JPH0543791B2 - - Google Patents

Info

Publication number
JPH0543791B2
JPH0543791B2 JP61165422A JP16542286A JPH0543791B2 JP H0543791 B2 JPH0543791 B2 JP H0543791B2 JP 61165422 A JP61165422 A JP 61165422A JP 16542286 A JP16542286 A JP 16542286A JP H0543791 B2 JPH0543791 B2 JP H0543791B2
Authority
JP
Japan
Prior art keywords
gas
powder
ultrafine
ultrafine powder
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61165422A
Other languages
Japanese (ja)
Other versions
JPS6320480A (en
Inventor
Sumio Iijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shingijutsu Kaihatsu Jigyodan filed Critical Shingijutsu Kaihatsu Jigyodan
Priority to JP61165422A priority Critical patent/JPS6320480A/en
Publication of JPS6320480A publication Critical patent/JPS6320480A/en
Priority to JP1089283A priority patent/JPH02236278A/en
Publication of JPH0543791B2 publication Critical patent/JPH0543791B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 (技術の分野) この発明は、表面に反応性ガスに基づく炭素超
薄膜を形成した超微粉体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Technology) The present invention relates to an ultrafine powder having an ultra-thin carbon film formed on its surface based on a reactive gas.

(技術の背景) 無機化合物、金属、合金あるいは半金属などの
粉体や繊維状物質は、触媒、センサー、磁性材
料、顔料、トナー等として広く工業的に利用され
ている。
(Technical background) Powder and fibrous substances such as inorganic compounds, metals, alloys, and semimetals are widely used industrially as catalysts, sensors, magnetic materials, pigments, toners, and the like.

これらの粉体または繊維状物質は粒子サイズが
小さくなるに従つて表面活性が大きくなり、この
大きな表面活性は逆にその安定性を低下させるこ
とも知られている。
It is also known that as the particle size of these powders or fibrous materials decreases, their surface activity increases, and that this increased surface activity conversely reduces their stability.

このため、従来より、このような粉体または繊
維状物質の耐候安定性を保つために、種々の方法
によつて表面処理が行われている。この方法は、
化学的、物理的、あるいは物理化学的方法等に大
別され、粉体または繊維状物質の使用目的、用途
に対応した方法が用いられてきいる。
Therefore, in order to maintain the weather resistance stability of such powder or fibrous materials, various methods have been used to perform surface treatments. This method is
Methods are broadly classified into chemical, physical, and physicochemical methods, and methods are used depending on the purpose and use of the powder or fibrous material.

また、表面処理によつて粒子または繊維状物質
の表面に新しい機能を付与し、表面改質すること
もしばしば行われている。
Furthermore, surface treatment is often carried out to impart new functions to the surface of particles or fibrous substances, thereby modifying the surface.

ドライコーテイング、いわゆる気相被覆処理法
もこのうちの有力な方法の一つである。
Dry coating, a so-called vapor phase coating method, is also one of the effective methods.

このドライコーテイングは液相処理法に比べて
処理プロセスそのための装置が簡単で、かつ、コ
ンパクトなものである。また、形成された被覆が
強固で、さらには、液相法のように処理液の処分
の問題がないなどの点で有利なものである。
This dry coating requires a simpler and more compact treatment process than the liquid phase treatment method. Further, the formed coating is strong and furthermore, it is advantageous in that there is no problem of disposal of the processing liquid as in the liquid phase method.

しかしながら、従来の気相表面処理法である真
空蒸着、スパツタリング、イオンプレーテイング
法では、蒸発物質が蒸発源から直線的に飛行する
ために、粒子の全表面を均一にコーテイングする
ことは難しく、特にその大きさが数百〜数千オン
グストローム単位の超微粉体の場合には困難でも
あつた。
However, with conventional gas phase surface treatment methods such as vacuum evaporation, sputtering, and ion plating, it is difficult to uniformly coat the entire surface of particles because the evaporated substances fly in a straight line from the evaporation source. This was difficult in the case of ultrafine powder with a size of several hundred to several thousand angstroms.

(発明の目的) この発明は、このような事情に鑑みてなされた
ものであり、高表面活性と新機能性が期待されな
がらもその表面への気相薄膜形成が困難であり、
いまだ新物質として実現されてきていない表面被
覆超微粉体を提供することを目的としている。
(Objective of the Invention) This invention was made in view of the above circumstances, and although high surface activity and new functionality are expected, it is difficult to form a vapor phase thin film on the surface.
The purpose is to provide surface-coated ultrafine powder, which has not yet been realized as a new material.

