JPH0536602A - Crystal growth method of hexagonal crystal semiconductor - Google Patents

Crystal growth method of hexagonal crystal semiconductor

Info

Publication number
JPH0536602A
JPH0536602A JP18910891A JP18910891A JPH0536602A JP H0536602 A JPH0536602 A JP H0536602A JP 18910891 A JP18910891 A JP 18910891A JP 18910891 A JP18910891 A JP 18910891A JP H0536602 A JPH0536602 A JP H0536602A
Authority
JP
Japan
Prior art keywords
crystal
substrate
growth
plane
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18910891A
Other languages
Japanese (ja)
Other versions
JP3142312B2 (en
Inventor
Tsutomu Uemoto
勉 上本
Yukio Watanabe
幸雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP03189108A priority Critical patent/JP3142312B2/en
Publication of JPH0536602A publication Critical patent/JPH0536602A/en
Application granted granted Critical
Publication of JP3142312B2 publication Critical patent/JP3142312B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Abstract

PURPOSE:To obtain a growth method of SiC crystal which has little crystal defect and is excellent in surface morphology. CONSTITUTION:In crystal whose main component is SiC of hexagonal or rhombohedral crystal, a (0001) face substrate 1a is used. After trenches 11 are formed on the substrate 1a, the same crystal as the substrate 1a is grown. Thereby surface morphology is very enhanced, the yield in a production process is improved, and a light emitting diode remarkably excellent in luminous efficiency can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は可視発光ダイオードまた
は耐環境素子に使用する六方晶半導体の結晶成長方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a hexagonal semiconductor for use in a visible light emitting diode or an environment resistant device.

【0002】[0002]

【従来の技術】炭化珪素は広い禁制帯幅を持ち(2.2
〜3.3eV)、かつpn接合やモス(MOS)構造を
容易につくることができる。このため、高温動作素子、
大電力素子、放射線検出器、可視発光素子として期待が
なされている。しかし、工業的な生産が行えない理由
は、結晶成長が難しいという欠点があるためである。
2. Description of the Related Art Silicon carbide has a wide band gap (2.2
.About.3.3 eV), and a pn junction or a MOS (MOS) structure can be easily formed. Therefore, the high temperature operating element,
It is expected as a high power device, a radiation detector, and a visible light emitting device. However, the reason why industrial production cannot be performed is that crystal growth is difficult.

【0003】デバイスをつくるような高品質な結晶は単
結晶基板上にエピタキシャル成長を行うことにより得ら
れる。その方法としては、グラファイト坩堝中にSi融
液を溜めた後、基板を該融液に浸し、坩堝から溶け出し
たカーボンを基板上に析出させるという液相成長(LP
E)法、及び、SiとCの水素化物または塩化物のガス
を基板上に導入し熱分解させ成長させる化学堆積(CV
D)法の2通りが主に行われている。しかし、これまで
CVD法では発光素子として使用できる程度の結晶が得
られていない。これに対し、LPE法ではたとえばJp
n.J.Appl.Phys.,26,L1815(1
979)に示されているように、螺旋転位による異常成
長が起こり表面モフォロジーが悪くなるという問題があ
った。このような結晶で作成したダイオードは通電中に
特性が劣化するといった問題があった。これを解決する
方法として特開昭63−179516号に示されるよう
に基板の方向をずらした基板(以下オフ(off)基板
と称す)を使うという方法が用いられていた。しかし、
この方法では図3に示すように、膜厚を厚く成長すると
表面に1方向のうねりができ、その後の製造プロセスで
電極パターンがきれいにできず、歩留りが悪かった。ま
た、オフ基板を切り出すとき、オフしない基板より一つ
のインゴットからとれる枚数が少なく、基板表面の研磨
も難しいなどの問題があった。また、結晶欠陥といった
観点から見てもオフ基板が得られるわけではなく、イン
クルージョンの様な大きな結晶欠陥に対しては、オフ基
板でない方が欠陥が広がらないことが判ってきた。
High quality crystals for making devices can be obtained by epitaxial growth on a single crystal substrate. As a method for this, a liquid phase growth (LP) in which a Si melt is stored in a graphite crucible, the substrate is immersed in the melt, and carbon melted from the crucible is deposited on the substrate
E) method, and chemical vapor deposition (CV) in which a hydride or chloride gas of Si and C is introduced on the substrate and thermally decomposed and grown.
D) Method 2 is mainly used. However, until now, a crystal that can be used as a light emitting device has not been obtained by the CVD method. On the other hand, in the LPE method, for example, Jp
n. J. Appl. Phys. , 26, L1815 (1
979), there is a problem that abnormal growth due to screw dislocation occurs and the surface morphology deteriorates. A diode made of such a crystal has a problem that its characteristics deteriorate during energization. As a method for solving this, there has been used a method of using a substrate (hereinafter referred to as an off substrate) in which the direction of the substrate is shifted as shown in JP-A-63-179516. But,
In this method, as shown in FIG. 3, when the film was grown thick, undulations were formed in one direction on the surface, the electrode pattern could not be cleaned in the subsequent manufacturing process, and the yield was poor. In addition, when cutting off off-substrates, the number of sheets that can be taken from one ingot is smaller than that of non-off substrates, and it is difficult to polish the substrate surface. Further, from the viewpoint of crystal defects, it is not possible to obtain an off-substrate, and it has been found that, with respect to large crystal defects such as inclusions, the defects do not spread if they are not off-substrates.

