JPH0536716A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH0536716A
JPH0536716A JP18851191A JP18851191A JPH0536716A JP H0536716 A JPH0536716 A JP H0536716A JP 18851191 A JP18851191 A JP 18851191A JP 18851191 A JP18851191 A JP 18851191A JP H0536716 A JPH0536716 A JP H0536716A
Authority
JP
Japan
Prior art keywords
conductive film
film
insulating film
impurity
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18851191A
Other languages
Japanese (ja)
Inventor
Hiroyasu Ishihara
宏康 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18851191A priority Critical patent/JPH0536716A/en
Publication of JPH0536716A publication Critical patent/JPH0536716A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To improve the margin of the etching of a gate electrode and set the thicknesses of the gate oxide film on a low-concentration impurity region of an LDD and the gate oxide film on a channel properly, exchanging them with each other, in a MOSFET where the low-concentration region of the LDD and a gate electrode lies one upon the other. CONSTITUTION:This device has a first insulating film 2 on the surface of a p-type silicon substrate 1, and has a first conductive film 3 in the specified region of the first insulating film 2, and has first impurity regions 4a and 4b on the right and left ares, with the first conductive film 3 between, of a silicon substrate 1, and a second insulating film 5 to cover the first conductive film 3, and has a second conductive film 6, which covers the first conductive film 3 above the second insulating film 5 and extends over the first impurity regions 4a and 4b, and has second impurity regions 7a and 7b higher in impurity concentration than the first impurity regions 4a and 4b a, on the right and left areas sandwiching the second conductive film 6, of the silicon substrate 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置に関し、特に
LDD構造を有するMOSFETに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a MOSFET having an LDD structure.

【0002】[0002]

【従来の技術】従来のLDD構造を有するMOSFET
の1例を分献を引用して説明する。その分献はテクニカ
ルダイジェスト,インターナショナル エレクトロン
デバイシズ ミーティング,1987,38−41ペー
ジ(Technical Digest,Intern
ational Electron DevicesM
eeting,1987,pp38−41)である。こ
の内容を図4に示す縦断面図を用いて説明する。
2. Description of the Related Art MOSFET having a conventional LDD structure
An example of this will be explained by citing the distribution. The tribute is technical digest, International Electron
Devices Meeting, 1987, pp. 38-41 (Technical Digest, Intern
national Electron Devices M
Meeting, 1987, pp 38-41). The contents will be described with reference to the vertical sectional view shown in FIG.

【0003】P型シリコン基板1の表面に例えば膜厚1
5nmの酸化シリコンの第1の絶縁膜2を有し、第1の
絶縁膜2上の所定の領域に、例えば膜厚0.5〜1nm
の自然酸化膜9をはさみ、例えば燐をドープした多結晶
シリコンの第1の導電膜3を有し、第1の導電膜3上に
例えば膜厚200nmの酸化シリコンの第2の絶縁膜5
を有し、第1の導電膜3と第2の絶縁膜5の側面に、例
えば酸化シリコンの側壁8a,8bを有し、シリコン基
板1には燐をドープした第1の不純物領域4a,4b
と、第1の不純物領域4a,4bより不純物濃度が高
い、砒素をドープした第2の不純物領域7a,7bを有
し、第1の不純物領域4a,4bと第2の不純物領域7
a,7bを有し、第1の不純物領域4a,4bと第2の
不純物領域7a,7bはLDD構造を有するソース、ド
レイン領域であり、第1の絶縁膜2はゲート酸化膜であ
り、第1の導電膜3はゲート電極であり、これらによっ
てMOSFETが形成されている。
For example, a film having a thickness of 1 is formed on the surface of the P-type silicon substrate 1.
It has a first insulating film 2 of silicon oxide having a thickness of 5 nm, and has a film thickness of, for example, 0.5 to 1 nm in a predetermined region on the first insulating film 2.
Natural oxide film 9 between them, and has a first conductive film 3 of, for example, phosphorus-doped polycrystalline silicon, and a second insulating film 5 of silicon oxide having a film thickness of, for example, 200 nm is formed on the first conductive film 3.
And has sidewalls 8a and 8b of, for example, silicon oxide on the side surfaces of the first conductive film 3 and the second insulating film 5, and the silicon substrate 1 has first impurity regions 4a and 4b doped with phosphorus.
And arsenic-doped second impurity regions 7a and 7b having an impurity concentration higher than those of the first impurity regions 4a and 4b, and the first impurity regions 4a and 4b and the second impurity region 7 are included.
a, 7b, the first impurity regions 4a, 4b and the second impurity regions 7a, 7b are source and drain regions having an LDD structure, and the first insulating film 2 is a gate oxide film. The conductive film 3 of 1 is a gate electrode, and these form a MOSFET.