さらに詳しくは炭素超薄膜を被覆した超微粉体
を提供することを目的としている。
More specifically, the purpose is to provide ultrafine powder coated with an ultrathin carbon film.

(発明の開示) この発明は、上記の目的を達成するために、超
微粉体の表面に原子状炭素超薄膜を被覆してなる
ことを特徴とする超微粉体を提供する。
(Disclosure of the Invention) In order to achieve the above object, the present invention provides an ultrafine powder characterized in that the surface of the ultrafine powder is coated with an ultrathin film of atomic carbon.

すなわち、この発明は、これまで全く実現され
てきていない原子層レベルの原子状炭素超薄膜ラ
ビリンスシール部を被覆した超微粉体を提供する
ものであり、このような超微粉体の実現を予期す
ることも、また、これを具体化することも従来の
技術からは考えられなかつたことである。
In other words, the present invention provides an ultrafine powder coated with an atomic layer-level atomic carbon ultra-thin film labyrinth seal, which has not been achieved at all up to now. This was something that could not have been anticipated or realized using conventional techniques.

実際、この発明においては、数原子層から数10
原子層程度までの超微細、超微小の領域で、炭素
被覆した超微粉体を提供することを可能とした。
In fact, in this invention, from several atomic layers to several tens of atomic layers
We have made it possible to provide carbon-coated ultrafine powder in the ultrafine and ultrafine regions down to the atomic layer level.

使用するガスとしては、加熱することによつて
超微粉体の表面で反応し、均質な超薄膜、すなわ
原子状レベルでの炭素薄膜の形成を可能としえる
炭化水素または一酸化炭素の任意のものを用いる
ことができる。ガスの反応を可能とするために、
一般的には減圧、高温の条件を採用する。
The gas to be used is any hydrocarbon or carbon monoxide that can react on the surface of the ultrafine powder by heating and form a homogeneous ultra-thin film, that is, a carbon thin film at the atomic level. can be used. To enable gas reactions,
Generally, conditions of reduced pressure and high temperature are adopted.

この際使用する方法は、従来の真空蒸着法、ス
パツタリング、あるいはイオンプレーテイングと
本質的に相違するもので、従来の方法の場合には
蒸発物質が原料もしくは原料ターゲツト材料から
直線的に飛行して粉体や繊維状物質の表面に付着
するのに対し、この発明に採用する方法の場合に
は、超微粉体の表面の全体でガス反応を行わせ
る。
The method used here is essentially different from conventional vacuum evaporation, sputtering, or ion plating, in which the evaporated material flies in a straight line from the raw material or raw target material. In the method employed in the present invention, the gas reaction is caused to occur on the entire surface of the ultrafine powder, whereas it adheres to the surface of the powder or fibrous material.

また、この発明では、炭素超薄膜の形成は、粉
体の表面の活性化作用によつて進行すると考えら
れる。このため、超微粉体とガスとの反応に基づ
く炭素超薄膜との密着性は強く、安定した被膜を
得ることができる。
Further, in the present invention, it is believed that the formation of the ultra-thin carbon film proceeds by activation of the surface of the powder. Therefore, the adhesion between the ultra-fine powder and the ultra-thin carbon film based on the reaction between the gas is strong, and a stable film can be obtained.

対象とする超微粉体の種類についても格別の限
定はない。加熱条件下で分解または反応すること
のない金属、合金、半金属、金属間化合物、無機
化合物、さらには耐熱性有機ポリマーなどの任意
のものを用いることができる。
There are no particular limitations on the type of ultrafine powder to be used. Any material that does not decompose or react under heating conditions can be used, such as metals, alloys, metalloids, intermetallic compounds, inorganic compounds, and even heat-resistant organic polymers.

被覆によつて生成させるグラフアイト等の炭素
超薄膜の膜厚やその物性については、使用するガ
スの種類、処理温度、圧力、処理時間を調整する
ことによつて原子層レベルの所望のものとするこ
とができる。
The thickness and physical properties of ultra-thin carbon films such as graphite produced by coating can be adjusted to the desired atomic layer level by adjusting the type of gas used, processing temperature, pressure, and processing time. can do.

