JPH0547760A - Semiconductor integrated circuit device and its manufacture and sputtering target for the manufacture - Google Patents

Semiconductor integrated circuit device and its manufacture and sputtering target for the manufacture

Info

Publication number
JPH0547760A
JPH0547760A JP20171591A JP20171591A JPH0547760A JP H0547760 A JPH0547760 A JP H0547760A JP 20171591 A JP20171591 A JP 20171591A JP 20171591 A JP20171591 A JP 20171591A JP H0547760 A JPH0547760 A JP H0547760A
Authority
JP
Japan
Prior art keywords
wiring
alloy
film
integrated circuit
electronegativity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20171591A
Other languages
Japanese (ja)
Inventor
Yasushi Kawabuchi
靖 河渕
Yukio Tanigaki
幸男 谷垣
Akira Haruta
亮 春田
Tokio Kato
登季男 加藤
Masashi Sawara
政司 佐原
Masayasu Suzuki
正恭 鈴樹
Shinichi Ishida
進一 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20171591A priority Critical patent/JPH0547760A/en
Publication of JPH0547760A publication Critical patent/JPH0547760A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To improve the oxidation-resistance of a copper wiring and improve the adhesiveness of the copper wiring to an Si substrate and an Si-system insulating film by a method wherein copper alloy containing elements which have electronegativity equivalent to or lower than that of copper is employed as the material of the wiring formed on the semiconductor substrate. CONSTITUTION:A Cu wiring 1 is formed on an SiO2 film 3 formed on the main surface of a semiconductor substrate 2 made of single crystal Si. A high concentration alloy layer 5 having a very small thickness is formed on the surface of the Cu wiring 1. The high concentration alloy layer 5 is, for instance, made of Cu alloy containing high concentration Pt which has a lower than Cu and high concentration Mg which has a higher electronegativity than Si. Further, the inside of the high concentration alloy layer 5 is made of Cu alloy containing very low concentration Pt and very low concentration Mg. With this constitution, a Cu wiring having a high oxidation-resistance can be obtained and, further, a Cu wiring having a high adhesion strength to an Si substrate and an Si-system insulating film can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積回路装置お
よびその製造技術に関し、特に、Cuを配線材料に用い
た半導体集積回路装置に適用して有効な技術に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit device and a manufacturing technique thereof, and more particularly to a technique effectively applied to a semiconductor integrated circuit device using Cu as a wiring material.

【0002】[0002]

【従来の技術】従来より、シリコン(Si)基板上に形
成されるLSIの配線材料としては、電気抵抗が低い、
酸化珪素(SiO2)膜との接着性が良い、加工が容易で
あるなどの理由からAlが使用されてきた。
2. Description of the Related Art Conventionally, a wiring material for an LSI formed on a silicon (Si) substrate has a low electric resistance.
Al has been used because of its good adhesion to a silicon oxide (SiO 2 ) film and its easy processing.

【0003】しかしながら、LSIの高集積化による配
線の微細化に伴い、エレクトロマイグレーション(E
M)、ストレスマイグレーション(SM)、ボイドなど
に起因するAl配線の信頼性の低下が深刻な問題となっ
ていることから、近年、Alに代わる各種配線材料の検
討がなされている。
However, with the miniaturization of wiring due to high integration of LSI, electromigration (E
M), stress migration (SM), voids, and the like cause a serious problem of reduction in reliability of Al wiring, and thus various wiring materials replacing Al have been studied in recent years.

【0004】とりわけCuは、電気抵抗がAlの約2/
3と低いため、Alに比べて電流密度を大きくとること
ができ、かつ融点がAlよりも400℃以上高いことか
らエレクトロマイグレーション耐性も高いので、64メ
ガビットDRAMなど、線幅0.3μm以下の微細加工を
必要とする次世代LSIの配線材料として有力視されて
いる。
Cu, in particular, has an electric resistance of about 2 / of that of Al.
Since it is as low as 3, the current density can be made higher than that of Al, and the melting point is higher than that of Al by 400 ° C. or more, so that electromigration resistance is also high. It is regarded as a potential wiring material for next-generation LSIs that require processing.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、Cu配
線は、耐酸化性が低いので層間絶縁膜堆積時に配線の
内部まで酸化が進行し、電気抵抗が増大してしまう、
SiO2 膜に対する接着強度が小さい、SiやSiO
2中に拡散し易いため、Si基板の拡散層に接続する
と、素子の特性を劣化させる虞れがある、などの問題点
が指摘されており、これらを改善することがCu配線の
課題となっている。
However, since the Cu wiring has low oxidation resistance, oxidation progresses to the inside of the wiring when the interlayer insulating film is deposited, and the electrical resistance increases.
Low adhesion strength to SiO 2 film, Si or SiO
Liable to diffuse into 2, when connected to the diffusion layer of the Si substrate, there is a possibility to degrade the characteristics of the device, it has been pointed out problems such as that, to improve these become an issue of the Cu wiring ing.

【0006】そこで、本発明の目的は、Cu配線の耐酸
化性を向上させる技術を提供することにある。
Therefore, an object of the present invention is to provide a technique for improving the oxidation resistance of Cu wiring.

【0007】本発明の他の目的は、Cu配線のSiO2
膜に対する接着性を向上させる技術を提供することにあ
る。
Another object of the present invention is to make Cu wiring SiO 2
It is to provide a technique for improving the adhesiveness to a film.

【0008】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述および添付図面から明らかに
なるであろう。
The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

【0009】[0009]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を説明すれば、下記の
とおりである。
The typical ones of the inventions disclosed in the present application will be outlined below.

【0010】(1) 半導体基板上に形成する配線の材料と
して、電気陰性度がCuと同等乃至Cuよりも大きい元
素を添加したCu合金を用いる。
(1) As the material of the wiring formed on the semiconductor substrate, a Cu alloy to which an element whose electronegativity is equal to or larger than Cu is added is used.

【0011】(2) 半導体基板上に形成する配線の材料と
して、電気陰性度がSiと同等乃至Siよりも小さい元
素を添加したCu合金を用いる。
(2) As the material of the wiring formed on the semiconductor substrate, a Cu alloy to which an element whose electronegativity is equal to or smaller than Si is added is used.

【0012】Cuの電気陰性度は1.9、酸素は3.5であ
る。また、周知のように、二種の元素A、Bからなる化
学結合〔A−B〕において、AとBとの電気陰性度の差
が大きくなる程、〔A−B〕のイオン結合性が大きくな
る(すなわち、共有結合性が小さくなる)。
The electronegativity of Cu is 1.9 and oxygen is 3.5. Further, as is well known, in the chemical bond [AB] composed of two elements A and B, the larger the difference in electronegativity between A and B, the more ionic bond property [AB] is. Greater (ie less covalent).

【0013】従って、電気陰性度がCuと同等乃至Cu
よりも大きい元素(A)を添加したCu合金を用いて配
線を形成すると、その表面が酸化された際、〔Cu−
O〕よりも共有結合性が大きい化学結合〔A−O〕のた
め、配線表面に緻密で安定な酸化被膜が生成し、これに
よって配線内部への酸化の進行が食い止められる。
Therefore, the electronegativity is equal to or higher than that of Cu.
When a wiring is formed by using a Cu alloy added with a larger element (A) than the above, when the surface is oxidized, [Cu-
Because of the chemical bond [A-O] having a covalent bond larger than that of [O], a dense and stable oxide film is formed on the surface of the wiring, which prevents the progress of oxidation inside the wiring.

【0014】上記元素は、0.01重量%以上〜10重量
%未満の範囲で添加する。0.01重量%未満では充分な
耐酸化性が得られず、10重量%以上ではCuの特性が
損なわれる。また、上記元素は、Cu合金の電気抵抗率
が3.5〔μΩcm〕(=Alの電気抵抗率)、より好まし
くは2.7〔μΩcm〕を超えない範囲で添加することが望
ましい。
The above elements are added in the range of 0.01% by weight or more and less than 10% by weight. If it is less than 0.01% by weight, sufficient oxidation resistance cannot be obtained, and if it is 10% by weight or more, the characteristics of Cu are impaired. Further, it is desirable that the above elements are added in such a range that the electrical resistivity of the Cu alloy does not exceed 3.5 [μΩcm] (= electrical resistivity of Al), and more preferably 2.7 [μΩcm].

【0015】電気陰性度がCuと同等乃至Cuよりも大
きい元素の代表例、およびこれらの元素を0.5重量%添
加したCu合金膜の表面に形成される酸化膜厚を下記の
表1に示す。この酸化膜は、Cu合金膜を500℃の酸
素雰囲気中でアニールして形成したものである。
Representative examples of elements having electronegativity equal to or higher than Cu and Cu and the oxide film thickness formed on the surface of the Cu alloy film to which these elements are added by 0.5% by weight are shown in Table 1 below. Show. This oxide film is formed by annealing a Cu alloy film in an oxygen atmosphere at 500 ° C.

【0016】[0016]

【表1】 [Table 1]

【0017】表1から明らかなように、純Cu膜の表面
に形成される酸化膜厚が800nmであるのに対し、電気
陰性度がCuと同等乃至Cuよりも大きい元素を添加し
たCu合金膜の表面に形成される酸化膜厚は、それより
も薄いことから、耐酸化性の改善されたことがわかる。
As is clear from Table 1, while the oxide film thickness formed on the surface of the pure Cu film is 800 nm, a Cu alloy film containing an element whose electronegativity is equal to or greater than Cu is added. Since the oxide film thickness formed on the surface of is less than that, it can be seen that the oxidation resistance is improved.

【0018】また、特にPd、Pt、AuまたはAgの
添加は、耐酸化性を著しく改善することがわかる。
It is also found that the addition of Pd, Pt, Au or Ag, in particular, significantly improves the oxidation resistance.

【0019】なお、本発明で使用する元素は、表1に例
示した元素に限定されるものではない。また、電気陰性
度がCuと同等乃至Cuよりも大きい二種以上の元素を
同時に添加してもよい。元素の電気陰性度はポーリング
(L.Pauling) が求めており、例えば日本金属学会編「金
属データブック」P23などに記載されている。
The elements used in the present invention are not limited to the elements exemplified in Table 1. Further, two or more kinds of elements having electronegativity equal to or higher than Cu may be added at the same time. Electronegativity of elements is Pauling
(L. Pauling), and it is described in, for example, “Metal Data Book” P23, edited by The Japan Institute of Metals.

【0020】他方、一般に〔Si−Si〕および〔Si
−O〕は、共有結合性が極めて大きいため、Siとの電
気陰性度の差が大きい元素(B)程、〔Si−B〕のイ
オン結合性が大きくなり、Siに対する接着性が向上す
るものと考えられる。また、経験的にSiよりも電気陰
性度が小さい元素のほうがSiとの接着には有利である
と考えられる。
On the other hand, in general, [Si-Si] and [Si
-O] has an extremely large covalent bond property, and thus the ionic bond property of [Si-B] becomes larger as the element (B) having a larger electronegativity difference from Si, and the adhesive property to Si is improved. it is conceivable that. Further, it is empirically considered that an element having an electronegativity smaller than that of Si is more advantageous for adhesion to Si.

【0021】従って、電気陰性度がSiと同等乃至Si
よりも小さい元素を添加することにより、Cu配線とS
i基板との接着性や、Cu配線とSi系絶縁膜(SiO
2 など)との接着性が向上する。
Therefore, the electronegativity is equal to or higher than that of Si.
By adding an element smaller than
Adhesiveness to i substrate, Cu wiring and Si-based insulating film (SiO 2
2 etc.) Adhesiveness with

【0022】上記元素は、0.01重量%以上〜10重量
%未満の範囲で添加する。0.01重量%未満では充分な
接着性が得られず、10重量%以上ではCuの特性が損
なわれる。また、上記元素は、Cu合金の電気抵抗率が
3.5〔μΩcm〕、より好ましくは2.7〔μΩcm〕を超え
ない範囲で添加することが望ましい。
The above elements are added in the range of 0.01% by weight or more and less than 10% by weight. If it is less than 0.01% by weight, sufficient adhesion cannot be obtained, and if it is 10% by weight or more, the characteristics of Cu are impaired. In addition, the above elements have the electrical resistivity of Cu alloy
It is desirable to add in an amount not exceeding 3.5 [μΩcm], more preferably 2.7 [μΩcm].

【0023】電気陰性度がSiと同等乃至Siよりも小
さい元素の代表例、ならびにこれらの元素を0.5重量%
添加したCu合金膜とSiO2 膜との界面の接着強度を
下記の表2に示す。なお、本発明で使用する元素は、表
2に例示した元素に限定されるものではない。また、電
気陰性度がCuと同等乃至Cuよりも大きい二種以上の
元素を同時に添加してもよい。
Representative examples of elements having an electronegativity equal to or smaller than Si and 0.5% by weight of these elements
The adhesive strength at the interface between the added Cu alloy film and the SiO 2 film is shown in Table 2 below. The elements used in the present invention are not limited to the elements exemplified in Table 2. Further, two or more kinds of elements having electronegativity equal to or higher than Cu may be added at the same time.

【0024】[0024]

【表2】 [Table 2]

【0025】表2から明らかなように、電気陰性度がS
iと同等乃至Siよりも小さい元素を添加したCu合金
膜とSiO2 膜との界面の接着強度は、純Cu膜とSi
2 膜との界面の接着強度よりも大きくなっており、接
着性の改善されたことがわかる。
As is clear from Table 2, the electronegativity is S
The adhesive strength at the interface between the Cu alloy film added with an element equal to i or smaller than Si and the SiO 2 film has a pure Cu film and a Si film.
It is larger than the adhesive strength at the interface with the O 2 film, which shows that the adhesiveness is improved.

【0026】Cu配線の耐酸化性を向上させ、併せてS
i基板やSi系絶縁膜に対する接着性を向上させるため
には、電気陰性度がCuと同等乃至Cuよりも大きい元
素と、電気陰性度がSiと同等乃至Siよりも小さい元
素とを共に添加するのが有効である。
The oxidation resistance of Cu wiring is improved, and at the same time, S
In order to improve the adhesiveness to the i substrate and the Si-based insulating film, an element having an electronegativity equal to or higher than Cu and an electronegativity equal to Si or lower than Si are added together. Is effective.

【0027】これら二種の元素の総添加量は、Cu合金
全量の20重量%未満とする。また、これら二種の元素
は、Cu合金の電気抵抗率が3.5〔μΩcm〕、より好ま
しくは2.7〔μΩcm〕を超えない範囲で添加することが
望ましい。
The total amount of these two elements added is less than 20% by weight of the total amount of Cu alloy. Further, it is desirable to add these two kinds of elements within the range in which the electric resistivity of the Cu alloy does not exceed 3.5 [μΩcm], more preferably 2.7 [μΩcm].

【0028】半導体基板上に本発明のCu配線を形成す
るには、上記した組成のCu合金からなるターゲットを
用いたスパッタ法によって基板全面にCu合金膜を堆積
し、次いでフォトレジスト膜をマスクにしたエッチング
でこのCu合金膜をパターニングする。
To form the Cu wiring of the present invention on a semiconductor substrate, a Cu alloy film is deposited on the entire surface of the substrate by a sputtering method using a target made of a Cu alloy having the above composition, and then a photoresist film is used as a mask. The Cu alloy film is patterned by the etching.

【0029】上記エッチングは、例えば反応性イオンエ
ッチングで行う。また、エッチングガスには、例えばC
Cl4 +BCl3 などの塩素系ガスを用いる。
The above etching is performed by, for example, reactive ion etching. The etching gas may be, for example, C
A chlorine-based gas such as Cl 4 + BCl 3 is used.

【0030】次に、上記Cu配線を250℃以上の温度
でアニールする。このアニールにより、配線内部の添加
元素が拡散し、配線表面に極く薄い高濃度合金層が形成
される。
Next, the Cu wiring is annealed at a temperature of 250 ° C. or higher. By this annealing, the additive element inside the wiring diffuses, and an extremely thin high-concentration alloy layer is formed on the wiring surface.

【0031】これにより、Cu配線の耐酸化性や接着性
が改善されると共に、電気抵抗の小さなCuが配線の主
要な導電部をなすことにより、良好な電気伝導性を確保
することができる。
As a result, the oxidation resistance and adhesiveness of the Cu wiring are improved, and since Cu having a low electric resistance forms the main conductive portion of the wiring, good electric conductivity can be secured.

【0032】次に、実施例を用いて本発明のCu配線お
よびその製造方法を説明する。
Next, Cu wiring of the present invention and a method of manufacturing the same will be described with reference to examples.

【0033】[0033]

【実施例】図1は、本実施例のCu配線1の断面図であ
る。このCu配線1は、Si単結晶からなる半導体基板
2の主面上に形成されたSiO2 膜3の上部に形成され
ている。また、Cu配線1の上部には、同じくSiO2
からなる層間絶縁膜4が形成されている。
EXAMPLE FIG. 1 is a sectional view of a Cu wiring 1 of this example. The Cu wiring 1 is formed on the SiO 2 film 3 formed on the main surface of the semiconductor substrate 2 made of Si single crystal. In addition, the upper portion of the Cu wiring 1 is also SiO 2
An interlayer insulating film 4 made of is formed.

【0034】Cu配線1の表面には、極く薄い膜厚の高
濃度合金層5が形成されている。この高濃度合金層5
は、例えば電気陰性度がCuよりも大きい元素であるP
tと、電気陰性度がSiよりも小さい元素であるMgと
が高濃度に含有されたCu合金からなる。また、この高
濃度合金層5の内側は、上記PtとMgとが極く微量含
有されたCu合金からなる。
On the surface of the Cu wiring 1, a high concentration alloy layer 5 having an extremely thin film thickness is formed. This high concentration alloy layer 5
Is an element whose electronegativity is larger than Cu, for example, P
It is composed of a Cu alloy containing t and Mg, which is an element having an electronegativity smaller than Si, in a high concentration. The inside of the high-concentration alloy layer 5 is made of a Cu alloy containing a very small amount of Pt and Mg.

【0035】上記Cu配線1を形成するには、まず、図
2に示すように、スパッタ法を用いてSiO2 膜3の上
部にCu合金膜1aを堆積する。このとき用いるスパッ
タターゲットには、例えばPtとMgとをそれぞれ0.5
重量%程度含有する、電気抵率が2.7〔μΩcm〕以下の
Cu合金を用いる。
To form the Cu wiring 1, first, as shown in FIG. 2, a Cu alloy film 1a is deposited on the SiO 2 film 3 by sputtering. The sputtering targets used at this time are, for example, Pt and Mg of 0.5 each.
A Cu alloy containing about wt% and having an electrical resistivity of 2.7 [μΩcm] or less is used.

【0036】次に、図3に示すように、Cu合金膜1a
の上部にフォトレジスト膜6を形成し、これをエッチン
グのマスクにしてCu合金膜1aをパターニングする。
その後、上記フォトレジスト膜6をアッシングにより除
去する。
Next, as shown in FIG. 3, the Cu alloy film 1a is formed.
A photoresist film 6 is formed on the surface of the Cu alloy film 1a, and the Cu alloy film 1a is patterned using the photoresist film 6 as an etching mask.
Then, the photoresist film 6 is removed by ashing.

【0037】次に、図4に示すように、Cu配線1を2
50℃以上の温度でアニールする。
Next, as shown in FIG.
Anneal at a temperature of 50 ° C. or higher.

【0038】このアニールにより、配線内部の添加元素
(Pt、Mg)が拡散し、表面に極く薄い高濃度合金層
5が形成される。
By this annealing, the additive elements (Pt, Mg) inside the wiring are diffused, and the extremely thin high-concentration alloy layer 5 is formed on the surface.

【0039】その後、CVD法を用いて上記Cu配線1
の上部に前記層間絶縁膜4を堆積する。
After that, the Cu wiring 1 is formed by the CVD method.
The interlayer insulating film 4 is deposited on the upper part of the.

【0040】本実施例のCu配線1は、電気陰性度がC
uよりも大きい元素であるPtと、電気陰性度がSiよ
りも小さい元素であるMgとを添加したCu合金で構成
されているため、従来のCu配線に比べて耐酸化性が向
上すると共に、下地のSiO2 膜3や上部の層間絶縁膜
4に対する接着性も向上する。
The Cu wiring 1 of this embodiment has an electronegativity of C.
Since it is composed of a Cu alloy to which Pt which is an element larger than u and Mg which is an element whose electronegativity is smaller than Si are added, the oxidation resistance is improved as compared with the conventional Cu wiring, and The adhesion to the underlying SiO 2 film 3 and the upper interlayer insulating film 4 is also improved.

【0041】また、本実施例のCu配線1は、添加元素
であるPtおよびMgを配線表面に拡散させ、配線内部
を高純度のCuで構成しているため、電気抵抗の小さな
Cuが配線の主要な導電部をなしており、これにより、
良好な電気伝導性が確保されている。
Further, in the Cu wiring 1 of this embodiment, since Pt and Mg which are additive elements are diffused on the wiring surface and the inside of the wiring is made of high-purity Cu, Cu having a low electric resistance is It forms the main conductive part.
Good electrical conductivity is ensured.

【0042】図5は、上記層間絶縁膜4の上部に第二層
目のCu配線1を形成し、層間絶縁膜4に開孔した接続
孔7を通じて第二層目のCu配線1と第一層目のCu配
線1とを電気的に接続した状態を示している。
In FIG. 5, the Cu wiring 1 of the second layer is formed on the interlayer insulating film 4, and the Cu wiring 1 of the second layer and the first layer are formed through the connection hole 7 formed in the interlayer insulating film 4. The state where the Cu wiring 1 of the layer is electrically connected is shown.

【0043】第二層目のCu配線1を形成するには、層
間絶縁膜4をエッチングして接続孔7を形成した後、層
間絶縁膜4の上部に前述した方法で第二層目のCu配線
1を形成する。
To form the Cu wiring 1 of the second layer, the interlayer insulating film 4 is etched to form the connection hole 7, and then the Cu of the second layer is formed on the interlayer insulating film 4 by the method described above. The wiring 1 is formed.

【0044】上記接続孔7を形成する際、接続孔7の底
部に露出した第一層目のCu配線1の表面の高濃度合金
層5をエッチングで除去してもよい。また、図6に示す
ように、接続孔7の内部にCu合金膜1aを埋込んで層
間絶縁膜4を平坦化した後、第二層目のCu配線1を形
成してもよい。
When forming the connection hole 7, the high-concentration alloy layer 5 on the surface of the first-layer Cu wiring 1 exposed at the bottom of the connection hole 7 may be removed by etching. Further, as shown in FIG. 6, after the Cu alloy film 1a is embedded in the connection hole 7 to flatten the interlayer insulating film 4, the Cu wiring 1 of the second layer may be formed.

【0045】以上、本発明者によってなされた発明を、
実施例に基づき具体的に説明したが、本発明は、前記実
施例に限定されるものではなく、その要旨を逸脱しない
範囲において種々変更可能であることは勿論である。
As described above, the invention made by the present inventor is
Although the present invention has been specifically described based on the embodiments, the present invention is not limited to the above embodiments, and it goes without saying that various modifications can be made without departing from the scope of the invention.

【0046】以上の説明では、本発明のCu配線を半導
体基板上の配線に適用した場合について説明したが、こ
れに限定されず、単一の半導体素子、例えばパワートラ
ンジスタを搭載した単体構造の半導体装置や磁気センサ
ーなどの信号変換装置の配線に適用することもできる。
In the above description, the case where the Cu wiring of the present invention is applied to the wiring on the semiconductor substrate has been described. However, the present invention is not limited to this. It can also be applied to the wiring of a signal converter such as a device or a magnetic sensor.

【0047】また、本発明のCu配線は、基板上に配線
層のみを形成した配線基板、例えばマザーボードやベビ
ーボードへの応用も可能である。
The Cu wiring of the present invention can also be applied to a wiring board having only a wiring layer formed on the board, such as a mother board or a baby board.

【0048】[0048]

【発明の効果】(1) 半導体基板上に形成する配線の材料
として、電気陰性度がCuと同等乃至Cuよりも大きい
元素を添加したCu合金を用いることにより、耐酸化性
の高いCu配線が得られる。
EFFECTS OF THE INVENTION (1) By using a Cu alloy to which an element whose electronegativity is equal to or larger than Cu is added as a material for a wiring formed on a semiconductor substrate, a Cu wiring with high oxidation resistance can be obtained. can get.

【0049】(2) 半導体基板上に形成する配線材料とし
て、電気陰性度がSiと同等乃至Siよりも小さい元素
を添加したCu合金を用いることにより、Si基板やS
i系絶縁膜に対する接着強度が高いCu配線が得られ
る。
(2) As a wiring material formed on a semiconductor substrate, a Cu alloy to which an element whose electronegativity is equal to or smaller than Si is added is used.
Cu wiring having high adhesion strength to the i-type insulating film can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のCu配線を形成した半導体基板の要部
断面図である。
FIG. 1 is a cross-sectional view of essential parts of a semiconductor substrate on which a Cu wiring of the present invention is formed.

【図2】このCu配線の製造方法を示す半導体基板の要
部断面図である。
FIG. 2 is a cross-sectional view of a main portion of a semiconductor substrate showing a method for manufacturing this Cu wiring.

【図3】このCu配線の製造方法を示す半導体基板の要
部断面図である。
FIG. 3 is a cross-sectional view of a main portion of a semiconductor substrate showing a method for manufacturing this Cu wiring.

【図4】このCu配線の製造方法を示す半導体基板の断
面図である。
FIG. 4 is a cross-sectional view of a semiconductor substrate showing a method for manufacturing this Cu wiring.

【図5】本発明の他の実施例であるCu配線を形成した
半導体基板の要部断面図である。
FIG. 5 is a cross-sectional view of essential parts of a semiconductor substrate on which Cu wiring according to another embodiment of the present invention is formed.

【図6】本発明の他の実施例であるCu配線を形成した
半導体基板の要部断面図である。
FIG. 6 is a cross-sectional view of essential parts of a semiconductor substrate on which Cu wiring according to another embodiment of the present invention is formed.

【符号の説明】[Explanation of symbols]

1 Cu配線 1a Cu合金膜 2 半導体基板 3 SiO2 膜 4 層間絶縁膜 5 高濃度合金層 6 フォトレジスト膜 7 接続孔1 Cu wiring 1a Cu alloy film 2 Semiconductor substrate 3 SiO 2 film 4 Interlayer insulating film 5 High concentration alloy layer 6 Photoresist film 7 Connection hole

フロントページの続き (72)発明者 加藤 登季男 東京都小平市上水本町5丁目20番1号 株 式会社日立製作所武蔵工場内 (72)発明者 佐原 政司 東京都小平市上水本町5丁目20番1号 株 式会社日立製作所武蔵工場内 (72)発明者 鈴樹 正恭 東京都小平市上水本町5丁目20番1号 株 式会社日立製作所武蔵工場内 (72)発明者 石田 進一 東京都小平市上水本町5丁目20番1号 株 式会社日立製作所武蔵工場内Front page continuation (72) Inventor Tokio Kato 5-20-1 Kamimizuhoncho, Kodaira-shi, Tokyo Inside Musashi Factory, Hitachi Ltd. (72) Inventor Masaji Sahara 5-chome, Kamimizumoto-cho, Kodaira-shi, Tokyo No. 20-1 Incorporated company Hitachi Ltd. in Musashi Plant (72) Inventor Masayasu Suzuki 5-20-1, Kamimizuhoncho, Kodaira-shi, Tokyo Incorporated company Hitachi Ltd. in Musashi Plant (72) Inventor Shinichi Ishida Kodaira, Tokyo 5-20-1 Josuihonmachi, Ichi-shi Incorporated company Hitachi, Ltd. Musashi factory

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上にCu配線を有する半導体
集積回路装置であって、前記Cu配線は、電気陰性度が
Cuと同等乃至Cuよりも大きい元素を0.01重量%以
上、10重量%未満の範囲で添加したCu合金で構成さ
れていることを特徴とする半導体集積回路装置。
1. A semiconductor integrated circuit device having Cu wiring on a semiconductor substrate, wherein the Cu wiring contains 0.01 wt% or more and 10 wt% or more of an element whose electronegativity is equal to or larger than Cu. A semiconductor integrated circuit device comprising a Cu alloy added in a range of less than 1.
【請求項2】 前記Cu合金の電気抵抗率が3.5〔μΩ
cm〕以下であることを特徴とする請求項1記載の半導体
集積回路装置。
2. The electrical resistivity of the Cu alloy is 3.5 [μΩ
cm] or less, the semiconductor integrated circuit device according to claim 1.
【請求項3】 電気陰性度がCuと同等乃至Cuよりも
大きい元素を0.01重量%以上、10重量%未満の範囲
で添加したCu合金膜を半導体基板上に堆積した後、前
記Cu合金膜をパターニングしてCu配線を形成し、次
いで前記Cu配線を250℃以上の温度でアニールする
ことを特徴とする請求項1または2記載の半導体集積回
路装置の製造方法。
3. A Cu alloy film, to which an element having an electronegativity equal to or greater than Cu in an amount of 0.01 wt% or more and less than 10 wt% is added, is deposited on a semiconductor substrate, and then the Cu alloy is deposited. 3. The method for manufacturing a semiconductor integrated circuit device according to claim 1, wherein the film is patterned to form a Cu wiring, and then the Cu wiring is annealed at a temperature of 250 [deg.] C. or higher.
【請求項4】 半導体基板上にCu配線を有する半導体
集積回路装置であって、前記Cu配線は、電気陰性度が
Siと同等乃至Siよりも小さい元素を0.01重量%以
上、10重量%未満の範囲で添加したCu合金で構成さ
れていることを特徴とする半導体集積回路装置。
4. A semiconductor integrated circuit device having Cu wiring on a semiconductor substrate, wherein the Cu wiring contains 0.01 wt% or more and 10 wt% or less of an element whose electronegativity is equal to or smaller than Si. A semiconductor integrated circuit device comprising a Cu alloy added in a range of less than 1.
【請求項5】 前記Cu合金の電気抵抗率が3.5〔μΩ
cm〕以下であることを特徴とする請求項4記載の半導体
集積回路装置。
5. The electrical resistivity of the Cu alloy is 3.5 [μΩ
cm] or less, the semiconductor integrated circuit device according to claim 4.
【請求項6】 電気陰性度がSiと同等乃至Siよりも
小さい元素を0.01重量%以上、10重量%未満の範囲
で添加したCu合金膜を半導体基板上に堆積した後、前
記Cu合金膜をパターニングしてCu配線を形成し、次
いで前記Cu配線を250℃以上の温度でアニールする
ことを特徴とする請求項4または5記載の半導体集積回
路装置の製造方法。
6. A Cu alloy film, to which an element having an electronegativity equal to or smaller than Si in an amount of 0.01 wt% or more and less than 10 wt% is added, is deposited on a semiconductor substrate, and then the Cu alloy is formed. The method for manufacturing a semiconductor integrated circuit device according to claim 4, wherein the film is patterned to form a Cu wiring, and then the Cu wiring is annealed at a temperature of 250 ° C. or higher.
【請求項7】 半導体集積回路装置の製造に用いるスパ
ッタターゲットであって、電気陰性度がCuと同等乃至
Cuよりも大きい元素を0.01重量%以上、10重量%
未満の範囲で添加したCu合金で構成されていることを
特徴とするスパッタターゲット。
7. A sputtering target used for manufacturing a semiconductor integrated circuit device, wherein an element whose electronegativity is equal to or larger than Cu is 0.01% by weight or more and 10% by weight or less.
A sputter target comprising a Cu alloy added in a range of less than.
【請求項8】 半導体集積回路装置の製造に用いるスパ
ッタターゲットであって、電気陰性度がSiと同等乃至
Siよりも小さい元素を0.01重量%以上、10重量%
未満の範囲で添加したCu合金で構成されていることを
特徴とするスパッタターゲット。
8. A sputter target used for manufacturing a semiconductor integrated circuit device, wherein an element whose electronegativity is equal to or smaller than Si is 0.01 wt% or more and 10 wt% or less.
A sputter target comprising a Cu alloy added in a range of less than.
JP20171591A 1991-08-12 1991-08-12 Semiconductor integrated circuit device and its manufacture and sputtering target for the manufacture Pending JPH0547760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20171591A JPH0547760A (en) 1991-08-12 1991-08-12 Semiconductor integrated circuit device and its manufacture and sputtering target for the manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20171591A JPH0547760A (en) 1991-08-12 1991-08-12 Semiconductor integrated circuit device and its manufacture and sputtering target for the manufacture

Publications (1)

Publication Number Publication Date
JPH0547760A true JPH0547760A (en) 1993-02-26

Family

ID=16445732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20171591A Pending JPH0547760A (en) 1991-08-12 1991-08-12 Semiconductor integrated circuit device and its manufacture and sputtering target for the manufacture

Country Status (1)

Country Link
JP (1) JPH0547760A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719447A (en) * 1993-06-03 1998-02-17 Intel Corporation Metal alloy interconnections for integrated circuits
US5891802A (en) * 1997-07-23 1999-04-06 Advanced Micro Devices, Inc. Method for fabricating a metallization stack structure to improve electromigration resistance and keep low resistivity of ULSI interconnects
JP2000353762A (en) * 1999-06-11 2000-12-19 Toppan Printing Co Ltd Wiring material and conductor wiring layer using the same
US6396151B1 (en) 1996-06-11 2002-05-28 International Business Machines Corporation Partially-overlapped interconnect structure and method of making
JP2006506682A (en) * 2002-11-19 2006-02-23 サムスン エレクトロニクス カンパニー リミテッド TFT substrate for LCD and manufacturing method thereof
WO2006025347A1 (en) * 2004-08-31 2006-03-09 National University Corporation Tohoku University Copper alloy and liquid-crystal display
JP2007096241A (en) * 2005-08-30 2007-04-12 Fujitsu Ltd Semiconductor device and method of manufacturing same
JP2007189061A (en) * 2006-01-13 2007-07-26 Renesas Technology Corp Semiconductor device and manufacturing method therefor
US7304384B2 (en) 2004-02-27 2007-12-04 Semiconductor Technology Academic Research Center Semiconductor device with a barrier film which contains manganese
WO2008041670A1 (en) * 2006-10-02 2008-04-10 Tokyo Electron Limited Apparatus for manufacturing semiconductor, method for manufacturing semiconductor device, storage medium, and computer program
WO2008044757A1 (en) * 2006-10-12 2008-04-17 Ulvac, Inc. Conductive film forming method, thin film transistor, panel with thin film transistor and thin film transistor manufacturing method
JP2009200162A (en) * 2008-02-20 2009-09-03 Kobe Steel Ltd DISPLAY APPARATUS AND Cu ALLOY FILM USED THEREFOR
US7638829B2 (en) 2005-09-09 2009-12-29 Kabushiki Kaisha Toshiba Capacitor of dynamic random access memory and method of manufacturing the capacitor
US7755192B2 (en) 2008-03-25 2010-07-13 Tohoku University Copper interconnection structure, barrier layer including carbon and hydrogen
JP2010248627A (en) * 2009-03-27 2010-11-04 Hitachi Metals Ltd Sputtering target
US7940361B2 (en) 2004-08-31 2011-05-10 Advanced Interconnect Materials, Llc Copper alloy and liquid-crystal display device
US8169079B2 (en) 2008-12-19 2012-05-01 Advanced Interconnect Materials, Llc Copper interconnection structures and semiconductor devices
US8188599B2 (en) 2006-02-28 2012-05-29 Advanced Interconnect Materials, Llc Semiconductor device, its manufacturing method, and sputtering target material for use in the method
US8372745B2 (en) 2006-02-28 2013-02-12 Advanced Interconnect Materials, Llc Semiconductor device, its manufacturing method, and sputtering target material for use in the method
JP2020522118A (en) * 2017-04-20 2020-07-27 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. Conductive pattern structure and manufacturing method thereof, array substrate, and display device

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719447A (en) * 1993-06-03 1998-02-17 Intel Corporation Metal alloy interconnections for integrated circuits
US6396151B1 (en) 1996-06-11 2002-05-28 International Business Machines Corporation Partially-overlapped interconnect structure and method of making
US5891802A (en) * 1997-07-23 1999-04-06 Advanced Micro Devices, Inc. Method for fabricating a metallization stack structure to improve electromigration resistance and keep low resistivity of ULSI interconnects
JP2000353762A (en) * 1999-06-11 2000-12-19 Toppan Printing Co Ltd Wiring material and conductor wiring layer using the same
USRE44817E1 (en) 2001-08-31 2014-03-25 Altiam Services Ltd. Llc Copper alloy and liquid-crystal display device
JP2006506682A (en) * 2002-11-19 2006-02-23 サムスン エレクトロニクス カンパニー リミテッド TFT substrate for LCD and manufacturing method thereof
US8133813B2 (en) 2004-02-27 2012-03-13 Semiconductor Technology Academic Research Center Semiconductor device with a barrier film
US7304384B2 (en) 2004-02-27 2007-12-04 Semiconductor Technology Academic Research Center Semiconductor device with a barrier film which contains manganese
US7943517B2 (en) 2004-02-27 2011-05-17 Semiconductor Technology Academic Research Center Semiconductor device with a barrier film
US7940361B2 (en) 2004-08-31 2011-05-10 Advanced Interconnect Materials, Llc Copper alloy and liquid-crystal display device
US7782433B2 (en) 2004-08-31 2010-08-24 Tohoku University Copper alloy and liquid-crystal display device
US7626665B2 (en) 2004-08-31 2009-12-01 Tohoku University Copper alloys and liquid-crystal display device
WO2006025347A1 (en) * 2004-08-31 2006-03-09 National University Corporation Tohoku University Copper alloy and liquid-crystal display
JP2007096241A (en) * 2005-08-30 2007-04-12 Fujitsu Ltd Semiconductor device and method of manufacturing same
JP4523535B2 (en) * 2005-08-30 2010-08-11 富士通株式会社 Manufacturing method of semiconductor device
US7638829B2 (en) 2005-09-09 2009-12-29 Kabushiki Kaisha Toshiba Capacitor of dynamic random access memory and method of manufacturing the capacitor
US7786523B2 (en) 2005-09-09 2010-08-31 Kabushiki Kaisha Toshiba Capacitor of dynamic random access memory and method of manufacturing the capacitor
JP2007189061A (en) * 2006-01-13 2007-07-26 Renesas Technology Corp Semiconductor device and manufacturing method therefor
US8188599B2 (en) 2006-02-28 2012-05-29 Advanced Interconnect Materials, Llc Semiconductor device, its manufacturing method, and sputtering target material for use in the method
US8372745B2 (en) 2006-02-28 2013-02-12 Advanced Interconnect Materials, Llc Semiconductor device, its manufacturing method, and sputtering target material for use in the method
WO2008041670A1 (en) * 2006-10-02 2008-04-10 Tokyo Electron Limited Apparatus for manufacturing semiconductor, method for manufacturing semiconductor device, storage medium, and computer program
JP2008091645A (en) * 2006-10-02 2008-04-17 Tokyo Electron Ltd Semiconductor manufacturing apparatus, semiconductor device manufacturing method, and storage medium
WO2008044757A1 (en) * 2006-10-12 2008-04-17 Ulvac, Inc. Conductive film forming method, thin film transistor, panel with thin film transistor and thin film transistor manufacturing method
JP2009200162A (en) * 2008-02-20 2009-09-03 Kobe Steel Ltd DISPLAY APPARATUS AND Cu ALLOY FILM USED THEREFOR
US7755192B2 (en) 2008-03-25 2010-07-13 Tohoku University Copper interconnection structure, barrier layer including carbon and hydrogen
US8163649B2 (en) 2008-03-25 2012-04-24 Advanced Interconnect Materials, Llc Copper interconnection structure, semiconductor device, and method for forming copper interconnection structure
US8169079B2 (en) 2008-12-19 2012-05-01 Advanced Interconnect Materials, Llc Copper interconnection structures and semiconductor devices
US9082821B2 (en) 2008-12-19 2015-07-14 Advanced Interconnect Materials, Llc Method for forming copper interconnection structures
JP2010248627A (en) * 2009-03-27 2010-11-04 Hitachi Metals Ltd Sputtering target
JP2020522118A (en) * 2017-04-20 2020-07-27 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. Conductive pattern structure and manufacturing method thereof, array substrate, and display device

Similar Documents

Publication Publication Date Title
JPH0547760A (en) Semiconductor integrated circuit device and its manufacture and sputtering target for the manufacture
JP4555540B2 (en) Semiconductor device
JP3519632B2 (en) Method for manufacturing semiconductor device
JP2005123576A5 (en)
JP3091026B2 (en) Integrated circuit wiring
JPS61152042A (en) Metalization pattern of semiconductor element and method thereof
JP2534434B2 (en) Oxidation resistant compound and method for producing the same
JPS62113421A (en) Manufacture of semiconductor device
JPH01255250A (en) Forming method for multilayer interconnection
JP3368629B2 (en) Semiconductor device
JPH065599A (en) Semiconductor device and manufacture thereof
JP3339901B2 (en) Semiconductor device having a multilayer wiring structure and method of manufacturing the same
JPH11283981A (en) Semiconductor device and manufacture thereof
JP3015491B2 (en) AlN substrate
JPH04309229A (en) Semiconductor integrated circuit device
JPH03262125A (en) Semiconductor device
JPH11312655A (en) Formation of copper-alloy film and manufacture of semiconductor device
TW388107B (en) Diffusion barrier Cu metal layer process and diffusion barrier layer thereof
JPS62244150A (en) Semiconductor device with mutual interconnection layer of aluminum containing vanadium with low content
JPS59205739A (en) Semiconductor device and method of producing same
JPH02206123A (en) Semiconductor device
JPH10321621A (en) Metallic thin film formation
JPH05136137A (en) Manufacture of semiconductor device
JPH02206122A (en) Semiconductor device
JPH07176531A (en) Wiring structure and forming method thereof