【0004】[0004]

【発明が解決しようとする課題】このように従来の成長
方法で成長した結晶は、基板表面のモフォロジーが悪
く、製品化を行ったとき歩留りを低下させる原因となっ
ていた。
The crystal thus grown by the conventional growth method has a poor morphology of the substrate surface, which has been a cause of lowering the yield when the product is commercialized.

【0005】本発明は上記事情を考慮しなされたもの
で、その目的とするところは、SiC結晶において、欠
陥の少なく表面モフォロジーの良好なSiC結晶の成長
方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for growing a SiC crystal having few defects and good surface morphology.

【0006】[0006]

【課題を解決するための手段】本発明に係る六方晶半導
体の結晶成長方法は、(0001)面を有する六方晶半
導体基板を用意する工程と、前記基板の主面に線状の凹
凸部を形成する工程と、前記主面に前記基板と同じ結晶
構造の半導体単結晶を成長形成する工程を含むことを特
徴とする。
A hexagonal semiconductor crystal growth method according to the present invention comprises a step of preparing a hexagonal semiconductor substrate having a (0001) plane, and a linear uneven portion on the main surface of the substrate. The method is characterized by including a step of forming and a step of growing and forming a semiconductor single crystal having the same crystal structure as the substrate on the main surface.

【0007】[0007]

【作用】六方晶半導体例えばSiCにおいては、(00
01)面が最も成長する速度が遅く、そのため成長面を
(0001)面からずらすとずらした方向に非常に成長
しやすい。このため、従来(0001)面から数度ずら
した面を使用して成長速度を高くして結晶成長を行って
いた。また、このような成長条件で行った結晶には欠陥
が少ないことが判っていた。しかし、このような成長で
は細かい(0001)面のステップが多く存在し、これ
が表面モフォロジーを悪くする原因となっている。本発
明では(0001)面からずらすことなく表面に溝を形
成し、溝の側面から、結晶を成長を行っている。このよ
うにすると、結晶は溝を埋めさらに成長する。また、こ
のようにして成長した結晶の表面は非常に平滑であるこ
とが発明者の実験結果で判った。
In a hexagonal semiconductor such as SiC, (00
The growth rate of the (01) plane is the slowest, and therefore, when the growth plane is shifted from the (0001) plane, the growth is very easy. For this reason, the crystal growth has been performed by using a plane that is shifted from the (0001) plane by several degrees and increasing the growth rate. Further, it has been known that crystals grown under such growth conditions have few defects. However, in such growth, there are many fine (0001) plane steps, which causes deterioration of the surface morphology. In the present invention, a groove is formed on the surface without shifting from the (0001) plane, and a crystal is grown from the side surface of the groove. In this way, the crystal fills the groove and grows further. Further, it has been found from the experimental result by the inventor that the surface of the crystal thus grown is very smooth.

【0008】なお、本発明は従来用いられているグラフ
エピタキシーといわれる方法とはまったく作用の異なる
ものである。グラフエピタキシーでは基板は成長結晶と
はまったく異なった別の結晶か、単結晶ではない基板を
用いて、その表面に水平方向のパターンを形成し、その
構造に沿ってまず優先核を成長させそれを種結晶として
成長をするものである。しかし本方法では優先核の成長
は起こらない。本発明ではSiCにおいては〈000
1〉方向とそれ以外の方向で結晶成長速度が異なること
を使用しているもので成長がもっとも遅い〈0001〉
以外の方向に成長を行うようにしている。このようにす
ることにより、もっとも成長の遅い〈0001〉方向に
垂直な(0001)面が現れることを使用するものであ
る。従来のオフ基板を使用する方法でも成長速度の差を
利用するがこの場合成長しやすい(0001)面は基板
の表面とはある角度を有している。このため、オフ基板
では基板の表面にうねりを生じることとなる。このよう
に、平滑な面をつくる為には、(0001)面上に成長
を行わなくてはならない。本発明はこの(0001)面
上に成長し、且つ成長速度の面依存性を利用するといっ
た従来互いに矛盾することを実現使用とするものであ
る。
The present invention has a completely different action from the conventionally used method called graph epitaxy. In graph epitaxy, the substrate is a different crystal from the grown crystal, or a substrate that is not a single crystal, is used to form a horizontal pattern on its surface, and preferential nuclei are grown first along the structure. It grows as a seed crystal. However, this method does not cause the growth of priority nuclei. In the present invention, in SiC, <000
It uses the fact that the crystal growth rate is different between the 1> direction and the other directions, and the slowest growth <0001>
We try to grow in other directions. By doing so, it is used that the (0001) plane perpendicular to the <0001> direction, which has the slowest growth, appears. The conventional method using an off-substrate also utilizes the difference in growth rate, but in this case, the (0001) plane where growth is likely to occur has an angle with the surface of the substrate. Therefore, in the off-substrate, the surface of the substrate is wavily formed. Thus, in order to form a smooth surface, it is necessary to grow on the (0001) plane. The present invention realizes and uses the conventional contradictions of growing on the (0001) plane and utilizing the plane dependence of the growth rate.

【0009】[0009]

【実施例】以下、本発明の実施例について説明する。図
1に本発明に使用する基板を断面図で示す。基板1はア
チソン法で作製された基板を用い、(0001)面に平
行に研磨する。その後、(1120)または(110
0)方向に表面をダイアモンドの針で表面に線を切るこ
とによって溝11が形成された基板(0001)面1a
が形成される。その後、Si融液を溶媒とした液相エピ
タキシャル(LPE)法により表面に結晶を成長させ
る。LPEの成長法は以下のように行う。まず、グラフ
ァイト製の坩堝にシリコンを収容し高周波で加熱する。
グラファイト坩堝には温度差を設け、低温部にSiC基
板を浸す。そして、成長温度は1650℃、成長雰囲気
はArで行った。
EXAMPLES Examples of the present invention will be described below. FIG. 1 is a sectional view showing a substrate used in the present invention. As the substrate 1, a substrate manufactured by the Acheson method is used, and is polished parallel to the (0001) plane. After that, (1120) or (110
The substrate (0001) surface 1a in which the groove 11 is formed by cutting the surface in the 0) direction with a diamond needle.
Is formed. Then, a crystal is grown on the surface by a liquid phase epitaxial (LPE) method using a Si melt as a solvent. The growth method of LPE is performed as follows. First, silicon is housed in a graphite crucible and heated at high frequency.
A temperature difference is provided in the graphite crucible, and the SiC substrate is immersed in the low temperature portion. The growth temperature was 1650 ° C. and the growth atmosphere was Ar.

【0010】図2に、基板1上に溝11を形成し5μm
程度に薄く成長させた時の表面写真を模写して示す。溝
の縁から成長した結晶は表面が非常に平滑であり、さら
に膜厚を厚くすると表面に何の模様も見られなくなっ
た。また、図3には基板主面に設けられた凹凸部のう
ち、凸部(畝)21が前記図2におけると同様に示され
ている。これは、従来技術の(0001)よりずらした
面上に成長させた時に比較して非常に表面状態の改善が
はかられた結果である。また、この結晶を用いることに
より製品の歩留りが大幅に改善された。
In FIG. 2, a groove 11 is formed on the substrate 1 to form a groove of 5 μm.
A photo of the surface when grown to a thin thickness is shown. The crystal grown from the edge of the groove had a very smooth surface, and when the film thickness was further increased, no pattern was seen on the surface. Further, in FIG. 3, among the concave and convex portions provided on the main surface of the substrate, the convex portion (ridge) 21 is shown in the same manner as in FIG. This is a result of the remarkable improvement of the surface state as compared with the case of growing on the surface shifted from (0001) in the conventional technique. In addition, the yield of products was significantly improved by using this crystal.

【0011】本発明は上記実施例に限らない。本実施例
では(0001)面上にダイアモンドの針を用いて溝を
形成したが、溝はエッチング法により形成することもで
きる。特にこの場合溝の幅や成長する方位の制御が容易
になり、膜の制御が容易になる。また、このとき、反応
性イオンエッチング(RIE)等の気相エッチング法を
用いることにより容易に溝の形を制御することができ、
その結果成長する結晶の特性も良くなる。
The present invention is not limited to the above embodiment. In this embodiment, the groove is formed on the (0001) plane by using a diamond needle, but the groove may be formed by an etching method. In this case, in particular, it becomes easy to control the width of the groove and the growing direction, and the film can be easily controlled. At this time, the shape of the groove can be easily controlled by using a vapor phase etching method such as reactive ion etching (RIE).
As a result, the characteristics of the growing crystal are improved.

【0012】次に、前記本実施例では成長は液相法によ
って実施したが、昇華法のような気相法で成長した時も
単結晶化率の向上がはかられた。また、CVD法に本発
明を用いた場合、結晶中の欠陥が大幅に低下することが
発明者等の研究により判明した。
Next, although the growth was carried out by the liquid phase method in the present embodiment, the single crystallization rate could be improved even when the growth was carried out by the vapor phase method such as the sublimation method. Further, it has been found by the study of the inventors that when the present invention is used for the CVD method, the defects in the crystal are significantly reduced.

【0013】また、溝の方向はどちらの方向に向いても
よいが、(1120)または(1100)方向に刻んだ
ときが最もきれいな成長を行える。本発明は(000
1)方向のSi面、C面いずれの場合も同じ効果を有す
る。
The groove may be oriented in either direction, but the finest growth can be obtained when the groove is carved in the (1120) or (1100) direction. The present invention is (000
The same effect can be obtained in both cases of Si plane and C plane in the 1) direction.

【0014】さらに、本発明を使用して成長する結晶は
SiCだけではない。結晶形が同じ六方晶溝造を有し、
格子定数の近い結晶を成長する時にも有効である。特
に、AlN、GaNは格子常数が近く、非常に有利であ
る。図4に本発明を用いSiC上にGaNのMIS発光
ダイオードを成長形成したものを例示する。図中、1は
SiC基板で、その主面は溝が形成された(0001)
面1aである。前記(0001)面にはGaNエピ層2
が形成され、これに設けられた一方の電極4aと、前記
GaNエピ層2にZnドープGaN層3を介して設けら
れた他方の電極4bが夫々形成されている。この実施例
によって従来の発光ダイオードに比し発光光度が2倍を
超える発光ダイオードが得られた。なお、図中の6は電
極を導出するボンディングワイヤである。
Moreover, SiC is not the only crystal grown using the present invention. The crystal form has the same hexagonal groove structure,
It is also effective when growing a crystal having a close lattice constant. In particular, AlN and GaN have very close lattice constants and are very advantageous. FIG. 4 illustrates an example in which a GaN MIS light emitting diode is grown and formed on SiC using the present invention. In the figure, 1 is a SiC substrate, and a groove is formed on its main surface (0001)
It is the surface 1a. GaN epi layer 2 is formed on the (0001) plane.
Is formed, and one electrode 4a provided on this is formed, and the other electrode 4b provided on the GaN epi layer 2 via the Zn-doped GaN layer 3 is formed. According to this example, a light emitting diode having a luminous intensity more than double that of the conventional light emitting diode was obtained. In the figure, 6 is a bonding wire for leading out the electrode.

【0015】その他、本発明はその主旨に反しない限り
種々変形して使用することができる。
In addition, the present invention can be used by being variously modified without departing from the spirit of the invention.

【0016】[0016]

【発明の効果】本発明によれば、SiC単結晶をSiC
基板上に成長させた場合に表面状態が悪くなる欠点が解
消され、発光効率のすぐれた発光ダイオードが得られ
る。その結果製品の歩留まりが大幅に向上し、その結
果、製品の製造原価が大幅に低下する顕著な効果があ
る。
According to the present invention, a SiC single crystal is formed into SiC.
A defect that the surface condition is deteriorated when grown on a substrate is solved, and a light emitting diode having excellent luminous efficiency can be obtained. As a result, the yield of the product is significantly improved, and as a result, the manufacturing cost of the product is significantly reduced, which is a remarkable effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による基板の形状を説明するための断面
図。
FIG. 1 is a sectional view for explaining the shape of a substrate according to the present invention.

【図2】溝上に5μm程度成長させた時の表面状態を示
す断面図。
FIG. 2 is a cross-sectional view showing a surface state when grown on a groove by about 5 μm.

【図3】従来方法による成長の表面状態を示す図。FIG. 3 is a diagram showing a surface state of growth by a conventional method.

【図4】本発明によるSiC上を用いて形成されたGa
NのMIS発光ダイオードの断面図。
FIG. 4 Ga formed using on SiC according to the present invention
Sectional drawing of N's MIS light emitting diode.

【符号の説明】[Explanation of symbols]

1 SiC基板 1a 溝が形成された(0001)面 2 GaNエピ層 3 ZnドープGaN層 4 Al電極 5 ボンディングワイヤ 1 SiC substrate 1a (0001) plane in which a groove is formed 2 GaN epi layer 3 Zn-doped GaN layer 4 Al electrode 5 Bonding wire

Claims (1)

【特許請求の範囲】 【請求項1】 (0001)面を有する六方晶半導体基
板を用意する工程と、前記基板の主面に線状の凹凸部を
形成する工程と、前記主面に前記基板と同じ結晶構造の
半導体単結晶を成長形成する工程を含む六方晶半導体の
結晶成長方法。
Claim: What is claimed is: 1. A step of preparing a hexagonal semiconductor substrate having a (0001) plane, a step of forming linear irregularities on the main surface of the substrate, and the substrate on the main surface. A method for growing a hexagonal semiconductor including the step of growing and forming a semiconductor single crystal having the same crystal structure as described above.
JP03189108A 1991-07-30 1991-07-30 Crystal growth method for hexagonal semiconductor Expired - Lifetime JP3142312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03189108A JP3142312B2 (en) 1991-07-30 1991-07-30 Crystal growth method for hexagonal semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03189108A JP3142312B2 (en) 1991-07-30 1991-07-30 Crystal growth method for hexagonal semiconductor

Publications (2)

Publication Number Publication Date
JPH0536602A true JPH0536602A (en) 1993-02-12
JP3142312B2 JP3142312B2 (en) 2001-03-07

Family

ID=16235507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03189108A Expired - Lifetime JP3142312B2 (en) 1991-07-30 1991-07-30 Crystal growth method for hexagonal semiconductor

Country Status (1)

Country Link
JP (1) JP3142312B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6617182B2 (en) 1998-09-14 2003-09-09 Matsushita Electric Industrial Co., Ltd. Semiconductor device and semiconductor substrate, and method for fabricating the same
US6620238B2 (en) 1998-07-31 2003-09-16 Sharp Kabushiki Kaisha Nitride semiconductor structure, method for producing a nitride semiconductor structure, and light emitting device
JP2007180556A (en) * 1997-10-07 2007-07-12 Cree Inc Nitride photonic device of group iii on silicon carbide substrate having conductive buffer intermediate layer structure
US8664687B2 (en) * 2004-03-31 2014-03-04 Samsung Electronics Co., Ltd. Nitride semiconductor light-emitting device and process for producing the same
JP2014231463A (en) * 2013-05-29 2014-12-11 トヨタ自動車株式会社 MANUFACTURING METHOD OF SiC SINGLE CRYSTAL

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180556A (en) * 1997-10-07 2007-07-12 Cree Inc Nitride photonic device of group iii on silicon carbide substrate having conductive buffer intermediate layer structure
US6620238B2 (en) 1998-07-31 2003-09-16 Sharp Kabushiki Kaisha Nitride semiconductor structure, method for producing a nitride semiconductor structure, and light emitting device
US6617182B2 (en) 1998-09-14 2003-09-09 Matsushita Electric Industrial Co., Ltd. Semiconductor device and semiconductor substrate, and method for fabricating the same
US6815726B2 (en) 1998-09-14 2004-11-09 Matsushita Electric Industrial Co., Ltd. Semiconductor device and semiconductor substrate, and method of fabricating the same
US8664687B2 (en) * 2004-03-31 2014-03-04 Samsung Electronics Co., Ltd. Nitride semiconductor light-emitting device and process for producing the same
JP2014231463A (en) * 2013-05-29 2014-12-11 トヨタ自動車株式会社 MANUFACTURING METHOD OF SiC SINGLE CRYSTAL

Also Published As

Publication number Publication date
JP3142312B2 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
US7790489B2 (en) III-V group nitride system semiconductor self-standing substrate, method of making the same and III-V group nitride system semiconductor wafer
EP1367150B1 (en) Production method for semiconductor crystal and semiconductor luminous element
JP5531983B2 (en) Method for manufacturing group III-V nitride semiconductor substrate
JP3888374B2 (en) Manufacturing method of GaN single crystal substrate
JP2005101475A (en) Iii-v group nitride semiconductor substrate and method for manufacturing the same
JP4651207B2 (en) Semiconductor substrate and manufacturing method thereof
EP2376680A1 (en) Manufacturing of low defect density free-standing gallium nitride substrates and devices fabricated thereof
KR102372706B1 (en) β-Ga₂O₃-BASED-SINGLE CRYSTAL SUBSTRATE
JPH06105797B2 (en) Semiconductor substrate and manufacturing method thereof
TW561652B (en) Method of manufacturing compound semiconductor substrate
US20020106842A1 (en) Methods for growth of relatively large step-free sic crystal surfaces
JP2006290697A (en) Nitride semiconductor substrate and its manufacturing method
JP4664464B2 (en) Silicon carbide single crystal wafer with small mosaic
JP4690906B2 (en) Seed crystal for growing silicon carbide single crystal, method for producing the same, and method for producing silicon carbide single crystal
JP2002299253A5 (en)
KR100450781B1 (en) Method for manufacturing GaN single crystal
JP4408247B2 (en) Seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
EP1122341A1 (en) Single crystal SiC
JPH1179897A (en) Crystal growth for gallium nitride thick film
JPH07131067A (en) Method for manufacturing silicon carbide wafer and method for manufacturing silicon carbide light emitting diode element
JPH0536602A (en) Crystal growth method of hexagonal crystal semiconductor
KR20090094516A (en) Base substrate for gallium nitride, fabrication method of base substrate, and fabrication method of gallium nitride
JP2006306722A (en) MANUFACTURING METHOD OF GaN SINGLE CRYSTAL SUBSTRATE, AND GaN SINGLE CRYSTAL SUBSTRATE
JP2004035360A (en) GaN SINGLE CRYSTAL SUBSTRATE, NITRIDE SEMICONDUCTOR EPITAXIAL SUBSTRATE, AND ITS MANUFACTURING METHOD
JP5152293B2 (en) Manufacturing method of silicon carbide single crystal wafer with small mosaic property

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071222

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11