JPH0537035A - Superconductive device - Google Patents

Superconductive device

Info

Publication number
JPH0537035A
JPH0537035A JP3216041A JP21604191A JPH0537035A JP H0537035 A JPH0537035 A JP H0537035A JP 3216041 A JP3216041 A JP 3216041A JP 21604191 A JP21604191 A JP 21604191A JP H0537035 A JPH0537035 A JP H0537035A
Authority
JP
Japan
Prior art keywords
superconducting
channel
superconductive
resistance
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3216041A
Other languages
Japanese (ja)
Inventor
Takao Nakamura
孝夫 中村
Michitomo Iiyama
道朝 飯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3216041A priority Critical patent/JPH0537035A/en
Publication of JPH0537035A publication Critical patent/JPH0537035A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To provide a superconductive field-effect type device, of which hysteresis characteristic is improved. CONSTITUTION:This device has an n-type silicon semiconductor-formed resistor channel 6 which is formed on a silicon substrate 10, a superconductive channel 20 which is formed in a central part of a c-axis-oriented Y1Ba2Cu3O7-x oxide superconductive thin film 2 located on a resistor channel 6 through a MgAl2 O4/BaTiO3 laminated buffer layer 12. On both sides of the superconductive channel 20, a superconductive source electrode 3 and a superconductive drain electrode 4 which are formed from an a-axis-oriented Y1Ba2Cu3O7-x oxide superconductive thin film that reach the MgAl2O4/BaTiO3 buffer layer 12 formed on the silicon substrate 10, are arranged. Then, a gate electrode 5 is arranged on the superconductive channel 20 through an insulating layer 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導素子に関する。
より詳細には、チャネルが酸化物超電導体で構成されて
いる電界効果型三端子素子と抵抗素子とを集積化した超
電導素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting device.
More specifically, it relates to a superconducting element in which a field effect type three-terminal element having a channel made of an oxide superconductor and a resistance element are integrated.

【0002】[0002]

【従来の技術】超電導現象を利用した素子は、従来の半
導体素子に比較して高速であり、消費電力も小さく、飛
躍的に高性能化することができると考えられている。特
に近年研究が進んでいる酸化物超電導体を使用すること
により、比較的高い温度で動作する超電導素子を作製す
ることが可能である。超電導素子としては、ジョセフソ
ン素子がよく知られているが、ジョセフソン素子は2端
子の素子であるので論理回路を構成しようとすると、回
路が複雑になる。そのため、3端子の超電導素子が実用
上有利である。
2. Description of the Related Art It is considered that an element utilizing the superconducting phenomenon is faster than a conventional semiconductor element, consumes less power, and can be dramatically improved in performance. In particular, by using an oxide superconductor, which has been studied in recent years, it is possible to manufacture a superconducting element that operates at a relatively high temperature. As a superconducting element, a Josephson element is well known. However, since the Josephson element is a two-terminal element, the circuit becomes complicated when trying to configure a logic circuit. Therefore, a three-terminal superconducting element is practically advantageous.

【0003】3端子の超電導素子には、近接させて配置
した超電導電極間の半導体に超電導電流を流す超電導近
接効果を利用したものと、超電導チャネルに流れる超電
導電流をゲート電極で制御するものとが代表的である。
どちらの素子も入出力の分離が可能であり、電圧制御型
の素子であって、信号の増幅作用があるという点では共
通している。しかしながら、超電導近接効果を得るため
には、超電導体電極をその超電導体のコヒーレンス長の
数倍(酸化物超電導体の場合数nm)以内の距離に配置し
なければならない。従って、非常に精密な加工が要求さ
れる。それに対し、チャネルが超電導チャネルになって
いる超電導素子は、電流容量が大きく、製造上も超電導
電極を近接させて配置するという微細加工を必要としな
い。
The three-terminal superconducting element utilizes a superconducting proximity effect that causes a superconducting current to flow in the semiconductor between the superconducting electrodes arranged close to each other, and one that controls the superconducting current flowing in the superconducting channel with a gate electrode. It is typical.
Both elements are capable of separating input and output, are voltage-controlled elements, and have a common point in that they have a signal amplifying action. However, in order to obtain the superconducting proximity effect, the superconductor electrode must be arranged within a distance of several times the coherence length of the superconductor (several nm in the case of an oxide superconductor). Therefore, very precise processing is required. On the other hand, a superconducting element whose channel is a superconducting channel has a large current capacity and does not require microfabrication in which the superconducting conductive electrodes are arranged close to each other in manufacturing.

【0004】図3に、超電導チャネルを有する超電導電
界効果型素子の一例の概略図を示す。図3の超電導電界
効果型素子1は、基板10上に配置された酸化物超電導体
による超電導チャネル20と、超電導チャネル20の両端付
近にそれぞれ配置されたソース電極3およびドレイン電
極4と、超電導チャネル20上にゲート絶縁層9を介して
配置されたゲート電極5とを具備する。この超電導電界
効果型素子は、ソース電極3およびドレイン電極4間を
流れる超電導電流をゲート電極5に印加する電圧で制御
する。
FIG. 3 shows a schematic view of an example of a superconducting field effect device having a superconducting channel. The superconducting field effect device 1 shown in FIG. 3 comprises a superconducting channel 20 made of an oxide superconductor arranged on a substrate 10, a source electrode 3 and a drain electrode 4 arranged near both ends of the superconducting channel 20, and a superconducting channel. The gate electrode 5 is provided on the gate insulating layer 9 with the gate insulating layer 9 interposed therebetween. In this superconducting field effect element, the superconducting current flowing between the source electrode 3 and the drain electrode 4 is controlled by the voltage applied to the gate electrode 5.

【0005】[0005]

【発明が解決しようとする課題】上記の超電導電界効果
型素子の特性を図4に示す。図4(a)は、図3に示した
超電導電界効果型素子において、特定のゲート電圧値に
対するソース−ドレイン間の電圧−電流特性を示したグ
ラフである。図4(a)のグラフに示した特性は、いわゆ
る所要特性と呼ばれる理想的な状態における特性であ
る。しかしながら、実際に図4(a)に示す所要特性の素
子を動作させた場合には、図4(a)のような特性を示さ
ず、ヒステリシス特性を示す。図4(b)に、図4(a)に示
した特性を有する超電導電界効果型素子のゲート電圧を
一定にして、ソース−ドレイン間の電圧を変化させたと
きの電流の変化を示す。
The characteristics of the above-mentioned superconducting field effect element are shown in FIG. FIG. 4A is a graph showing the source-drain voltage-current characteristics for a specific gate voltage value in the superconducting field effect device shown in FIG. The characteristic shown in the graph of FIG. 4 (a) is a characteristic in an ideal state called a so-called required characteristic. However, when an element having the required characteristics shown in FIG. 4A is actually operated, the characteristics shown in FIG. 4A are not exhibited, but the hysteresis characteristics are exhibited. FIG. 4B shows a change in current when the gate voltage of the superconducting field effect device having the characteristics shown in FIG. 4A is kept constant and the voltage between the source and the drain is changed.

【0006】図4(b)に示すようこの超電導電界効果型
素子は、電圧が上昇するときと、電圧が下降するときと
で、電流値が異なる変化を起こす。このような超電導電
界効果型素子は、ゲート電圧の値およびソース−ドレイ
ン間電圧の値に対するソース−ドレイン間電流の値が、
特定できないため実用性が低い。
As shown in FIG. 4B, in this superconducting field effect element, the current value changes differently when the voltage rises and when the voltage falls. In such a superconducting field effect device, the value of the source-drain current with respect to the value of the gate voltage and the value of the source-drain voltage is
Practicality is low because it cannot be specified.

【0007】そこで、本発明の目的は、上記の超電導電
界効果型素子の特性を改善した超電導素子を提供するこ
とにある。
Therefore, an object of the present invention is to provide a superconducting element with improved characteristics of the above-mentioned superconducting field effect element.

【0008】[0008]

【課題を解決するための手段】本発明に従うと、酸化物
超電導体で構成されたソース領域およびドレイン領域
と、該ソース領域およびドレイン領域間に配置された酸
化物超電導体で構成された超電導チャネルと、該超電導
チャネルを流れる電流を制御するためのゲート電圧が印
加される常電導体によるゲート電極とを備える超電導電
界効果型素子と、該超電導電界効果型素子の前記ソース
領域およびドレイン領域間に接続された抵抗チャネルと
を具備し、前記抵抗チャネルが、半導体で構成されてい
ることを特徴とする超電導素子が提供される。
According to the present invention, a superconducting channel composed of a source region and a drain region composed of an oxide superconductor and an oxide superconductor arranged between the source region and the drain region. And a superconducting field effect element including a gate electrode formed of a normal conductor to which a gate voltage for controlling a current flowing through the superconducting channel is applied, and between the source region and the drain region of the superconducting field effect element. There is provided a resistance channel connected to the superconducting element, wherein the resistance channel is made of a semiconductor.

【0009】[0009]

【作用】本発明の超電導素子は、超電導ソース領域およ
び超電導ドレイン領域間に配置された超電導チャネルと
この超電導チャネルを流れる電流を制御するためのゲー
ト電圧が印加される常電導体によるゲート電極とを有す
る超電導電界効果型素子と、この超電導電界効果型素子
のソース領域およびドレイン領域間に超電導チャネルと
並列に接続された抵抗素子とが集積化された素子であ
り、抵抗素子の抵抗チャネルが半導体で構成されてい
る。半導体には、Si、GaAs、InP等任意のものを使用す
ることができる。本発明の超電導素子の抵抗チャネル
は、上記の一般的な半導体で構成されているので、フォ
トリソグラフィ等の従来の加工技術を使用して任意の形
状に作製することが可能である。また、キャリア密度の
調整も容易であり、キャリア密度を変更することにより
抵抗率を自由に制御することができる。また、上記の半
導体は熱伝導率が良好であるので、超電導素子の動作を
安定化させるのに寄与する。半導体基板上に本発明の超
電導素子を形成する場合には、基板の一部を抵抗チャネ
ルに使用することができる。さらに、配線の一部を超電
導チャネルと兼用することも可能である。
The superconducting device of the present invention comprises a superconducting channel arranged between a superconducting source region and a superconducting drain region, and a gate electrode made of a normal conductor to which a gate voltage for controlling a current flowing through the superconducting channel is applied. A superconducting field effect element having and a resistance element connected in parallel with a superconducting channel between a source region and a drain region of the superconducting field effect element are integrated elements, and the resistance channel of the resistance element is a semiconductor. It is configured. Any semiconductor such as Si, GaAs, and InP can be used as the semiconductor. Since the resistance channel of the superconducting element of the present invention is made of the above-mentioned general semiconductor, it can be formed into an arbitrary shape by using a conventional processing technique such as photolithography. Further, the carrier density can be easily adjusted, and the resistivity can be freely controlled by changing the carrier density. Further, since the above semiconductor has a good thermal conductivity, it contributes to stabilizing the operation of the superconducting element. When forming the superconducting element of the present invention on a semiconductor substrate, a part of the substrate can be used as a resistance channel. Further, it is possible to use a part of the wiring also as a superconducting channel.

【0010】酸化物超電導体中には、半導体分子が容易
に拡散するので本発明の超電導素子は、酸化物超電導体
と半導体とが直接接触しない構成であることが好まし
い。そのために、本発明の超電導素子では、超電導ソー
ス領域と抵抗チャネルとの間および超電導ドレイン領域
と抵抗チャネルとの間にAu等の貴金属で構成された拡散
防止層を備えることが好ましい。
Since semiconductor molecules easily diffuse into the oxide superconductor, the superconducting element of the present invention preferably has a structure in which the oxide superconductor and the semiconductor do not come into direct contact with each other. Therefore, the superconducting element of the present invention preferably comprises a diffusion prevention layer made of a noble metal such as Au between the superconducting source region and the resistance channel and between the superconducting drain region and the resistance channel.

【0011】本発明の超電導素子は、ゲート電極で開閉
される超電導チャネルと抵抗チャネルとが、ソース電極
およびドレイン電極間に並列に配置されているので、超
電導チャネルが抵抗状態であるときには、抵抗チャネル
にソース−ドレイン間電流が流れる。従って、超電導電
界効果型素子特有のヒステリシス特性が解消される。そ
のため、本発明の超電導素子において、抵抗チャネルの
抵抗値は、上記超電導電界効果型素子の超電導チャネル
が抵抗状態であるときの超電導チャネルのソース−ドレ
イン間の抵抗値よりもかなり小さい値としなければなら
ない。
In the superconducting device of the present invention, since the superconducting channel opened and closed by the gate electrode and the resistance channel are arranged in parallel between the source electrode and the drain electrode, when the superconducting channel is in the resistance state, the resistance channel Current flows between the source and drain. Therefore, the hysteresis characteristic peculiar to the superconducting field effect element is eliminated. Therefore, in the superconducting element of the present invention, the resistance value of the resistance channel must be a value considerably smaller than the resistance value between the source and drain of the superconducting channel when the superconducting channel of the superconducting field effect element is in the resistance state. I won't.

【0012】本発明は、任意の酸化物超電導体に適用で
きるが、Y1Ba2Cu37-X系酸化物超電導体は安定的に高
品質の結晶性のよい薄膜が得られるので好ましい。ま
た、Bi2Sr2Ca2Cu3x 系酸化物超電導体は、特にその超
電導臨界温度Tc が高いので好ましい。
The present invention can be applied to any oxide superconductor, but the Y 1 Ba 2 Cu 3 O 7 -X oxide superconductor is preferable because it can stably obtain a high quality thin film with good crystallinity. .. Further, the Bi 2 Sr 2 Ca 2 Cu 3 O x oxide superconductor is particularly preferable because its superconducting critical temperature Tc is high.

【0013】以下、本発明を実施例によりさらに詳しく
説明するが、以下の開示は本発明の単なる実施例に過ぎ
ず、本発明の技術的範囲をなんら制限するものではな
い。
Hereinafter, the present invention will be described in more detail with reference to examples, but the following disclosure is merely examples of the present invention and does not limit the technical scope of the present invention.

【0014】[0014]

【実施例】図1に本発明の超電導素子の一例の概略断面
図を示す。図1に示した本発明の超電導素子は、Si基板
10上に形成されたn型Siによる抵抗チャネル6と、抵抗
チャネル6上にMgAl24とBaTiO3との積層バッファ層1
2を介して積層されたc軸配向のY1Ba2Cu37-X酸化物
超電導薄膜2に形成された超電導チャネル20と、超電導
チャネル20上に絶縁層9を介して配置されたAuで構成さ
れたゲート電極5とを具備する。酸化物超電導薄膜2の
超電導チャネル20の両側には、a軸配向のY1Ba2Cu3
7-X酸化物超電導体で構成された超電導ソース電極3お
よび超電導ドレイン電極4が、それぞれ酸化物超電導薄
膜2に接し、且つSi基板10上のMgAl24/BaTiO3積層
バッファ層12上に達するよう配置されている。また、超
電導ソース電極3と抵抗チャネル6の間および超電導ド
レイン電極4と抵抗チャネル6の間には、それぞれSiの
拡散を防止する拡散防止層11がAuで構成されている。
1 is a schematic sectional view showing an example of a superconducting element of the present invention. The superconducting element of the present invention shown in FIG.
A resistance channel 6 made of n-type Si formed on 10 and a laminated buffer layer 1 of MgAl 2 O 4 and BaTiO 3 on the resistance channel 6.
Superconducting channel 20 formed in the c-axis oriented Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film 2 laminated via 2 and Au arranged on the superconducting channel 20 via an insulating layer 9. And a gate electrode 5 composed of. The a-axis oriented Y 1 Ba 2 Cu 3 O is formed on both sides of the superconducting channel 20 of the oxide superconducting thin film 2.
A superconducting source electrode 3 and a superconducting drain electrode 4 each made of a 7-X oxide superconductor are in contact with the oxide superconducting thin film 2 and on the MgAl 2 O 4 / BaTiO 3 laminated buffer layer 12 on the Si substrate 10. Arranged to reach. Further, between the superconducting source electrode 3 and the resistance channel 6 and between the superconducting drain electrode 4 and the resistance channel 6, a diffusion prevention layer 11 for preventing the diffusion of Si is made of Au.

【0015】図2(a)〜(c)を参照して本発明の超電導素
子の動作を説明する。図2(a)および(b)は、本発明の超
電導素子の動作を等価回路で図示したものである。即
ち、本発明の超電導素子は、超電導電界効果型素子1
と、超電導電界効果型素子1の超電導チャネル20に並列
にソース電極3およびドレイン電極4間に接続されてい
る抵抗素子16で構成される回路と等価である。図2(a)
は、本発明の超電導素子において、超電導電界効果型素
子1のゲート電極5に電圧が印加されてなく、超電導チ
ャネル20のゲートが開いている状態を示す。このとき、
超電導チャネル20は、超電導状態であり、電気抵抗が事
実上0であるので、ソース−ドレイン間電流は全て超電
導チャネル20を流れる。
The operation of the superconducting device of the present invention will be described with reference to FIGS. 2 (a) to 2 (c). 2 (a) and 2 (b) show the operation of the superconducting element of the present invention by an equivalent circuit. That is, the superconducting element of the present invention is the superconducting field effect element 1
Is equivalent to a circuit composed of the resistance element 16 connected in parallel to the superconducting channel 20 of the superconducting field effect element 1 between the source electrode 3 and the drain electrode 4. Figure 2 (a)
In the superconducting element of the present invention, shows a state in which no voltage is applied to the gate electrode 5 of the superconducting field effect element 1 and the gate of the superconducting channel 20 is open. At this time,
Since the superconducting channel 20 is in a superconducting state and its electric resistance is practically zero, all the source-drain current flows through the superconducting channel 20.

【0016】図2(b)は本発明の超電導素子において、
超電導電界効果型素子1の超電導チャネル20が抵抗状態
である状態を示す。この場合、超電導チャネル20の超電
導状態は失われている。このとき、超電導チャネル20の
抵抗値Rs は、ソース−ドレイン間の電圧が上昇して超
電導チャネル20に電流が流れ始めるときの抵抗値Rup
よびソース−ドレイン間の電圧が下降して超電導チャネ
ル20に流れていた電流が断たれる瞬間の抵抗値R
downと、次のような関係になっている。 Rup<Rs <Rdown 抵抗素子16の抵抗値Rは、R≪Rupに設定されているの
で、このときのソース−ドレイン間電流はほとんど抵抗
素子16をながれる。従って、この場合のソース−ドレイ
ン間抵抗は、ほぼRに等しい。
FIG. 2 (b) shows a superconducting device of the present invention.
The state where the superconducting channel 20 of the superconducting field effect element 1 is in the resistance state is shown. In this case, the superconducting state of the superconducting channel 20 is lost. At this time, the resistance value R s of the superconducting channel 20 is such that the resistance value R up when the source-drain voltage rises and a current starts flowing in the superconducting channel 20 and the source-drain voltage decreases. Resistance value R at the moment when the current flowing in 20 is cut off
It has the following relationship with down . R up <R s <R down Since the resistance value R of the resistance element 16 is set to R << R up , most of the source-drain current at this time flows through the resistance element 16. Therefore, the source-drain resistance in this case is approximately equal to R.

【0017】図2(c)は、上記本発明の超電導素子の特
性図である。図2(c)に示すよう、本発明の超電導素子
では、超電導電界効果型素子1のヒステリシス特性が解
消されており、ゲート電圧によりソース−ドレイン間の
電圧電流特性のループを特定することができる。従っ
て、本発明の超電導素子は、特に電子機器等に使用する
場合に実用性が高い。
FIG. 2 (c) is a characteristic diagram of the superconducting element of the present invention. As shown in FIG. 2 (c), in the superconducting element of the present invention, the hysteresis characteristic of the superconducting field effect element 1 is eliminated, and the loop of the voltage-current characteristic between the source and the drain can be specified by the gate voltage. .. Therefore, the superconducting element of the present invention is highly practical, especially when used in electronic devices and the like.

【0018】[0018]

【発明の効果】以上説明したように、本発明に従えば、
実用性の高い超電導3端子素子が提供される。本発明を
超電導回路、電子機器の作製に応用することにより、従
来得られなかった高性能な電子装置が作製可能である。
As described above, according to the present invention,
A highly practical superconducting three-terminal element is provided. By applying the present invention to the production of superconducting circuits and electronic equipment, it is possible to produce high-performance electronic devices that have never been obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超電導素子の概略断面図である。FIG. 1 is a schematic sectional view of a superconducting element of the present invention.

【図2】(a)および(b)は、本発明の超電導素子の動作を
示す概念図であり、(c)は本発明の超電導素子の特性図
である。
2A and 2B are conceptual diagrams showing the operation of the superconducting element of the present invention, and FIG. 2C is a characteristic diagram of the superconducting element of the present invention.

【図3】超電導電界効果型素子の概略図である。FIG. 3 is a schematic view of a superconducting field effect device.

【図4】超電導電界効果型素子の特性図である。FIG. 4 is a characteristic diagram of a superconducting field effect device.

【符号の説明】[Explanation of symbols]

1 超電導電界効果型素子 2 酸化物超電
導薄膜 3 ソース電極 4 ドレイン電
極 5 ゲート電極 6 抵抗チャネ
1 superconducting field effect device 2 oxide superconducting thin film 3 source electrode 4 drain electrode 5 gate electrode 6 resistance channel

Claims (1)

【特許請求の範囲】 【請求項1】 酸化物超電導体で構成されたソース領域
およびドレイン領域と、該ソース領域およびドレイン領
域間に配置された酸化物超電導体で構成された超電導チ
ャネルと、該超電導チャネルを流れる電流を制御するた
めのゲート電圧が印加される常電導体によるゲート電極
とを備える超電導電界効果型素子と、 該超電導電界効果型素子の前記ソース領域およびドレイ
ン領域間に接続された抵抗チャネルとを具備し、 前記抵抗チャネルが、半導体で構成されていることを特
徴とする超電導素子。
Claim: What is claimed is: 1. A source region and a drain region made of an oxide superconductor, a superconducting channel made of an oxide superconductor arranged between the source region and the drain region, A superconducting field effect element having a gate electrode of a normal conductor to which a gate voltage for controlling a current flowing through the superconducting channel is applied; and a superconducting field effect element connected between the source region and the drain region. A superconducting element comprising: a resistance channel, wherein the resistance channel is made of a semiconductor.
JP3216041A 1991-08-01 1991-08-01 Superconductive device Withdrawn JPH0537035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3216041A JPH0537035A (en) 1991-08-01 1991-08-01 Superconductive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3216041A JPH0537035A (en) 1991-08-01 1991-08-01 Superconductive device

Publications (1)

Publication Number Publication Date
JPH0537035A true JPH0537035A (en) 1993-02-12

Family

ID=16682355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3216041A Withdrawn JPH0537035A (en) 1991-08-01 1991-08-01 Superconductive device

Country Status (1)

Country Link
JP (1) JPH0537035A (en)

Similar Documents

Publication Publication Date Title
JPH01207982A (en) Field effect device having superconducting channel
JPH05251777A (en) Superconducting field-effect type element and manufacture thereof
JPH0537035A (en) Superconductive device
JPH0537033A (en) Superconductive device
JPH0537032A (en) Superconductive device
JP2867956B2 (en) Superconducting transistor
JPS6288381A (en) Superconducting switching apparatus
JP2680961B2 (en) Superconducting field effect device and method of manufacturing the same
JPH0529672A (en) Circuit including superconducting field effect element
JP2680954B2 (en) Superconducting field effect element
JPH05114757A (en) Superconductive element and manufacture thereof
JPH0537036A (en) Superconductive device and manufacture thereof
JPH0555648A (en) Superconducting element
JP2730368B2 (en) Superconducting field effect element and method for producing the same
JP2701732B2 (en) Superconducting three-terminal element
JPH0878743A (en) Superconductive field effect type element
JP2647251B2 (en) Superconducting element and fabrication method
JP2599500B2 (en) Superconducting element and fabrication method
JPS60246601A (en) Resistor for superconductive circuit
JP2641966B2 (en) Superconducting element and fabrication method
JPH0537034A (en) Superconductive device
EP0565452A1 (en) Superconducting device having a superconducting channel formed of oxide superconductor material
JPH0555649A (en) Manufacture of superconducting electric field effect element
JPH04206666A (en) Superconducting element
JPH02273975A (en) Superconducting switching element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981112