら、センサが3つ必
要であるばかりでなく、比較的複雑であってしかも高い
精度を要する色分解プリズムが必要となることから、多
大なコストが必要となる。
As a second method, a method of detecting an image using three sensors and a color separation prism can be considered.
In this case, in addition to being able to read the image with one scan, the focus of the imaging optical system for each color (wavelength) can be adjusted by the prism. However, not only three sensors are required, but also a color separation prism that is relatively complicated and requires high accuracy is required, so that a large cost is required.

【0005】第3の方法として、3つのセンサにそれぞ
れ波長選択性のフィルタを組合せて画像を読取る方法が
ある。この場合、1回のスキャンで画像を読み取れるの
に加え、色分解プリズムが不要であるため、比較的コス
トが少く済む。しかしながら、結像光学系で発生する各
色(波長)による焦点距離の差(軸上色収差)を補正す
ることができないため、特定の色についてのみ画像が劣
化したり、結像面に於ける光学系の焦点深度が狭くなり
調整が困難であるという不都合がある。結像光学系をカ
ラー用に設計することも考えられるが、そのためには多
大なコストが必要であり、また完全に色収差を補正する
ことが困難である。
A third method is to read an image by combining three sensors with wavelength selective filters. In this case, the image can be read by one scan, and since the color separation prism is not necessary, the cost is relatively low. However, the difference in focal length (axial chromatic aberration) due to each color (wavelength) generated in the image forming optical system cannot be corrected, so that the image is deteriorated only for a specific color or the optical system on the image forming surface is deteriorated. However, there is a problem that the depth of focus becomes narrow and adjustment is difficult. It is conceivable to design the imaging optical system for color, but this requires a great deal of cost and it is difficult to completely correct chromatic aberration.

【0006】[0006]

【発明が解決しようとする課題】このような従来技術の
問題点に鑑み、本発明の主な目的は、比較的低コストで
あって、高精細な結像を可能にするような、カラー画像
入力装置等の光学系に於ける色収差補正構造を提供する
ことにある。
SUMMARY OF THE INVENTION In view of the above problems of the prior art, the main object of the present invention is to provide a color image at a relatively low cost and which enables high-definition image formation. It is to provide a structure for correcting chromatic aberration in an optical system such as an input device.

【0007】本発明の第2の目的は、各色に対する結像
光学系の像面深度を深くし、結像光学系の調整を容易に
するような上記形式の色収差補正構造を提供することに
ある。
A second object of the present invention is to provide a chromatic aberration correction structure of the above type which makes the image plane depth of the image forming optical system for each color deep and facilitates adjustment of the image forming optical system. ..

【0008】[0008]

【課題を解決するための手段】このような目的は、本発
明によれば、カラー画像を、結像光学系を介して、波長
選択性を有する複数のカラーセンサにより検出する光学
系のための色収差補正構造であって、前記カラーセンサ
が、それぞれ異なる波長選択性を有し、前記結像光学系
に於ける色収差を補償するように、前記カラーセンサの
光軸方向位置を異なるものとしたことを特徴とする色収
差補正構造を提供することにより達成される。
According to the present invention, such an object is to provide an optical system for detecting a color image through a focusing optical system by a plurality of color sensors having wavelength selectivity. In the chromatic aberration correction structure, the color sensors have different wavelength selectivity, and the positions of the color sensors in the optical axis direction are different so as to compensate the chromatic aberration in the imaging optical system. This is achieved by providing a chromatic aberration correction structure characterized by:

【0009】[0009]

【実施例】以下、本発明の好適実施例を添付の図面につ
いて詳しく説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will now be described in detail with reference to the accompanying drawings.

【0010】図1は、本発明が適用されるカラー画像入
力装置の一例を示すもので、原稿台ガラス1上に載置さ
れたカラー原稿2の画像を読み取るために、原稿台ガラ
ス2の下面を照光するための光源ランプ3が設けられ、
カラー原稿2の像は、ミラー4を介して結像光学系5に
導かれ、更にカラー画像センサ6に結像される。この場
合、カラー画像センサ6はラインセンサからなり、原稿
台ガラス1を、光源ランプ3と、ミラー4と、結像光学
系5と、カラー画像センサ6とからなるアセンブリに対
して相対的に移動させることにより、原稿2の全面をス
キャンすることができる。
FIG. 1 shows an example of a color image input device to which the present invention is applied. In order to read an image of a color original 2 placed on the original platen glass 1, a lower surface of the original platen glass 2 is read. A light source lamp 3 for illuminating
The image of the color original 2 is guided to the image forming optical system 5 via the mirror 4 and further formed on the color image sensor 6. In this case, the color image sensor 6 is composed of a line sensor, and the platen glass 1 is moved relative to the assembly of the light source lamp 3, the mirror 4, the imaging optical system 5 and the color image sensor 6. By doing so, the entire surface of the original 2 can be scanned.

【0011】このような結像光学系は、各色(波長)毎
に異なる焦点距離を有する。即ち、図2に示されるよう
に、可視光スペクトル中のe線(緑色)、C線(赤色)
及びg線(青色)は、それぞれ焦点距離fB(e)、f
B(C)、fB(g)を有しており、それぞれ光軸上の
異なる位置に像を結ぶ。従って、カラー画像センサ6上
に全ての色の像を完全にフォーカスさせることができな
い。即ち、図3に示されるように、例えば、各波長に対
するカラー画像センサ6の位置が同一の場合、各波長に
ついてMTFを40%以上とし得る位置は1点しか存在
せず、焦点深度が実質的に0になってしまい、光学系の
調整が厄介であるばかりでなく、高い精細度を得ること
ができない。
Such an imaging optical system has a different focal length for each color (wavelength). That is, as shown in FIG. 2, e line (green) and C line (red) in the visible light spectrum.
And g line (blue) are focal lengths fB (e) and f, respectively.
It has B (C) and fB (g) and forms images at different positions on the optical axis. Therefore, the images of all colors cannot be perfectly focused on the color image sensor 6. That is, as shown in FIG. 3, for example, when the position of the color image sensor 6 for each wavelength is the same, there is only one position where the MTF can be 40% or more for each wavelength, and the depth of focus is substantially the same. However, not only is it difficult to adjust the optical system, but also high definition cannot be obtained.

【0012】そこで、本発明に於ては、図4に示される
ように、画像センサ6は、色フィルタ7とCCDセンサ
8とを組合せたものからなるものとし、しかも、CCD
センサ8として3本のCCDラインセンサ8a〜8cを
平行に配置し、各ラインセンサに対して異なる色フィル
タ7a〜7cを対応させ、更に、色毎に異なる焦点距離
の補正を行い得るように、ラインセンサ8a〜8cを支
持する支持体9に段差9a〜9cを設けるようにしてい
る。即ち、例えば基準となる緑色読取用CCDラインセ
ンサ8aを支持する面9aに対して、赤色及び青色を読
み取るためのCCDセンサ8b、8cを支持する支持面
9b、9cが、それぞれfB(C)−fB(e)及びf
B(g)−fB(e)だけ後方に位置するようにしてあ
る。
Therefore, in the present invention, as shown in FIG. 4, the image sensor 6 comprises a combination of the color filter 7 and the CCD sensor 8, and the CCD
As the sensor 8, three CCD line sensors 8a to 8c are arranged in parallel, different color filters 7a to 7c are associated with the respective line sensors, and further, different focal lengths can be corrected for each color. The steps 9a to 9c are provided on the support 9 that supports the line sensors 8a to 8c. That is, for example, with respect to the surface 9a supporting the reference green line reading CCD line sensor 8a, the supporting surfaces 9b and 9c supporting the CCD sensors 8b and 8c for reading red and blue are respectively fB (C) −. fB (e) and f
Only B (g) -fB (e) is located rearward.

【0013】その結果、図5に示されるように、各色の
光は、結像光学系5に備わった最大限の像面深度をそれ
ぞれ得るようになり、結像光学系の軸上色収差によるピ
ントずれを大幅に改善することが可能となる。
As a result, as shown in FIG. 5, the light of each color can obtain the maximum image plane depth provided in the imaging optical system 5, and the focus due to the axial chromatic aberration of the imaging optical system. It is possible to greatly improve the deviation.

【0014】[0014]

【発明の効果】本発明によれば、モノクロ画像用結像光
学系をカラー画像の読み取りのためにそのまま利用する
ことができ、色分解フィルタやプリズム等特殊な光学系
が不要であり、その設計が容易であると共に製造コスト
を低減することができる。また、結像光学系の像面深度
を結像光学系に備わった像面深度に略等しくすることが
できるため、高精細度の画像読取りが可能となり、しか
も光学系の調整が容易となる。
According to the present invention, the image forming optical system for monochrome images can be used as it is for reading a color image, and a special optical system such as a color separation filter or a prism is unnecessary, and its design And the manufacturing cost can be reduced. Further, since the image plane depth of the image forming optical system can be made substantially equal to the image plane depth provided in the image forming optical system, it is possible to read an image with high definition and facilitate adjustment of the optical system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明が適用されるカラー画像を入力装置の1
実施例を示すダイヤグラム図である。
FIG. 1 shows a color image input device 1 to which the present invention is applied.
It is a diagram showing an example.

【図2】軸上色収差の発生状況を示す光路図である。FIG. 2 is an optical path diagram showing a situation of occurrence of axial chromatic aberration.