たとえば、炭化水素を反応性ガスとして用いる
場合には、温度はたとえば400〜1000℃程度とし、
減圧化、または不活性ガス(アルゴン、ヘリウ
ム、窒素など)の混合によつて1気圧程度として
処理すればよい。
For example, when hydrocarbons are used as the reactive gas, the temperature should be about 400 to 1000°C,
The pressure may be reduced to about 1 atmosphere by reducing the pressure or mixing an inert gas (argon, helium, nitrogen, etc.).

粉体が、ニツケル、コバルト等の遷移元素の場
合には、付着した原子状炭素超薄膜はグラフアイ
ト構造をもつ結晶として成長する。グラフアイト
のC面は粒子表面に平行になる。またこの場合、
グラフアイトは、最小二原子層6.8から数10原子
層にまで任意の膜厚に成長させることができる。
When the powder is a transition element such as nickel or cobalt, the attached ultra-thin atomic carbon film grows as a crystal with a graphite structure. The C-plane of graphite is parallel to the particle surface. Also in this case,
Graphite can be grown to any thickness from a minimum of 6.8 diatomic layers to several tens of atomic layers.

シリコンの超微粒子やウイスカー等の超微粉体
についてても同様に安定なグラフアイト被膜を形
成することができる。酸化チタン、二酸化珪素、
アルミナ、酸化鉄などの表面処理にも用いること
ができる。
Similarly, a stable graphite coating can be formed using ultrafine powders such as ultrafine silicon particles and whiskers. titanium oxide, silicon dioxide,
It can also be used for surface treatment of alumina, iron oxide, etc.

グラフアイト薄膜の形成は、このグラフアイト
が安定な非磁性物質であるため、磁性粉体等の表
面コーテイング方法として極めて有効なものであ
る。磁性を持つトナー材料、顔料、磁性流体の製
造にも有利である。また、アルミナ、酸化チタン
などの不良導体の処理に適用することにより、電
気的に導電性を持たせることもでき、導電性の顔
料などを製造することができる。
Formation of a graphite thin film is an extremely effective method for coating the surface of magnetic powder, etc., since graphite is a stable non-magnetic substance. It is also advantageous in the production of magnetic toner materials, pigments, and magnetic fluids. Furthermore, by applying it to the treatment of defective conductors such as alumina and titanium oxide, it is possible to make them electrically conductive, and it is possible to produce conductive pigments and the like.

さらに、グラフアイト等の炭素の超薄膜は表面
が活性であるから、薬剤担体として表面に重合反
応によつて薬剤をコーテイグすることができる。
Furthermore, since the ultra-thin film of carbon such as graphite has an active surface, it is possible to coat the surface with a drug by a polymerization reaction as a drug carrier.

たとえば以上のように、この発明の原子状炭素
超薄膜を被覆した超微粉体によつて、その新素材
としての利用分野はさらに拡大し、またその利用
態様は著しく高度化される。
For example, as described above, the ultrafine powder coated with the atomic carbon ultrathin film of the present invention further expands its field of use as a new material and significantly advances its usage.

この発明の原子状炭素超薄膜を被覆した超微粉
体を製造するにあたつて用いることのできる反応
装置について説明すると、この装置は、内部を真
空減圧状態とすることのできる加熱炉と、加熱炉
内に反応性ガス、または反応性ガスと不活性ガス
との混合ガスを供給する供給系と、真空排気系
と、加熱炉内に超微粉体とを供給する系と、反応
性ガスに基づくグラフアイト超薄膜を形成させた
超微粉体とを回収する系とからなり、超微粉体の
表面においてガス反応が行われるようにしたこと
を特徴としている。
To explain the reaction apparatus that can be used to produce the ultrafine powder coated with the ultrathin atomic carbon film of the present invention, this apparatus includes a heating furnace that can create a vacuum inside, A supply system that supplies a reactive gas or a mixed gas of a reactive gas and an inert gas into the heating furnace, a vacuum exhaust system, a system that supplies ultrafine powder into the heating furnace, and a reactive gas It consists of a system for recovering ultrafine powder on which an ultrathin graphite film is formed based on graphite, and is characterized in that a gas reaction takes place on the surface of the ultrafine powder.

この装置について、図面に沿つてさらに詳細に
説明する。
This device will be described in more detail with reference to the drawings.

第1図、第2図および第3図は、この発明の装
置の例を示したものである。
1, 2 and 3 show examples of the apparatus of the present invention.

第1図に示した例の場合には、超微粉体1は、
アルミナ製などのるつぼ2に入れ、炭素発熱体3
を熱源とする加熱炉に入れる。加熱炉は炭素繊維
からなる断熱容器4の中心に設置する。外部容器
5は真空排気系6によつて排気する。所定の圧
力、たとえば、真空計7によつて10-5Torr程度
になつたことが確認された段階で、ガス供給系8
から反応性ガス、または反応性ガスと不活性ガス
との混合ガスを導入する。所定の圧力において、
導電端子9から通電して加熱する。温度は、加熱
炉内の熱電対10によつて測定し、制御する。
In the case of the example shown in FIG. 1, the ultrafine powder 1 is
Place the carbon heating element 3 in a crucible 2 made of alumina, etc.
into a heating furnace with a heat source. The heating furnace is installed at the center of a heat insulating container 4 made of carbon fiber. The outer container 5 is evacuated by a vacuum evacuation system 6. When it is confirmed that the predetermined pressure has reached a predetermined pressure, for example, about 10 -5 Torr by the vacuum gauge 7, the gas supply system 8
A reactive gas or a mixed gas of a reactive gas and an inert gas is introduced. At a given pressure,
Electricity is supplied from the conductive terminal 9 to heat it. Temperature is measured and controlled by a thermocouple 10 within the furnace.

第2図に示した例の場合には、超微粉体をアル
ミナ製などのボート12に入れる。このボート1
2は両端を真空用フランジ13,14でシールさ
れたアルミナ製などの管内15に収め、管内を真
空排気系16で排気する。反応性ガス、不活性ガ
スは、供給系18より供給する。真空計17によ
り圧力を測定し、電気炉19によつて加熱する。
In the case of the example shown in FIG. 2, ultrafine powder is placed in a boat 12 made of alumina or the like. this boat 1
2 is placed in a tube 15 made of alumina or the like whose both ends are sealed with vacuum flanges 13 and 14, and the inside of the tube is evacuated by a vacuum exhaust system 16. The reactive gas and inert gas are supplied from a supply system 18. The pressure is measured with a vacuum gauge 17 and heated with an electric furnace 19.

第3図に示した例の場合には、超微粉体1は、
試料だめ22に充てんする。この試料だめ22の
下部には、反応性ガスボンベ23と不活性ガスボ
ンベ24からの混合ガスを導入する。このガスの
導入によつて超微粉体1を搬送管25を経て、加
熱管26内に導入する。垂直に置いた加熱管26
は電気炉27によつて加熱する。表面処理された
試料は、水冷却器28により冷却し、捕集器29
に捕集する。
In the case of the example shown in FIG. 3, the ultrafine powder 1 is
Fill the sample reservoir 22. A mixed gas from a reactive gas cylinder 23 and an inert gas cylinder 24 is introduced into the lower part of this sample reservoir 22 . By introducing this gas, the ultrafine powder 1 is introduced into the heating tube 26 via the conveying tube 25. Heating tube 26 placed vertically
is heated by an electric furnace 27. The surface-treated sample is cooled by a water cooler 28 and transferred to a collector 29.
to be collected.

余剰ガスおよび不活性ガスは排気管30から排
気され、再び試料だめ22に導入する。ガスの導
入に先立つて、真空排気系31により排気する。
循環するガスは、吸引ポンプ32によつて試料だ
め22に送る。
Excess gas and inert gas are exhausted from the exhaust pipe 30 and introduced into the sample reservoir 22 again. Prior to the introduction of gas, exhaust is performed by a vacuum exhaust system 31.
The circulating gas is delivered to the sample reservoir 22 by a suction pump 32.

このような例に示した反応装置によれば、操作
が簡単で、かつ効率よく超微粉体表面への炭素超
薄膜の形成が可能になる。
According to the reaction apparatus shown in such an example, it is possible to easily operate and efficiently form an ultra-thin carbon film on the surface of an ultra-fine powder.

実施例を次に示し、さらに具体的にこの発明の
構成および効果を明らかにする。なお、この発明
は、当然にもこれらの実施例に限定されるもので
はない。
Examples will be shown below to clarify the structure and effects of the present invention in more detail. Note that the present invention is naturally not limited to these examples.

実施例 1 第1図に示した装置を用いてニツケル超微粉体
(平均粒径300Å)の表面被覆を行つた。煤状の超
微粉体の超微粒子をトルエンガス(5Torr)、ア
ルゴンガス(295Torr)の雰囲気中で、粒子温度
500℃で30分間加熱処理した。粒子の表面に厚さ
20Åのグラフアイト化した炭素原子の超薄膜被膜
が形成された。
Example 1 The surface of ultrafine nickel powder (average particle size 300 Å) was coated using the apparatus shown in FIG. Ultrafine particles of soot-like ultrafine powder are heated in an atmosphere of toluene gas (5 Torr) and argon gas (295 Torr) to reduce the particle temperature.
Heat treatment was performed at 500°C for 30 minutes. Thickness on the surface of the particle
An ultrathin film of graphitized carbon atoms of 20 Å was formed.

実施例 2 実施例1と同様にして、球状のシリコン超微粉
体の表面被覆を行つた。この場合の条件は、トル
エンガス(10Torr)、アルゴンガス(290Torr)、
温度800℃、30分間の加熱とした。
Example 2 In the same manner as in Example 1, the surface of spherical ultrafine silicon powder was coated. The conditions in this case are toluene gas (10Torr), argon gas (290Torr),
Heating was performed at a temperature of 800°C for 30 minutes.

原子状の炭素超薄膜が形成された。その電子顕
微鏡写真を第4図(21mm:100Å)に示す。表面
に形成した超薄膜の厚さは30Aで、層状のグラフ
アイト化した膜になつている。
An ultra-thin atomic carbon film was formed. The electron micrograph is shown in Fig. 4 (21 mm: 100 Å). The ultra-thin film formed on the surface is 30A thick, and is a layered graphite film.

また、同様にして処理したアルミナの電子顕微
鏡写真を第5図(18mm:100Å)に示す。層状の
炭素超薄膜が形成されている。
Furthermore, an electron micrograph of alumina treated in the same manner is shown in FIG. 5 (18 mm: 100 Å). A layered ultra-thin carbon film is formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図および第3図は、この発明に用
いる装置の例を示た断面図である。第4図および
第5図は、シリコンおよびアルミナ超微粉体の表
面処理後の電子顕微鏡写真を示している。 なお、図中の番号は次のものを示している。1
……超微粉体、2……るつぼ、3……発熱体、4
……断熱容器、6……真空排気系、7……ガス供
給系、12……ボート、13,14……真空フラ
ンジ、19……電気炉、22……試料だめ、2
3,24……ガスボンベ、25……搬送管、26
……加熱管、27……電気炉、28……冷却器、
29……捕集器。
FIGS. 1, 2, and 3 are cross-sectional views showing examples of devices used in the present invention. FIGS. 4 and 5 show electron micrographs of silicon and alumina ultrafine powders after surface treatment. Note that the numbers in the figure indicate the following. 1
... Ultrafine powder, 2 ... Crucible, 3 ... Heating element, 4
...Insulated container, 6...Evacuation system, 7...Gas supply system, 12...Boat, 13, 14...Vacuum flange, 19...Electric furnace, 22...Sample reservoir, 2
3, 24...Gas cylinder, 25...Transport pipe, 26
... Heating tube, 27 ... Electric furnace, 28 ... Cooler,
29... Collector.

Claims (1)

【特許請求の範囲】[Claims] 1 超微粉体の表面に原子状炭素超薄膜を被覆し
てなることを特徴とする超微粉体。
1. An ultrafine powder characterized by coating the surface of the ultrafine powder with an ultrathin film of atomic carbon.
JP61165422A 1986-07-14 1986-07-14 Method and apparatus for surface treatment of powder or fibrous material Granted JPS6320480A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61165422A JPS6320480A (en) 1986-07-14 1986-07-14 Method and apparatus for surface treatment of powder or fibrous material
JP1089283A JPH02236278A (en) 1986-07-14 1989-04-07 Method for ultra-thin film coating of superfine powder or fine fibrous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61165422A JPS6320480A (en) 1986-07-14 1986-07-14 Method and apparatus for surface treatment of powder or fibrous material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1089283A Division JPH02236278A (en) 1986-07-14 1989-04-07 Method for ultra-thin film coating of superfine powder or fine fibrous material

Publications (2)

Publication Number Publication Date
JPS6320480A JPS6320480A (en) 1988-01-28
JPH0543791B2 true JPH0543791B2 (en) 1993-07-02

Family

ID=15812121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61165422A Granted JPS6320480A (en) 1986-07-14 1986-07-14 Method and apparatus for surface treatment of powder or fibrous material

Country Status (1)

Country Link
JP (1) JPS6320480A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189628A (en) * 2009-01-20 2010-09-02 Toray Ind Inc Black resin composition, resin black matrix, color filter and liquid crystal display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236278A (en) * 1986-07-14 1990-09-19 Res Dev Corp Of Japan Method for ultra-thin film coating of superfine powder or fine fibrous material
JP4824095B2 (en) * 2009-03-12 2011-11-24 株式会社栗本鐵工所 Magnetorheological fluid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4893589A (en) * 1972-03-13 1973-12-04
JPS5669210A (en) * 1979-11-09 1981-06-10 Mitsubishi Chem Ind Ltd Method for depositing thermally decomposed carbon
JPS58100601A (en) * 1981-12-09 1983-06-15 Japan Synthetic Rubber Co Ltd Coated ultrafine particle or its film and method and device for forming said particle or film
JPS6078635A (en) * 1983-10-07 1985-05-04 Res Dev Corp Of Japan Method and apparatus for forming discrete ultra-fine particles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4893589A (en) * 1972-03-13 1973-12-04
JPS5669210A (en) * 1979-11-09 1981-06-10 Mitsubishi Chem Ind Ltd Method for depositing thermally decomposed carbon
JPS58100601A (en) * 1981-12-09 1983-06-15 Japan Synthetic Rubber Co Ltd Coated ultrafine particle or its film and method and device for forming said particle or film
JPS6078635A (en) * 1983-10-07 1985-05-04 Res Dev Corp Of Japan Method and apparatus for forming discrete ultra-fine particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189628A (en) * 2009-01-20 2010-09-02 Toray Ind Inc Black resin composition, resin black matrix, color filter and liquid crystal display device

Also Published As

Publication number Publication date
JPS6320480A (en) 1988-01-28

Similar Documents

Publication Publication Date Title
CA2452531C (en) Insulating and functionalizing fine metal-containing particles with conformal ultra-thin films
US6913827B2 (en) Nanocoated primary particles and method for their manufacture
US6613383B1 (en) Atomic layer controlled deposition on particle surfaces
US7033650B2 (en) Method of producing a nanotube layer on a substrate
KR100917697B1 (en) Transition metal-carbon nitride nanotube hybrids catalyst, fabrication method thereof and method for producing hydrogen using the same
JP3481925B2 (en) Synthesis method of carbon nanotube
JPH049757B2 (en)
JPH08232069A (en) Method and apparatus for sublimating solid substance
Bower et al. Properties of deposited size‐selected clusters: Reactivity of deposited silicon clusters
JPS6320032A (en) Production of hyperfine particle having film
JP2004149954A (en) Metal/metal compound coated carbon nanofiber and method for producing the same
Gorokh et al. Functional multicomponent metal oxide films based on Sr, Sn, Fe, and Mo in the anodic alumina matrices
JPH0543791B2 (en)
JPH02213474A (en) Manufacture of thin molybdenum sulfide film, manufacture of molybdenum sulfide film and self-lubricating layer, electro-optical layer, and catalytically acting layer
Jobst et al. Highly porous thermally structurized polyacrylonitrile I. Synthesis, structure and electrical properties
JPH02236278A (en) Method for ultra-thin film coating of superfine powder or fine fibrous material
JP3402032B2 (en) Carbon tube containing foreign substance and method for producing the same
Ye et al. Novel nanometer-level uniform amorphous carbon coating for boron powders by direct pyrolysis of coronene without solvent
Andalouci et al. Morphological and magnetic study of plasma assisted solid-state dewetting of ultra-thin cobalt films on conductive titanium silicon nitride supports
Lee et al. Carbon nanotubes growth in AlPO4-5 zeolites: Evidence for density dependent field emission characteristics
JP3049534B2 (en) Method for producing polyperinaphthalene thin film
JP2004323303A (en) Method of forming self-regenerative carbon nanotube-graphite mixed membrane
JP4356490B2 (en) Method for forming a coating with fine metal carbide particles
Lan et al. Grids for Applications in High-Temperature High-Resolution Transmission Electron Microscopy
JPS5998504A (en) Manufacture of magnetic recording body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees