JPH05340816A - Spectroscopic measuring instrument - Google Patents

Spectroscopic measuring instrument

Info

Publication number
JPH05340816A
JPH05340816A JP14751992A JP14751992A JPH05340816A JP H05340816 A JPH05340816 A JP H05340816A JP 14751992 A JP14751992 A JP 14751992A JP 14751992 A JP14751992 A JP 14751992A JP H05340816 A JPH05340816 A JP H05340816A
Authority
JP
Japan
Prior art keywords
integration
time
value
integrated value
integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14751992A
Other languages
Japanese (ja)
Other versions
JP3396237B2 (en
Inventor
Yoichi Harada
洋一 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP14751992A priority Critical patent/JP3396237B2/en
Publication of JPH05340816A publication Critical patent/JPH05340816A/en
Application granted granted Critical
Publication of JP3396237B2 publication Critical patent/JP3396237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To reduce the measuring time of a spectroscopic measuring instrument by making the instrument to perform integrating operations at different integrating time and using the largest one of the integrated values smaller than saturated integrated values as an integrated value. CONSTITUTION:The light spectroscopically separated in a spectroscope 1 forms an image in a one-dimensional photodetector 2 provided on the wavelength dispersing surface of the spectroscope 1. A plurality of light detecting elements are arranged on the photodetector 2. A control circuit 3 first makes the photodetector 2 to perform integrating operations during the period of 0.01 second only. After the integrating operations, the integrated value of each element is stored in a storage circuit 4. Then the circuit 3 makes the photodetector 2 to successively perform integrating operations during the periods of 0.1, 1, 10, 100 seconds only and the integrated values obtained by each element corresponding to the integrating periods of time are stored in the circuit 4. When all integrating operations are completed, a detection circuit 5 detects the largest integrated values among the integrated values of each element smaller than the saturated integrated value of each element measured in advance. A conversion circuit 6 converts the detected integrated values into integrated values per unit integrating period of time by using the integrating periods of time as measured values.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】分光器の波長分散面上に、積分動
作をする一次元光検出器または、二次元光検出器を配置
して、分光測定を行なう分光測定装置に関し、特に測定
のダイナミックレンジを広げることに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectroscopic measurement device for performing spectroscopic measurement by disposing a one-dimensional photodetector or a two-dimensional photodetector that performs an integral operation on a wavelength dispersion surface of the spectroscope, and particularly to a dynamic measurement Regarding expanding the range.

【0002】[0002]

【従来の技術】飽和しない程度に十分短い時間の積分動
作を繰り返して行い、積分値を積算し、目標値に達する
までの積分回数を求め、積分回数と、積分値の総和とか
ら、測定値を求めていた。あるいは、飽和しない適当な
時間の積分動作を一定回数繰り返した後、その積分値を
積算して、測定値を求めていた。
2. Description of the Related Art The integration operation is repeated for a time short enough not to saturate, the integrated values are integrated, the number of integrations until reaching a target value is obtained, and the measured value is calculated from the number of integrations and the sum of integrated values Was seeking. Alternatively, the integration operation is repeated a certain number of times without saturation, and then the integration values are integrated to obtain a measurement value.

【0003】[0003]

【発明が解決しようとする課題】広いダイナミックレン
ジを得るために、飽和が起こらないように積分時間を十
分小さくするときには、積分動作を繰り返すことや、積
算した値が目標値よりも小さいことを確認することに、
積分時間と同等の多大な時間を要し、測定時間の増大を
もたらす。
In order to obtain a wide dynamic range, when the integration time is made sufficiently small so that saturation does not occur, it is necessary to repeat the integration operation or confirm that the integrated value is smaller than the target value. To do
A large amount of time equivalent to the integration time is required, resulting in an increase in measurement time.