【0004】このLDD構造を有するMOSFETは、
第1の不純物領域4a,4bと第1の導電膜3が重なっ
ている為、通常の同一ゲート長のLDD構造を有するM
OSFETと比べ、ホットキャリア耐性がよく、相互コ
ンダクタンスが大きいという利点がある。
The MOSFET having the LDD structure is
Since the first impurity regions 4a and 4b and the first conductive film 3 are overlapped with each other, an M having an ordinary LDD structure with the same gate length is provided.
Compared with OSFET, it has advantages of good hot carrier resistance and large mutual conductance.

【0005】[0005]

【発明が解決しようとする課題】この従来のLDD構造
を有するMOSFETは、第1の導電膜をエッチングす
る際、第1の導電膜にはさまれた自然酸化膜によってエ
ッチングを止めて、第1の不純物領域上に第1の導電膜
を残さねばならない為、極めて高選択比のエッチングが
必要であった。また、チャネル上と第1の不純物領域上
とでゲート酸化膜の膜厚が同じであり、各々最適な膜厚
が設定できないという問題点があった。
In the conventional MOSFET having the LDD structure, when etching the first conductive film, the etching is stopped by the natural oxide film sandwiched between the first conductive film and the first conductive film. Since the first conductive film must be left on the impurity region of No. 3, etching with an extremely high selection ratio was required. Further, since the gate oxide film has the same film thickness on the channel and on the first impurity region, there is a problem that the optimum film thickness cannot be set for each.

【0006】[0006]

【課題を解決するための手段】本発明の半導体装置は、
一導電型シリコン基板の一主面上に第1の絶縁膜を有
し、第1の絶縁膜の所定の領域に第1の導電膜を有し、
第1の導電膜をはさむ左右のシリコン基板に逆導電型の
第1の不純物領域を有し、第1の導電膜を覆う第2の絶
縁膜を有し、第2の絶縁膜上で第1の導電膜を覆い第1
の不純物領域上に延在する第2の導電膜を有し、第2の
導電膜をはさむ左右のシリコン基板に第1の不純物領域
よりも不純物濃度が高い逆導電型の第2の不純物領域を
有することを特徴とする。
The semiconductor device of the present invention comprises:
A first conductive film is provided on one main surface of the one conductivity type silicon substrate, and a first conductive film is provided in a predetermined region of the first conductive film;
There is a first impurity region of opposite conductivity type on the left and right silicon substrates sandwiching the first conductive film, a second insulating film covering the first conductive film, and a first insulating film on the second insulating film. Covering the conductive film of the first
A second conductive film extending over the impurity region of the second conductive film, and a second impurity region of an opposite conductivity type having a higher impurity concentration than that of the first impurity region is formed on the left and right silicon substrates sandwiching the second conductive film. It is characterized by having.

【0007】本発明の半導体装置の製造方法は、一導電
型シリコン基板の一主面上に第1の絶縁膜と第2の導電
膜を順次形成する工程と、フォトエッチング法を用いて
第1の導電膜をパターンニングする工程と、全面に逆導
電型の不純物をイオン注入して第1の導電膜をはさむ左
右のシリコン基板に第1の不純物領域を形成する工程
と、第1の導電膜を覆う第2の絶縁膜を形成する工程
と、全面に第2の導電膜を形成する工程と、第1の導電
膜を覆い、第1の不純物領域上に延在するようにフォト
エッチング法を用いて第2の導電膜をパターンニングす
る工程と、全面に逆導電型の不純物をイオン注入して第
2の導電膜をはさむ左右のシリコン基板に第1の不純物
領域よりも不純物濃度が高い第2の不純物領域を形成す
る工程と、を有することを特徴とする。
A method of manufacturing a semiconductor device according to the present invention comprises a step of sequentially forming a first insulating film and a second conductive film on one main surface of a one conductivity type silicon substrate, and a first step using a photoetching method. Patterning the conductive film, forming a first impurity region on the left and right silicon substrates sandwiching the first conductive film by ion-implanting impurities of opposite conductivity type on the entire surface, and the first conductive film. A step of forming a second insulating film that covers the first conductive film, a step of forming a second conductive film over the entire surface, and a photoetching method so as to cover the first conductive film and extend over the first impurity region. Patterning the second conductive film by using the first conductive film and the second conductive film having the impurity concentration higher than that of the first impurity region in the left and right silicon substrates sandwiching the second conductive film by ion-implanting impurities of the opposite conductivity type. And forming a second impurity region. The features.

【0008】[0008]

【実施例】次に本発明について図面を参照して説明す
る。
The present invention will be described below with reference to the drawings.

【0009】図1は本発明の第1の実施例の縦断面図で
ある。
FIG. 1 is a vertical sectional view of a first embodiment of the present invention.

【0010】P型シリコン基板1の表面上に例えば膜厚
15nmの酸化シリコンの第1の絶縁膜2を有し、第1
の絶縁膜2上の所定の領域に例えば膜厚200nmの燐
を1×1020cm-3ドープした多結晶シリコンの第1の
導電膜3を有し、第1の導電膜3をはさむ左右のシリコ
ン基板1に、例えば深さ200nmで濃度2×1018
-3の燐をドープした第1の不純物領域4a,4bを有
し、第1の導電膜3を覆うように例えば膜厚10nm酸
化シリコンの第2の絶縁膜5を有し、第2の絶縁膜5上
で第1の導電膜3を覆い、第1の不純物領域4a,4b
上に例えば200nm延在する例えば膜厚100nmの
燐を1×1020cm-3ドープした多結晶シリコンの第2
の導電膜6を有し、第2の導電膜6をはさむ左右に例え
ば深さ250nm,濃度1×1020cm-3の砒素をドー
プした第2の不純物領域7a,7bを有する。
A first insulating film 2 of silicon oxide having a film thickness of, for example, 15 nm is formed on the surface of a P-type silicon substrate 1,
Has a first conductive film 3 of polycrystalline silicon doped with phosphorus of 1 × 10 20 cm −3 and has a film thickness of 200 nm in a predetermined region on the insulating film 2. On the silicon substrate 1, for example, a depth of 200 nm and a concentration of 2 × 10 18 c
m −3 phosphorus-doped first impurity regions 4a and 4b, and a second insulating film 5 of, eg, a 10 nm-thickness silicon oxide film so as to cover the first conductive film 3. The first conductive film 3 is covered with the insulating film 5, and the first impurity regions 4a and 4b are formed.
A second layer of polycrystalline silicon having a thickness of, for example, 100 nm and a thickness of, for example, 100 nm and doped with 1 × 10 20 cm −3 of phosphorus.
And a second impurity region 7a, 7b doped with arsenic having a depth of 250 nm and a concentration of 1 × 10 20 cm −3 , for example, on the left and right sides sandwiching the second conductive film 6.

【0011】第1の不純物領域4a,4bおよび第2の
不純物領域7a,7bはソース領域およびドレイン領域
であり、第1の絶縁膜2はゲート酸化膜であり、第1の
導電膜3および第2の導電膜6は一部で電気的に接続さ
れており、ゲート電極であり、これらによってMOSF
ETが形成される。
The first impurity regions 4a and 4b and the second impurity regions 7a and 7b are source and drain regions, the first insulating film 2 is a gate oxide film, the first conductive film 3 and the first conductive film 3 and The conductive film 6 of 2 is partially electrically connected and is a gate electrode.
ET is formed.

【0012】図2は実施例の半導体装置に係わる製造方
法の主要工程における縦断面図である。図2および図1
を用いて本実施例の半導体装置の製造方法を説明する。
FIG. 2 is a vertical cross-sectional view in the main steps of the manufacturing method for the semiconductor device of the embodiment. 2 and 1
A method of manufacturing the semiconductor device of this embodiment will be described with reference to FIG.

【0013】P型シリコン基板1の表面を酸化して例え
ば酸化シリコンの第1の絶縁膜2と例えば多結晶シリコ
ンの第1の導電膜3を形成し、熱拡散によって燐を第1
の導電膜3にドープし、フォトエッチング法を用いてパ
ターンニングして図2(a)に示す構造を得る。
The surface of the P-type silicon substrate 1 is oxidized to form a first insulating film 2 made of, for example, silicon oxide and a first conductive film 3 made of, for example, polycrystalline silicon.
2 is doped into the conductive film 3 and patterned by using a photoetching method to obtain the structure shown in FIG.

【0014】次に全面に燐をイオン注入し、第1のイオ
ン不純物領域4a,4bを形成し、CVD法によって例
えば酸化シリコンの第2の絶縁膜5と多結晶シリコンの
第2の導電膜6を順次形成し、熱拡散によって燐を第2
の導電膜6にドープして図2(b)に示す構造を得る。
Next, phosphorus is ion-implanted into the entire surface to form first ion impurity regions 4a and 4b, and the second insulating film 5 made of, for example, silicon oxide and the second conductive film 6 made of polycrystalline silicon are formed by the CVD method. Are sequentially formed, and second phosphorus is formed by thermal diffusion.
The conductive film 6 is doped to obtain the structure shown in FIG.

【0015】次に第2の導電膜6をフォトエッチング法
を用いてパターンニングし、全面に7a,7bを形成
し、図1に示す構造を得る。
Next, the second conductive film 6 is patterned by using a photoetching method to form 7a and 7b on the entire surface to obtain the structure shown in FIG.

【0016】図3は本発明の第2の実施例の縦断面図で
ある。本実施例は第1の導電膜3の下にのみ第1の絶縁
膜2を有している。また、第1の導電膜3の側面に、第
2の絶縁膜5と第2の導電膜6を隔てて例えば膜厚20
0nmの酸化シリコンの側壁8a,8bを有し、第2の
導電膜6の第2の絶縁膜5に接する部分は側壁8a,8
bに接する部分だけである。
FIG. 3 is a vertical sectional view of the second embodiment of the present invention. In this embodiment, the first insulating film 2 is provided only under the first conductive film 3. In addition, the second insulating film 5 and the second conductive film 6 are separated from each other on the side surface of the first conductive film 3 by, for example, a film thickness of 20.
The side wall 8a, 8b of the second conductive film 6 having the side wall 8a, 8b of 0 nm silicon oxide is in contact with the second insulating film 5.
Only the part that contacts b.

【0017】製造方法は、第1の実施例で、第1の導電
膜3をフォトエッチング法を用いてパターンニングした
後、第1の導電膜3をマスクにして第1の絶縁膜2をエ
ッチングする。第2の導電膜6に燐をドープした後、例
えばCVD法で膜厚200nmの酸化シリコンを形成
し、酸化シリコンに異方性のエッチングを施して側壁8
a,8bを形成し、フォトエッチング法を用いて第2の
導電膜6をパターンニングする際、フォトレジストで側
壁8a,8bに囲われた領域のみ保護する。
In the manufacturing method of the first embodiment, the first conductive film 3 is patterned by using a photoetching method, and then the first insulating film 2 is etched using the first conductive film 3 as a mask. To do. After doping the second conductive film 6 with phosphorus, a silicon oxide film having a thickness of 200 nm is formed by, for example, a CVD method, and anisotropic etching is performed on the silicon oxide to form the side wall 8.
When forming a and 8b and patterning the second conductive film 6 by using the photo etching method, only the region surrounded by the sidewalls 8a and 8b is protected by the photoresist.

【0018】本実施例では、第1の不純物領域4a,4
bと第2の導電膜6とではさまれた絶縁膜は第2の絶縁
膜5のみであるので、MOSFETがON状態になった
とき、第1の不純物領域4a,4bの抵抗がより下げら
れる。また、第1の不純物領域4a,4bと第2の導電
膜6との重なりの幅は、側壁8a,8bの幅のみで決定
する為、第2の導電膜6をフォトエッチング法を用いて
パターンニングする際、マスク合わせの精度は直接第1
の不純物領域4a,4bと第2の導電膜6を重なりの幅
に影響しないという利点を有する。
In this embodiment, the first impurity regions 4a, 4
Since the insulating film sandwiched between b and the second conductive film 6 is only the second insulating film 5, the resistance of the first impurity regions 4a and 4b is further lowered when the MOSFET is turned on. . Further, since the width of overlap between the first impurity regions 4a and 4b and the second conductive film 6 is determined only by the width of the side walls 8a and 8b, the second conductive film 6 is patterned by photoetching. The accuracy of mask alignment is directly
This has an advantage that the overlapping width between the impurity regions 4a and 4b and the second conductive film 6 is not affected.

【0019】[0019]

【発明の効果】以上説明したように本発明は、第1の導
電膜や第2の導電膜をエッチングする際、それぞれ第1
の絶縁膜や第2の絶縁膜によってエッチングを止める
為、自然酸化膜で止めるよりもエッチングの余裕度が大
きいという効果を有する。例えば第1の絶縁膜を膜厚1
5nm第2の絶縁膜を膜厚10nmとすると、第1の導
電膜や第2の導電膜のエッチングの際、それぞれ5nm
ずつ膜厚が減少しても許容できる。自然酸化膜は0.5
〜1nmなので同じ膜厚減少は許容できない。
As described above, according to the present invention, when etching the first conductive film and the second conductive film, the first conductive film and the second conductive film are respectively etched.
Since the etching is stopped by this insulating film and the second insulating film, there is an effect that the margin of etching is larger than that by the natural oxide film. For example, the thickness of the first insulating film is 1
5 nm If the second insulating film has a film thickness of 10 nm, it is 5 nm each when the first conductive film and the second conductive film are etched.
It can be tolerated even if the film thickness is gradually decreased. Natural oxide film is 0.5
Since it is ~ 1 nm, the same film thickness reduction cannot be tolerated.

【0020】また、第1の不純物領域上のゲート酸化膜
の膜厚は、第1の絶縁膜と第2の絶縁膜とによって決ま
るので、チャネル上のゲート酸化膜と異なる適当な膜厚
が設定できるという効果も有する。
Since the thickness of the gate oxide film on the first impurity region is determined by the first insulating film and the second insulating film, an appropriate film thickness different from the gate oxide film on the channel is set. It also has the effect of being able to.

【0021】第1の不純物領域上のゲート酸化膜の膜厚
を大きくすると、ゲート電極とソース,ドレイン領域と
の重なりの静電容量が小さくなり、第1の不純物領域上
のゲート酸化膜の膜厚を小さくすると、MOSFETが
ON状態になったとき、第1の不純物領域の抵抗が小さ
くなる。例えば、第1の不純物領域上のゲート酸化膜を
15nm,チャネル上のゲート酸化膜を10nmとする
と、ゲート電極とソース,ドレイン領域との重なりの静
電容量は、第1の不純物領域上のゲート酸化膜の膜厚が
チャネル上のゲート酸化膜の膜厚と同じである場合と比
べ、空乏層を無視すると、67%になる。
When the thickness of the gate oxide film on the first impurity region is increased, the capacitance of the overlap between the gate electrode and the source / drain regions is reduced, and the film of the gate oxide film on the first impurity region is reduced. When the thickness is reduced, the resistance of the first impurity region is reduced when the MOSFET is turned on. For example, assuming that the gate oxide film on the first impurity region is 15 nm and the gate oxide film on the channel is 10 nm, the overlapping capacitance between the gate electrode and the source / drain region is equal to the gate on the first impurity region. When the depletion layer is ignored, it is 67% as compared with the case where the film thickness of the oxide film is the same as the film thickness of the gate oxide film on the channel.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を説明するための縦断面
図である。
FIG. 1 is a vertical cross-sectional view for explaining a first embodiment of the present invention.

【図2】本発明の第1の実施例の半導体装置に係わる製
造方法を説明するための主要工程における縦断面図であ
る。
FIG. 2 is a vertical cross-sectional view in the main process for explaining the manufacturing method according to the semiconductor device of the first embodiment of the present invention.

【図3】本発明の第2の実施例を説明するための縦断面
図である。
FIG. 3 is a vertical sectional view for explaining a second embodiment of the present invention.

【図4】従来のLDD構造のMOSFETを説明するた
めの縦断面図である。
FIG. 4 is a vertical sectional view for explaining a conventional LDD structure MOSFET.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 第1の絶縁膜 3 第1の導電膜 4a,4b 第1の不純物領域 5 第2の絶縁膜 6 第2の導電膜 7a,7b 第2の不純物領域 8a,8b 側壁 9 自然酸化膜 1 Silicon substrate 2 First insulating film 3 First conductive film 4a, 4b First impurity region 5 Second insulating film 6 Second conductive film 7a, 7b Second impurity region 8a, 8b Side wall 9 Natural oxide film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一導電型シリコン基板の一主面上に第1
の絶縁膜を有し、 前記第1の絶縁膜上の所定の領域に第1の導電膜を有
し、 前記第1の導電膜をはさむ左右の前記シリコン基板に逆
導電型の第1の不純物領域を有し、 前記第1の導電膜を覆う第2の絶縁膜を有し、 前記第2の絶縁膜上で前記第1の導電膜を覆い、前記第
1の不純物領域上に延在する第2の導電膜を有し、 前記第2の導電膜をはさむ左右の前記シリコン基板に前
記第1の不純物領域よりも不純物濃度が高い逆導電型の
第2の不純物領域を有することを特徴とする半導体装
置。
1. A first conductive type silicon substrate having a first surface on a main surface thereof.
An insulating film, a first conductive film is provided in a predetermined region on the first insulating film, and a first conductivity type impurity is provided on the left and right silicon substrates sandwiching the first conductive film. A region, a second insulating film covering the first conductive film, covering the first conductive film on the second insulating film, and extending on the first impurity region. A second conductive film, and the second conductive film having opposite conductivity type second impurity regions having an impurity concentration higher than that of the first impurity region on the left and right silicon substrates sandwiching the second conductive film. Semiconductor device.
【請求項2】 一導電型シリコン基板の一主面上に第1
の導電膜を順次形成する工程と、 フォトエッチング法を用いて前記第1の導電膜をパター
ンニングする工程と、 全面に逆導電型の不純物をイオン注入して前記第1の導
電膜をはさむ左右の前記シリコン基板に第1の不純物領
域を形成する工程と、 前記第1の導電膜を覆う第2の絶縁膜を形成する工程
と、 全面に第2の導電膜を形成する工程と、 前記第1の導電膜を覆い、前記第1の不純物領域上に延
在するようにフォトエッチング法を用いて前記第2の導
電膜をパターンニングする工程と、 全面に逆導電型の不純物をイオン注入して前記第2の導
電膜をはさむ左右の前記シリコン基板に前記第1の不純
物領域よりも不純物濃度が高い第2の不純物領域を形成
する工程と、 を有することを特徴とする半導体装置の製造方法。
2. A first conductive type silicon substrate having a first surface on a main surface thereof.
Sequentially forming the conductive film, and patterning the first conductive film by using a photo-etching method. Left and right sandwiching the first conductive film by ion-implanting impurities of opposite conductivity type into the entire surface. Forming a first impurity region on the silicon substrate; forming a second insulating film covering the first conductive film; forming a second conductive film on the entire surface; Patterning the second conductive film by using a photoetching method so as to cover the first conductive film and extend over the first impurity region; and ion-implanting impurities of opposite conductivity type on the entire surface. Forming a second impurity region having a higher impurity concentration than the first impurity region on the left and right silicon substrates sandwiching the second conductive film. .
JP18851191A 1991-07-29 1991-07-29 Semiconductor device and its manufacture Pending JPH0536716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18851191A JPH0536716A (en) 1991-07-29 1991-07-29 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18851191A JPH0536716A (en) 1991-07-29 1991-07-29 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH0536716A true JPH0536716A (en) 1993-02-12

Family

ID=16225004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18851191A Pending JPH0536716A (en) 1991-07-29 1991-07-29 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH0536716A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052873A (en) * 1999-06-04 2001-02-23 Semiconductor Energy Lab Co Ltd Opto-electronic device, its making method, and electronic device
JP2011008283A (en) * 1999-02-24 2011-01-13 Semiconductor Energy Lab Co Ltd Display device
US9178177B2 (en) 1999-06-04 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and electronic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011008283A (en) * 1999-02-24 2011-01-13 Semiconductor Energy Lab Co Ltd Display device
JP2001052873A (en) * 1999-06-04 2001-02-23 Semiconductor Energy Lab Co Ltd Opto-electronic device, its making method, and electronic device
JP4730994B2 (en) * 1999-06-04 2011-07-20 株式会社半導体エネルギー研究所 Electro-optical device, manufacturing method thereof, and electronic device
US9178177B2 (en) 1999-06-04 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and electronic device

Similar Documents

Publication Publication Date Title
JP2662325B2 (en) Structure of field effect semiconductor device and method of manufacturing the same
JP2707977B2 (en) MOS type semiconductor device and method of manufacturing the same
US20050233513A1 (en) MOS transistor having a recessed gate electrode and fabrication method thereof
JPH11121739A (en) Semiconductor device and manufacture thereof
JPH0536716A (en) Semiconductor device and its manufacture
JPH113993A (en) Semiconductor device and its manufacture
JPH06112219A (en) Semiconductor device and its manufacture
JPS6245071A (en) Manufacture of semiconductor device
JPH07106337A (en) Semiconductor device and manufacture thereof
US6933561B2 (en) Semiconductor device and method of manufacturing the same
JP2602589B2 (en) Method for manufacturing LDD transistor
KR100347244B1 (en) Method for manufacturing semiconductor device
KR100309645B1 (en) Semiconductor device and fabricating method thereof
JPH10261795A (en) Insulating gate-type field-effect transistor and its manufacture
KR100487503B1 (en) A semiconductor device and method of fabricating the same
JPH06112218A (en) Semiconductor device and its manufacture
JPH088430A (en) Mos transistor and its forming method
JPS62130563A (en) Semiconductor device
JP2765142B2 (en) Method for manufacturing semiconductor device
JPH01101667A (en) Manufacture of semiconductor integrated circuit device
KR0172832B1 (en) Method of fabricating semiconductor device
JPH04234132A (en) Manufacture of mos type semiconductor device
KR19990025043A (en) Method of forming LED of highly reliable semiconductor device
JPH0458562A (en) Mas transistor and manufacture thereof
JPH02262340A (en) Semiconductor device and its manufacture