【図3】本発明に基づく色収差補正構造を用いない場合
に実質的な像面深度が失われる様子を示すMTFグラフ
である。
FIG. 3 is an MTF graph showing how substantial depth of field is lost when the chromatic aberration correction structure according to the present invention is not used.

【図4】本発明に基づく色収差補正構造を示すダイヤグ
ラム図である。
FIG. 4 is a diagram showing a chromatic aberration correction structure according to the present invention.

【図5】本発明に基づく色収差補正構造により実質的な
像面深度が拡大される状況を示すMTFグラフである。
FIG. 5 is an MTF graph showing a situation in which the substantial depth of field is expanded by the chromatic aberration correction structure according to the present invention.

【符号の説明】[Explanation of symbols]

1 原稿台ガラス 2 カラー原稿 3 光源ランプ 4 ミラー 5 結像光学系 6 画像センサ 7 フィルタ 8 CCDラインセンサ 9 支持体 1 Platen Glass 2 Color Document 3 Light Source Lamp 4 Mirror 5 Imaging Optical System 6 Image Sensor 7 Filter 8 CCD Line Sensor 9 Support

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】カラー画像を、結像光学系を介して、波長
選択性を有する複数のカラーセンサにより検出する光学
系のための色収差補正構造であって、 前記カラーセンサが、それぞれ異なる波長選択性を有
し、前記結像光学系に於ける色収差を補償するように、
前記カラーセンサの光軸方向位置を異なるものとしたこ
とを特徴とする色収差補正構造。
1. A chromatic aberration correction structure for an optical system for detecting a color image by a plurality of color sensors having wavelength selectivity through an imaging optical system, wherein the color sensors have different wavelength selections. And to compensate for chromatic aberration in the imaging optical system,
A chromatic aberration correction structure in which the position of the color sensor in the optical axis direction is different.
JP3285400A 1991-08-07 1991-08-07 Chromatic aberration correcting structure Pending JPH0548833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3285400A JPH0548833A (en) 1991-08-07 1991-08-07 Chromatic aberration correcting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3285400A JPH0548833A (en) 1991-08-07 1991-08-07 Chromatic aberration correcting structure

Publications (1)

Publication Number Publication Date
JPH0548833A true JPH0548833A (en) 1993-02-26

Family

ID=17691041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3285400A Pending JPH0548833A (en) 1991-08-07 1991-08-07 Chromatic aberration correcting structure

Country Status (1)

Country Link
JP (1) JPH0548833A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028458A (en) * 2006-07-18 2008-02-07 Konica Minolta Business Technologies Inc Image reader
EP2434762A1 (en) 2010-09-22 2012-03-28 Fujifilm Corporation Image capturing module and image capturing apparatus
WO2016092450A1 (en) * 2014-12-09 2016-06-16 Basf Se Detector for an optical detection of at least one object
US9829564B2 (en) 2013-06-13 2017-11-28 Basf Se Detector for optically detecting at least one longitudinal coordinate of one object by determining a number of illuminated pixels
US9958535B2 (en) 2013-08-19 2018-05-01 Basf Se Detector for determining a position of at least one object
US10012532B2 (en) 2013-08-19 2018-07-03 Basf Se Optical detector
US10094927B2 (en) 2014-09-29 2018-10-09 Basf Se Detector for optically determining a position of at least one object
US10120078B2 (en) 2012-12-19 2018-11-06 Basf Se Detector having a transversal optical sensor and a longitudinal optical sensor
US10353049B2 (en) 2013-06-13 2019-07-16 Basf Se Detector for optically detecting an orientation of at least one object
US10412283B2 (en) 2015-09-14 2019-09-10 Trinamix Gmbh Dual aperture 3D camera and method using differing aperture areas
US10775505B2 (en) 2015-01-30 2020-09-15 Trinamix Gmbh Detector for an optical detection of at least one object
US10890491B2 (en) 2016-10-25 2021-01-12 Trinamix Gmbh Optical detector for an optical detection
US10948567B2 (en) 2016-11-17 2021-03-16 Trinamix Gmbh Detector for optically detecting at least one object
US10955936B2 (en) 2015-07-17 2021-03-23 Trinamix Gmbh Detector for optically detecting at least one object
US11041718B2 (en) 2014-07-08 2021-06-22 Basf Se Detector for determining a position of at least one object
US11060922B2 (en) 2017-04-20 2021-07-13 Trinamix Gmbh Optical detector
US11067692B2 (en) 2017-06-26 2021-07-20 Trinamix Gmbh Detector for determining a position of at least one object
US11125880B2 (en) 2014-12-09 2021-09-21 Basf Se Optical detector
US11211513B2 (en) 2016-07-29 2021-12-28 Trinamix Gmbh Optical sensor and detector for an optical detection
US11428787B2 (en) 2016-10-25 2022-08-30 Trinamix Gmbh Detector for an optical detection of at least one object
US11860292B2 (en) 2016-11-17 2024-01-02 Trinamix Gmbh Detector and methods for authenticating at least one object

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028458A (en) * 2006-07-18 2008-02-07 Konica Minolta Business Technologies Inc Image reader
EP2434762A1 (en) 2010-09-22 2012-03-28 Fujifilm Corporation Image capturing module and image capturing apparatus
US10120078B2 (en) 2012-12-19 2018-11-06 Basf Se Detector having a transversal optical sensor and a longitudinal optical sensor
US10845459B2 (en) 2013-06-13 2020-11-24 Basf Se Detector for optically detecting at least one object
US9829564B2 (en) 2013-06-13 2017-11-28 Basf Se Detector for optically detecting at least one longitudinal coordinate of one object by determining a number of illuminated pixels
US10823818B2 (en) 2013-06-13 2020-11-03 Basf Se Detector for optically detecting at least one object
US9989623B2 (en) 2013-06-13 2018-06-05 Basf Se Detector for determining a longitudinal coordinate of an object via an intensity distribution of illuminated pixels
US10353049B2 (en) 2013-06-13 2019-07-16 Basf Se Detector for optically detecting an orientation of at least one object
US10012532B2 (en) 2013-08-19 2018-07-03 Basf Se Optical detector
US9958535B2 (en) 2013-08-19 2018-05-01 Basf Se Detector for determining a position of at least one object
US11041718B2 (en) 2014-07-08 2021-06-22 Basf Se Detector for determining a position of at least one object
US10094927B2 (en) 2014-09-29 2018-10-09 Basf Se Detector for optically determining a position of at least one object
WO2016092450A1 (en) * 2014-12-09 2016-06-16 Basf Se Detector for an optical detection of at least one object
US11125880B2 (en) 2014-12-09 2021-09-21 Basf Se Optical detector
US10775505B2 (en) 2015-01-30 2020-09-15 Trinamix Gmbh Detector for an optical detection of at least one object
US10955936B2 (en) 2015-07-17 2021-03-23 Trinamix Gmbh Detector for optically detecting at least one object
US10412283B2 (en) 2015-09-14 2019-09-10 Trinamix Gmbh Dual aperture 3D camera and method using differing aperture areas
US11211513B2 (en) 2016-07-29 2021-12-28 Trinamix Gmbh Optical sensor and detector for an optical detection
US10890491B2 (en) 2016-10-25 2021-01-12 Trinamix Gmbh Optical detector for an optical detection
US11428787B2 (en) 2016-10-25 2022-08-30 Trinamix Gmbh Detector for an optical detection of at least one object
US11415661B2 (en) 2016-11-17 2022-08-16 Trinamix Gmbh Detector for optically detecting at least one object
US10948567B2 (en) 2016-11-17 2021-03-16 Trinamix Gmbh Detector for optically detecting at least one object
US11635486B2 (en) 2016-11-17 2023-04-25 Trinamix Gmbh Detector for optically detecting at least one object
US11698435B2 (en) 2016-11-17 2023-07-11 Trinamix Gmbh Detector for optically detecting at least one object
US11860292B2 (en) 2016-11-17 2024-01-02 Trinamix Gmbh Detector and methods for authenticating at least one object
US11060922B2 (en) 2017-04-20 2021-07-13 Trinamix Gmbh Optical detector
US11067692B2 (en) 2017-06-26 2021-07-20 Trinamix Gmbh Detector for determining a position of at least one object

Similar Documents

Publication Publication Date Title
JPH0548833A (en) Chromatic aberration correcting structure
JP2005101739A (en) Adjusting method of image reader and image reader
JP2006333078A (en) Image reader
JPH0746610A (en) Image pickup device
JP2004021240A (en) Optical system with image magnification compensation function, and imaging apparatus equipped with the same
JPH0548834A (en) Chromatic aberration correcting structure
JP2000232556A (en) Color image reader
JPS63177650A (en) Image reader/recorder
JPS60127863A (en) Color original reader
JPH03268671A (en) Image forming adjustment system of color reader
JPH0553080A (en) Color image reader
JP2001251475A (en) Color original scanning apparatus
JPH0548832A (en) Chromatic aberration correcting structure
JP3020562B2 (en) Image playback device
JP4363160B2 (en) Image reading apparatus and image reading method
JPH066516A (en) Color picture input device
JPH02276363A (en) Image reader
JPH01147955A (en) Color picture reader
JP2005269189A (en) Image reading apparatus
JPH0583717A (en) Color video camera
JP2010021727A (en) Image reading device and control method thereof
JPH09230513A (en) Color image reader
JPH0537716A (en) Color picture reader
JP2003143379A (en) Image processing apparatus and system
JPH02295370A (en) Picture reader