【0004】ダイナミックレンジを一桁拡大するために
は、積分動作を十回繰り返すことが必要である。このた
め、三から四桁のダイナミックレンジの拡大を行なうこ
とは、積分回数の指数的な増加を伴い、測定時間の指数
的な増加を招き、ほとんど不可能であった。また、検出
器に入射する光が極めて弱い場合には、検出器から積分
値もきわめて小さく、積算する際に量子化誤差が発生す
るとともに、周囲からのノイズの影響が無視できなくな
り、SN比が悪くなった。
In order to expand the dynamic range by one digit, it is necessary to repeat the integrating operation ten times. Therefore, it is almost impossible to expand the dynamic range by three to four digits, as the number of integration increases exponentially and the measurement time exponentially increases. Further, when the light incident on the detector is extremely weak, the integrated value from the detector is also very small, a quantization error occurs when integrating, and the influence of noise from the surroundings cannot be ignored, and the SN ratio is It got worse.

【0005】[0005]

【課題を解決するための手段】異なる積分時間で積分動
作を行ない、飽和積分値よりも小さいものの中で最大の
ものを積分値として用い、積分時間が異なるものに付い
ては、積分時間に依って、換算を行ない、測定値とす
る。ダイナミックレンジを拡大するためには、積分時間
を一桁ずつ変えるのが効果的である。
[Means for Solving the Problems] The integration operation is performed at different integration times, and the largest one of the values smaller than the saturation integration value is used as the integration value. Convert it to obtain the measured value. In order to expand the dynamic range, it is effective to change the integration time digit by digit.

【0006】[0006]

【作用】 必要なダイナミックレンジの拡大に必要なだ
け、(回数ではなく)、積分時間を変化させる。また、
光が弱い場合には、積分時間の長い積分値を用いること
により積分値を大きくする。
[Operation] The integration time is changed (not the number of times) as necessary to expand the required dynamic range. Also,
When the light is weak, the integral value is increased by using the integral value having a long integral time.

【0007】[0007]

【実施例】以下実施例に基づき、詳細に説明する。図1
は、本発明を説明するブロック図である。分光器1の波
長分散面に配置された一次元光検出器2には、分光器1
内で分光された光が結像する。光検出器2上には、光を
検出する複数の素子が設けられている。分光器1内で分
光された光は、複数の素子上に、波長が異なるように入
射するように構成され、分光測定が行なわれる。本発明
による測定は、次のようにして行なわれる。
Embodiments will be described in detail below based on embodiments. Figure 1
FIG. 3 is a block diagram illustrating the present invention. The one-dimensional photodetector 2 arranged on the wavelength dispersion surface of the spectroscope 1 includes the spectroscope 1
The light dispersed inside forms an image. A plurality of elements that detect light are provided on the photodetector 2. The light dispersed in the spectroscope 1 is configured to be incident on a plurality of elements with different wavelengths, and spectroscopic measurement is performed. The measurement according to the present invention is performed as follows.

【0008】光検出器2としては、CCD、CID(Ch
arge Injection Device)+PDA(Photo−Diode Array)
等の固体素子が用いられる。分光器1に測定される光を
入射させる。制御回路3はまず、0.01秒だけ光検出
器2の積分動作を行なう。積分動作の後、各素子の積分
値を、記憶回路4に記憶する。続いて、制御回路3は、
0.1秒、1秒、10秒、100秒だけ光検出器2の積
分動作を順次行ない、各素子の各積分時間に対応した積
分値を、記憶回路4に記憶する。全ての積分動作が終了
したら、各素子毎に、予め測定してある、飽和積分値よ
りも小さい積分値の内で、最も大きな積分値を検出回路
5が検出する。検出された積分値を、積分時間を用い
て、単位積分時間当りの積分値に、換算回路6が換算し
測定値とする。
As the photodetector 2, CCD, CID (Ch
arge Injection Device) + PDA (Photo-Diode Array)
Solid-state devices such as The light to be measured is made incident on the spectroscope 1. The control circuit 3 first performs the integrating operation of the photodetector 2 for 0.01 seconds. After the integration operation, the integrated value of each element is stored in the storage circuit 4. Then, the control circuit 3
The integration operation of the photodetector 2 is sequentially performed for 0.1 seconds, 1 second, 10 seconds, and 100 seconds, and the integrated value corresponding to each integration time of each element is stored in the storage circuit 4. When all the integration operations are completed, the detection circuit 5 detects the largest integrated value of the integrated values smaller than the saturated integrated value, which is measured in advance for each element. Using the integration time, the detected integrated value is converted by the conversion circuit 6 into an integrated value per unit integration time to obtain a measured value.

【0009】なお、光検出器2への入射光を積分時間に
基づいて時間的に制限するシャッター機構を設け、積分
時間のゲートとすることができる。以後、図示しない測
定回路に依って測定値が処理され、分光測定が実施され
る。表1に測定の例を示す。
A shutter mechanism for temporally limiting the light incident on the photodetector 2 based on the integration time can be provided to serve as a gate for the integration time. After that, the measurement value is processed by the measurement circuit (not shown), and the spectroscopic measurement is performed. Table 1 shows an example of measurement.

【0010】[0010]

【表1】 [Table 1]

【0011】これは、素子を1024個並べた一次元光
検出器2の例である。各素子の飽和積分値は、1,00
0,000である。縦の欄には各素子が順番に並べられ
ており、横の欄には各素子の時間による積分値である。
表1に示すように、0.01秒から100秒まで一桁ず
つ異なる積分時間で積分動作を行ない、各積分時間によ
る積分値が得られる。各素子毎に、飽和積分値よりも小
さいものの内で最も大きな積分値を枠で囲ってある。こ
の積分値を積分時間で割ったものを測定値とすると、測
定値は、単位時間当りの積分値となり、積分時間の大小
には無関係で、光の強弱に比例したものになる。
This is an example of the one-dimensional photodetector 2 in which 1024 elements are arranged. The saturation integral value of each element is 1,00
It is 10,000. Each element is arranged in order in the vertical column, and the integrated value by time of each element is shown in the horizontal column.
As shown in Table 1, the integration operation is performed from 0.01 seconds to 100 seconds at different integration times by one digit, and the integrated value at each integration time is obtained. For each element, the largest integral value out of the saturated integral values is surrounded by a frame. If the measured value is obtained by dividing the integrated value by the integration time, the measured value becomes the integrated value per unit time, which is irrelevant to the magnitude of the integration time and is proportional to the intensity of light.

【0012】表2は、表1によって得られた測定値であ
る。
Table 2 shows the measured values obtained according to Table 1.

【0013】[0013]

【表2】 [Table 2]

【0014】これから、素子としてのダイナミックレン
ジは、0から1,000,000まで6桁であるが、測
定値のダイナミックレンジは、0.01から100,0
00,000まで、10桁であることがわかる。制御回
路3は、積分動作を積分時間が短いほうから順次行うよ
うに構成されるとともに、検出回路5は、積分動作の度
毎に積分値を検査し、光検出器2中の全ての素子の積分
値が飽和積分値を越えたら、制御回路3に終了信号を送
るように構成されるとともに、制御回路3は終了信号を
受けたら、測定を終了するように構成するようにしても
よい。
From now on, the dynamic range of the element is 6 digits from 0 to 1,000,000, but the dynamic range of the measured value is from 0.01 to 100,0.
It can be seen that there are 10 digits up to 0,000. The control circuit 3 is configured to sequentially perform the integration operation from the one having a shorter integration time, and the detection circuit 5 inspects the integration value for each integration operation to detect all the elements in the photodetector 2. When the integrated value exceeds the saturation integrated value, the end signal may be sent to the control circuit 3, and the control circuit 3 may be configured to end the measurement when the end signal is received.

【0015】また、制御回路3は、積分動作を積分時間
が短いほうから順次行うように構成されるとともに、検
出回路5は、最初の積分値を検査し、各素子の中で最小
の値を与える素子の積分値が、飽和積分値を越える時間
(飽和時間)を算出し、飽和時間を制御回路3に送るよ
うに構成されるとともに、制御回路3は飽和時間よりも
小さい範囲の積分時間でのみ積分動作を行うように構成
することも可能である。
Further, the control circuit 3 is configured to sequentially perform the integration operation from the one having a shorter integration time, and the detection circuit 5 inspects the first integration value to determine the minimum value among the elements. The integrated value of the given element is configured to calculate a time (saturation time) exceeding the saturation integrated value and send the saturation time to the control circuit 3, and the control circuit 3 has an integration time within a range smaller than the saturation time. It is also possible to configure so that only the integration operation is performed.

【0016】これと同様のことは、0.01秒の積分動
作を10,000回繰り返すことに依っても達成できる
が、その場合には、次のような障害が発生する。 (1) 積分値の、記憶や積算や目標値との大小の比較など
の処理に0.001秒から0.01秒程度の時間がかか
るため、測定に時間がかかる。 (2) 光強度が小さい場合には、積分値が小さいため、デ
ジタル値に変換する場合の量子化誤差が発生する。ま
た、積分値を送る際に周囲からのノイズを受け易い(こ
うしたノイズは、単位時間当りの積分値に関係なく一定
であると考えられる)。このため、一度に長い積分時間
の積分動作をすることに依るSN比の改善が少ない。
The same thing as this can be achieved by repeating the integration operation for 0.01 seconds 10,000 times, but in that case, the following obstacles occur. (1) Since it takes about 0.001 seconds to 0.01 seconds to perform processing such as storage of the integrated value, integration, and comparison with the target value, the measurement takes time. (2) When the light intensity is small, the integration value is small, so a quantization error occurs when converting to a digital value. Also, when sending the integrated value, it is susceptible to noise from the surroundings (such noise is considered to be constant regardless of the integrated value per unit time). Therefore, there is little improvement in the SN ratio due to the integration operation having a long integration time at a time.

【0017】従って、本発明による装置に依れば、測定
時間の増加なしに、ダイナミックレンジの拡大と、SN
比の改善が実施できる。なお、この実施例では、積分時
間を一桁ずつ違えたが、1、2、5、10のように、対
数目盛りに近い時間ずつ違えて実施すると、より細かく
ダイナミックレンジを拡大できる。また、2桁ずつ違え
て実施すると、より短い測定時間で、より大きくダイナ
ミックレンジが拡大できる。
Therefore, according to the device of the present invention, the dynamic range and SN can be increased without increasing the measurement time.
The ratio can be improved. In this embodiment, the integration time is varied by one digit, but if the integration time is varied by a time close to the logarithmic scale such as 1, 2, 5, 10, the dynamic range can be expanded more finely. Further, if the measurement is performed with two digits different, the dynamic range can be expanded more greatly in a shorter measurement time.

【0018】また、積分時間で割ることに依って、単位
時間当りの積分値を測定値としたが、測定値を取り扱う
方法については、別のやり方も考えられる。例として
は、小数点を頭に持ってくるために、積分時間が最小の
ものに換算する方法や、整数にするために、積分時間が
最大のものに換算する方法がある。また、検出器の各素
子の飽和積分値は、同一としてあるが、現実には、各素
子毎に異なることも有り得る。その場合には、各素子毎
に飽和積分値を記憶しておく方法や、飽和積分値の最小
のものを全素子に適用する方法などが考えられる。
Although the integrated value per unit time is used as the measured value by dividing by the integral time, another method can be considered as a method for handling the measured value. As an example, there is a method of converting the integral time to the smallest one to bring the decimal point to the head, and a method of converting the integral time to the largest one to make it an integer. Further, the saturation integral value of each element of the detector is the same, but in reality, it may be different for each element. In that case, a method of storing the saturation integral value for each element, a method of applying the one having the minimum saturation integral value to all the elements, and the like can be considered.

【0019】なお、本実施例は光検出器2として、一次
元的に素子を配したものを用いたが、素子を2次元的に
配した光検出器2を用いることができる。この場合、分
光1により、分光された光を面構成した場合に有用であ
る。
In this embodiment, as the photodetector 2, a one-dimensionally arranged element is used, but a two-dimensionally arranged photodetector can be used. In this case, it is useful in the case where the light split by the spectroscopy 1 is formed into a plane.

【0020】[0020]

【発明の効果】必要なダイナミックレンジの拡大に必要
なだけ、積分回数ではなく、積分時間を変化させるの
で、積分回数が指数的に拡大することが無い。これに依
って、測定に必要な時間を短縮できる。また、光が弱い
場合には、積分時間の長い信号を用いることにより積分
値を大きくでき、量子化誤差や周囲からのノイズの影響
を受け難くすることに依って、SN比の低下を防ぐこと
ができる。
The number of integrations is not exponentially expanded because not only the number of integrations but also the integration time is changed as necessary to expand the required dynamic range. As a result, the time required for measurement can be shortened. Further, when the light is weak, the integration value can be increased by using a signal with a long integration time, and the reduction of the SN ratio is prevented by making it less susceptible to the effects of quantization error and noise from the surroundings. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例のブロック図である。FIG. 1 is a block diagram of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 分光器 2 一次元光検出器 3 制御回路 4 記憶回路 5 検出回路 6 換算回路 1 spectroscope 2 one-dimensional photodetector 3 control circuit 4 storage circuit 5 detection circuit 6 conversion circuit

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年7月26日[Submission date] July 26, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】光検出器2としては、CCD、CID(Ch
arge Injection Device)PDA(Photo−Diode Array)
等の固体素子が用いられる。分光器1に測定される光を
入射させる。制御回路3はまず、0.01秒だけ光検出
器2の積分動作を行なう。積分動作の後、各素子の積分
値を、記憶回路4に記憶する。続いて、制御回路3は、
0.1秒、1秒、10秒、100秒だけ光検出器2の積
分動作を順次行ない、各素子の各積分時間に対応した積
分値を、記憶回路4に記憶する。全ての積分動作が終了
したら、各素子毎に、予め測定してある、飽和積分値よ
りも小さい積分値の内で、最も大きな積分値を検出回路
5が検出する。検出された積分値を、積分時間を用い
て、単位積分時間当りの積分値に、換算回路6が換算し
測定値とする。
As the photodetector 2, CCD, CID (Ch
arge Injection Device) , PDA (Photo-Diode Array)
Solid-state devices such as The light to be measured is made incident on the spectroscope 1. The control circuit 3 first performs the integrating operation of the photodetector 2 for 0.01 seconds. After the integration operation, the integrated value of each element is stored in the storage circuit 4. Then, the control circuit 3
The integration operation of the photodetector 2 is sequentially performed for 0.1 seconds, 1 second, 10 seconds, and 100 seconds, and the integrated value corresponding to each integration time of each element is stored in the storage circuit 4. When all the integration operations are completed, the detection circuit 5 detects the largest integrated value of the integrated values smaller than the saturated integrated value, which is measured in advance for each element. Using the integration time, the detected integrated value is converted by the conversion circuit 6 into an integrated value per unit integration time to obtain a measured value.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Name of item to be corrected] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】なお、本実施例は光検出器2として、一次
元的に素子を配したものを用いたが、素子を2次元的に
配した光検出器2を用いることができる。この場合
は、分光1として分光した光を2次元に分散させる分光
器を用いる。2次元に分散させる分光器としては、エシ
ェール回折格子とプリズムを組み合わせたものがよく知
られているがエシェール回折格子と回折格子を組み合わ
せてせよい。
In this embodiment, as the photodetector 2, a one-dimensionally arranged element is used, but a two-dimensionally arranged photodetector can be used. In this case
Is a spectrum that disperses the light split as spectrum 1 in two dimensions.
Use a bowl. As a spectroscope that disperses two-dimensionally,
Well-known is a combination of a diffraction grating and a prism.
However, it is a combination of an escher diffraction grating and a diffraction grating.
You can let me.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 波長分散面上に、積分動作を行なう一次
元光検出器を配置した分光器と、積分動作を異なる複数
の積分時間について行うように制御する制御回路と、検
出器上の各素子の複数の積分時間に付いて得られた、複
数の積分値を記憶する記憶回路と、前記複数の積分値の
うち、素子が飽和する積分値(飽和積分値)を越えない
範囲で最大の積分値を検出する検出回路と、前記素子が
飽和積分値を越えない範囲で最大の積分値を最大の積分
値を得た積分時間で換算した値を、その素子の測定値と
する換算回路とを、設けたことを特徴とする分光測定装
置。
1. A spectroscope in which a one-dimensional photodetector for performing an integration operation is arranged on a wavelength dispersion surface, a control circuit for controlling the integration operation to be performed for a plurality of different integration times, and each of the detectors. A storage circuit that stores a plurality of integrated values obtained for a plurality of integration times of the element, and a maximum value within a range that does not exceed an integration value (saturation integration value) at which the element saturates among the plurality of integration values. A detection circuit for detecting an integrated value, and a conversion circuit for converting the maximum integrated value within the range in which the element does not exceed the saturation integrated value by the integration time at which the maximum integrated value is obtained, as a measured value of the element. A spectroscopic measurement device comprising:
【請求項2】 前記制御回路は、前記積分動作を積分時
間が短いほうから順次行なうように構成されるととも
に、前記検出回路は、積分動作の度毎に積分値を検査
し、検出器中の全ての素子の積分値が飽和積分値を越え
たら、前記制御回路に終了信号を送るように構成される
とともに、前記制御回路は、前記終了信号を受けたら、
測定を終了するように構成されたことを特徴とする請求
項1に記載の分光測定装置。
2. The control circuit is configured to sequentially perform the integration operation from the shorter integration time, and the detection circuit inspects the integrated value each time the integration operation is performed, When the integrated value of all the elements exceeds the saturated integrated value, it is configured to send an end signal to the control circuit, and the control circuit receives the end signal,
The spectroscopic measurement device according to claim 1, wherein the spectroscopic measurement device is configured to terminate the measurement.
【請求項3】 前記制御回路は、前記積分動作を積分時
間が短いほうから順次行なうように構成されるととも
に、前記検出回路は、最初の積分値を検査し、各素子の
中で最小の値を与える素子の積分値が、飽和積分値を越
える時間(飽和時間)を算出し、飽和時間を、前記制御
回路に送るように構成されるとともに、前記制御回路
は、飽和時間よりも小さい範囲の積分時間でのみ積分動
作を行なうように構成されたことを特徴とする請求項1
に記載の分光測定装置。
3. The control circuit is configured to sequentially perform the integration operation from a shorter integration time, and the detection circuit inspects an initial integration value to determine a minimum value among the elements. Is calculated so that the integrated value of the element that gives the saturated value exceeds the saturation integrated value (saturation time), and the saturation time is sent to the control circuit. 2. An integration operation is performed only during an integration time.
The spectroscopic measurement device described in 1.
JP14751992A 1992-06-08 1992-06-08 Spectrometer Expired - Fee Related JP3396237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14751992A JP3396237B2 (en) 1992-06-08 1992-06-08 Spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14751992A JP3396237B2 (en) 1992-06-08 1992-06-08 Spectrometer

Publications (2)

Publication Number Publication Date
JPH05340816A true JPH05340816A (en) 1993-12-24
JP3396237B2 JP3396237B2 (en) 2003-04-14

Family

ID=15432168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14751992A Expired - Fee Related JP3396237B2 (en) 1992-06-08 1992-06-08 Spectrometer

Country Status (1)

Country Link
JP (1) JP3396237B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003523510A (en) * 2000-02-15 2003-08-05 ベアリアン・オーストラリア・プロプライエタリー・リミテッド Method and apparatus for spectroscopic analysis
US7550703B2 (en) * 1999-01-25 2009-06-23 Gentex Corporation Apparatus including at least one light sensor with an input pin for receiving an integration period signal
US9207116B2 (en) 2013-02-12 2015-12-08 Gentex Corporation Light sensor
US9224889B2 (en) 2011-08-05 2015-12-29 Gentex Corporation Optical assembly for a light sensor, light sensor assembly using the optical assembly, and vehicle rearview assembly using the light sensor assembly
JP2016001179A (en) * 2005-05-13 2016-01-07 トリパス イメージング インコーポレイテッド Image analysis method based on chromogen separation
US9250129B2 (en) 2011-05-27 2016-02-02 Seiko Epson Corporation Optical filter device
JP2017505905A (en) * 2014-01-30 2017-02-23 ビーディー キエストラ ベスローテン フェンノートシャップ System and method for image acquisition using supervised high quality imaging
US9870753B2 (en) 2013-02-12 2018-01-16 Gentex Corporation Light sensor having partially opaque optic

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7550703B2 (en) * 1999-01-25 2009-06-23 Gentex Corporation Apparatus including at least one light sensor with an input pin for receiving an integration period signal
JP2003523510A (en) * 2000-02-15 2003-08-05 ベアリアン・オーストラリア・プロプライエタリー・リミテッド Method and apparatus for spectroscopic analysis
US9547801B2 (en) 2005-05-13 2017-01-17 Tripath Imaging, Inc. Methods of chromogen separation-based image analysis
JP2016001179A (en) * 2005-05-13 2016-01-07 トリパス イメージング インコーポレイテッド Image analysis method based on chromogen separation
US9250129B2 (en) 2011-05-27 2016-02-02 Seiko Epson Corporation Optical filter device
US9224889B2 (en) 2011-08-05 2015-12-29 Gentex Corporation Optical assembly for a light sensor, light sensor assembly using the optical assembly, and vehicle rearview assembly using the light sensor assembly
US9207116B2 (en) 2013-02-12 2015-12-08 Gentex Corporation Light sensor
US9870753B2 (en) 2013-02-12 2018-01-16 Gentex Corporation Light sensor having partially opaque optic
US9961746B2 (en) 2013-02-12 2018-05-01 Gentex Corporation Light sensor
US11006502B2 (en) 2013-02-12 2021-05-11 Gentex Corporation Light sensor
US11017741B2 (en) 2013-02-12 2021-05-25 Gentex Corporation Light sensor having partially opaque optic
JP2017505905A (en) * 2014-01-30 2017-02-23 ビーディー キエストラ ベスローテン フェンノートシャップ System and method for image acquisition using supervised high quality imaging
US10200625B2 (en) 2014-01-30 2019-02-05 Bd Kiestra B.V. System and method for image acquisition using supervised high quality imaging
JP2020115148A (en) * 2014-01-30 2020-07-30 ビーディー キエストラ ベスローテン フェンノートシャップ System and method for imaging biological sample
US10841503B2 (en) 2014-01-30 2020-11-17 Bd Kiestra B.V. System and method for image acquisition using supervised high quality imaging

Also Published As

Publication number Publication date
JP3396237B2 (en) 2003-04-14

Similar Documents

Publication Publication Date Title
JP2001525931A (en) Apparatus and method for measuring optical spectrum
JP3098768B2 (en) Spectrophotometer and its photometric method
US20060146330A1 (en) Color measurements of ambient light
JPH05340816A (en) Spectroscopic measuring instrument
KR20160042815A (en) Quantum meter
US5050991A (en) High optical density measuring spectrometer
TWI617791B (en) Spectrophotometer and spectrometrically measuring method
CN113310576B (en) High-integration spectrum detection system based on semiconductor photodiode
JPH043492B2 (en)
US5965873A (en) Integrated CMOS spectrometers
US10969275B2 (en) On-chip spectrometer employing pixel-count-modulated spectral channels and method of manufacturing the same
CN111504454A (en) CCD correction method and system and spectrometer with CCD correction system
Sullivan et al. Characterization of the Teledyne CHROMA HgCdTe detector for imaging spectrometers
JPH05172638A (en) Photo array sensor and image intensifier for spectral analyzer
Kostrin et al. Compensation of the nonuniformity of sensitivity for the multielement infrared photodetector
JP2564009Y2 (en) Spectrometer
US20050024639A1 (en) Device and method for spectroscopic measurement with an imaging device comprising a matrix of photodetectors
JPH0626930A (en) Spectrophotometer
Anderson An approach to the spectral and radiometric calibration of the VIFIS system
Ekpenyong Calibration and Characterization of Hyperspectral Imaging Systems Used for Natural Scene Imagery
JPS6388412A (en) Photometer
CN113820014B (en) Light intensity calibration method and system based on scanning grating micro-mirror spectrometer and spectrometer
Kerr The ISO definition of the dynamic range of a digital still camera
WO2023228449A1 (en) Spectroscopy device, raman spectroscopic measurement device, and spectroscopy method
Schwarzer et al. Verification of a spectrometer breadboard for characterization of a future spaceborne sensor

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090207

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110207

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110207

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110207

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees