JPH05335217A - Manufacture of mask for x-ray exposure - Google Patents

Manufacture of mask for x-ray exposure

Info

Publication number
JPH05335217A
JPH05335217A JP13938292A JP13938292A JPH05335217A JP H05335217 A JPH05335217 A JP H05335217A JP 13938292 A JP13938292 A JP 13938292A JP 13938292 A JP13938292 A JP 13938292A JP H05335217 A JPH05335217 A JP H05335217A
Authority
JP
Japan
Prior art keywords
mask
ray
absorber film
film
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13938292A
Other languages
Japanese (ja)
Inventor
Kenichi Kawakami
研一 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13938292A priority Critical patent/JPH05335217A/en
Publication of JPH05335217A publication Critical patent/JPH05335217A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To offset the strain of a mask substantially and to form the mask in a desired shape by a method wherein, when an X-ray absorber film is patterned to a desired mask shape, the strain of the mask which is caused due to a change in the distribution of a stress is simulated and a patterning operation is performed by using a pattern which is deformed in the opposite direction so as to compensate the strain of the mask. CONSTITUTION:The surface of an X-ray absorber 3 is coated with an electron- beam resist film. A mask pattern incorporating a strain pattern whose phase is opposite to that of a mask-strain estimation value obtained by a simulation is exposed on the electron-beam resist film by means of an electron-beam lithography apparatus. Then, a reactive ion etching operation is performed by making use of the resist film as a mask; the X-ray absorber 3 is patterned. A chip region 8 which has been etched selectively is deformed by a change in the distribution of the internal stress. When the mask of the electron-beam resist film is removed, it is possible to form a mask, for X-ray exposure, in which a selective X-ray transmission region has been formed. At this time, the pattern is deformed in an exposure operation, and the mask can be formed in a desired shape.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はX線露光用マスクの製造
方法に関し、特にX線透過膜(マスク基板)上に形成し
たX線吸収体膜の加工を含むX線露光用マスクの製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an X-ray exposure mask, and more particularly to a method for manufacturing an X-ray exposure mask including processing of an X-ray absorber film formed on an X-ray transparent film (mask substrate). Regarding

【0002】近年、電子機器の高性能化、多機能化、小
型軽量化の推進に伴って、その心臓部ともいうべき超L
SIの集積度がとどまる所を知らず、向上している。超
LSIの代表的なデバイスであるDRAMに例をとれ
ば、縮少ルールにしたがって3年に4倍の割合で集積度
が増大しており、既に16MビットDRAMの製品化が
行なわれている。
[0002] In recent years, along with the promotion of high performance, multi-functionality, miniaturization and weight reduction of electronic equipment, the super L which should be called the heart of the electronic equipment.
It is improving without knowing where the degree of SI integration remains. Taking a DRAM, which is a typical device of VLSI, as an example, the degree of integration is increasing four times in three years according to the reduction rule, and a 16 Mbit DRAM has already been commercialized.

【0003】1990年代後半に製品化が予定されてい
る256MビットDRAMでは、メモリセル面積が10
μm2 以下となり、線幅は0.3μm以下になると予測
される。
A 256 Mbit DRAM, which is planned to be commercialized in the latter half of the 1990s, has a memory cell area of 10
The line width is expected to be 0.3 μm 2 or less and the line width is 0.3 μm or less.

【0004】このような集積度増大に伴う配線線幅の縮
小によって、そのパターニングに要するリソグラフィ光
源の波長は短波長側へシフトし、256Mビット以上の
高集積領域ではX線露光法が主体になると考えられてい
る。
Due to the reduction of the wiring line width due to the increase in the degree of integration as described above, the wavelength of the lithography light source required for the patterning is shifted to the short wavelength side, and the X-ray exposure method is mainly used in the highly integrated region of 256 Mbits or more. It is considered.

【0005】X線は波長がたとえば数Aと短いため、マ
スク端での回折が無視できることや、電子線露光の場合
に生ずる近接効果がないために、高解像度が容易に達成
できる。最小のパターニング寸法としては、0.1〜
0.5μmが得られている。
Since X-rays have a short wavelength of, for example, several A, high resolution can be easily achieved because the diffraction at the mask edge can be ignored and there is no proximity effect that occurs in electron beam exposure. The minimum patterning dimension is 0.1-
0.5 μm is obtained.

【0006】しかし、X線に対する縮小投影光学系の製
作は困難であるため、等倍マスクによるパターニングし
か使えない。たとえば、0.1μm〜0.3μm程度の
線幅を有する等倍マスクを20〜50mm平方程度のマ
スク領域に形成し、Si基板上のレジスト膜をステップ
アンドリピート方式で露光する。
However, since it is difficult to manufacture a reduction projection optical system for X-rays, only patterning with a 1 × mask can be used. For example, a 1 × mask having a line width of about 0.1 μm to 0.3 μm is formed in a mask area of about 20 to 50 mm square, and the resist film on the Si substrate is exposed by the step and repeat method.

【0007】等倍マスクの製作は、薄いX線透過膜上の
薄いX線吸収体膜を任意パターンにエッチングして行な
うため、加工寸法の微小さと相まって技術的困難度が大
きく、したがってマスク製造がX線露光技術のキーテク
ノロジーとなる。
Since the production of the equal-magnification mask is carried out by etching the thin X-ray absorber film on the thin X-ray transmission film into an arbitrary pattern, it is technically difficult in combination with the small processing size, and therefore the mask is produced. It becomes a key technology of X-ray exposure technology.

【0008】[0008]

【従来の技術】X線マスク材料であるX線吸収体には、
TaやW、Au等原子番号が大きい元素金属が用いられ
る。X線露光マスクは薄膜状に形成されるので、その支
持板として該マスク膜よりやや厚いX線透過材料からな
るマスク基板(X線透過膜)が用いられる。すなわち、
X線吸収体膜はマスク基板上に堆積した状態で加工され
る。
2. Description of the Related Art An X-ray absorber, which is an X-ray mask material, is
Elemental metals having a large atomic number such as Ta, W, and Au are used. Since the X-ray exposure mask is formed in a thin film shape, a mask substrate (X-ray transmissive film) made of an X-ray transmissive material slightly thicker than the mask film is used as a supporting plate thereof. That is,
The X-ray absorber film is processed while being deposited on the mask substrate.

【0009】マスク基板材料には、SiCやSi、ダイ
ヤモンドライクカーボン等、原子番号が小さくてX線透
過能が高く、ヤング率の比較的大きなものが用いられ
る。マスク基板は、X線吸収体膜の開口部を透過するX
線をSiウエハ上のレジスト膜等の露光対象物上に照射
させるため、X線吸収を小さくする必要上、薄膜状に形
成されている。このマスク基板は、厚い下地基板、通常
はSiウエハ上に堆積させて形成する。
As the mask substrate material, a material having a small atomic number, a high X-ray transmissivity and a relatively large Young's modulus, such as SiC, Si or diamond-like carbon, is used. The mask substrate transmits X through the opening of the X-ray absorber film.
In order to irradiate an object to be exposed such as a resist film on a Si wafer with rays, it is formed in a thin film in order to reduce X-ray absorption. This mask substrate is formed by depositing it on a thick base substrate, usually a Si wafer.

【0010】その後、Siウエハ裏面周辺部を支持台に
固定し、固定部以外の該Siウエハを裏面からエッチン
グにより除去して、メンブレン領域を形成する。メンブ
レン領域は、マスク基板およびその上に堆積したX線吸
収体膜からなる。メンブレン領域を形成後、X線吸収体
膜を所定のラインアンドスペースパターン等の所望形状
にパターニングしてX線露光用マスクを得る。
Thereafter, the peripheral portion of the back surface of the Si wafer is fixed to a support, and the Si wafer other than the fixed portion is removed by etching from the back surface to form a membrane region. The membrane region consists of the mask substrate and the X-ray absorber film deposited on it. After forming the membrane region, the X-ray absorber film is patterned into a desired shape such as a predetermined line and space pattern to obtain an X-ray exposure mask.

【0011】X線吸収体膜に内部応力が働いていると、
X線吸収体膜を所望パターンに加工した時、応力分布の
変化が生じ、X線透過膜、X線吸収体膜に変形(歪)が
生じる。このため、得られるパターンは変形してしま
う。
When internal stress acts on the X-ray absorber film,
When the X-ray absorber film is processed into a desired pattern, the stress distribution changes, and the X-ray transmissive film and the X-ray absorber film are deformed (strained). Therefore, the obtained pattern is deformed.

【0012】このため、従来はできるだけX線吸収体膜
の内部応力が低くなるように成膜条件、成膜材料を選択
してX線吸収体膜/X線透過膜(マスク基板)の積層構
造を形成していた。
Therefore, conventionally, a laminated structure of X-ray absorber film / X-ray transparent film (mask substrate) is selected by selecting the film-forming conditions and film-forming materials so that the internal stress of the X-ray absorber film is as low as possible. Had formed.

【0013】[0013]

【発明が解決しようとする課題】しかし、X線吸収体膜
の内部応力を完全に打ち消すことは、きわめて困難であ
る。特に、メンブレン領域の面積が広い場合、Siウエ
ハのエッチング後、X線吸収体膜のパターニングを行な
うと、生ずる歪は無視できない大きさとなる。
However, it is extremely difficult to completely cancel the internal stress of the X-ray absorber film. In particular, when the area of the membrane region is large, when the X-ray absorber film is patterned after the etching of the Si wafer, the generated strain becomes a size that cannot be ignored.

【0014】超LSIのパターンは、デバイスを形成す
べき同一Si基板に対してマスク工程を繰り返して実効
するので、各マスクに歪があると互いにパターンがずれ
てくる。
Since the pattern of the VLSI is effective by repeating the mask process on the same Si substrate on which the device is to be formed, the patterns are displaced from each other if each mask is distorted.

【0015】このため、高精度パターニングを行なうこ
とはできず、歩留りは大幅に低下する。本発明の目的
は、所望形状からの変形の少ないX線透過パターンを得
ることができるX線露光用マスクの製造方法を提供する
ことである。
Therefore, high precision patterning cannot be performed, and the yield is greatly reduced. An object of the present invention is to provide a method for manufacturing an X-ray exposure mask that can obtain an X-ray transmission pattern that is less deformed from a desired shape.

【0016】[0016]

【課題を解決するための手段】本発明のX線露光用マス
クの製造方法は、X線透過膜上にX線吸収体膜を形成す
る工程と、前記X線吸収体膜に働く内部応力を測定する
工程と、前記X線吸収体膜を所定マスク形状にパターニ
ングした時、応力分布の変化により生じるマスクの歪を
シミュレートする工程と、前記マスク歪を補償するよう
に逆方向に変形させたパターンで前記X線吸収体膜をパ
ターニングする工程とを含む。
A method of manufacturing an X-ray exposure mask according to the present invention comprises a step of forming an X-ray absorber film on an X-ray transparent film and an internal stress acting on the X-ray absorber film. The step of measuring, the step of simulating the mask strain caused by the change of the stress distribution when the X-ray absorber film is patterned into a predetermined mask shape, and the deformation in the opposite direction so as to compensate the mask strain. Patterning the X-ray absorber film with a pattern.

【0017】[0017]

【作用】マスクパターンの描画過程で歪を逆位相で折込
んでおくことにより、エッチング後内部応力で変形した
マスクのパターンは、歪が実質的に打消されて所望の形
状で得られることになる。
When the strain is folded in the opposite phase in the process of drawing the mask pattern, the strain of the mask deformed by the internal stress after etching is substantially canceled and the desired pattern can be obtained.

【0018】以下、本発明を実施例に基づいてより詳し
く述べる。
The present invention will be described in more detail below based on examples.

【0019】[0019]

【実施例】図1は、本発明の実施例によるX線露光用マ
スクの構造を示す。図中、上部に平面図、下部に断面図
を示す。
1 shows the structure of an X-ray exposure mask according to an embodiment of the present invention. In the figure, a plan view is shown in the upper part and a sectional view is shown in the lower part.

【0020】まず、Siウエハ1上にX線を透過する素
材からなるX線透過膜(マスク基板)2を堆積する。こ
の状態でSiウエハ1の面平坦度(フラットネス)を測
定する。マスク基板2に引張り応力や圧縮応力が生じて
いるとSiウエハが下に凸または上に凸に反るので、そ
の変形量から内部応力を知ることができる。
First, an X-ray transmission film (mask substrate) 2 made of a material that transmits X-rays is deposited on a Si wafer 1. In this state, the surface flatness of the Si wafer 1 is measured. When a tensile stress or a compressive stress is generated in the mask substrate 2, the Si wafer is bent downward or upward, so that the internal stress can be known from the deformation amount.

【0021】その後、マスク基板2上にX線吸収体膜3
を堆積し、再びSiウエハ1の面平坦度を測定する。こ
の結果からX線吸収体膜とマスク基板との積層内の内部
応力が判る。X線吸収体膜成膜前後の測定データを対比
すれば、X線吸収体膜3内部に発生している内部応力を
知ることができる。
After that, the X-ray absorber film 3 is formed on the mask substrate 2.
Is deposited, and the surface flatness of the Si wafer 1 is measured again. From this result, the internal stress in the stack of the X-ray absorber film and the mask substrate can be known. The internal stress generated inside the X-ray absorber film 3 can be known by comparing the measurement data before and after the X-ray absorber film formation.

【0022】したがって、次の工程でX線吸収体膜3を
選択的にエッチオフした時に発生する内部応力分布の変
化を予想し、X線吸収体膜3およびその下のマスク基板
2に発生する歪分布(変形)をシミュレートできる。し
たがって変形後のパターンを所望位置に配置するために
は、当初どのように変位させればよいかも判る。
Therefore, a change in the internal stress distribution that occurs when the X-ray absorber film 3 is selectively etched off in the next step is expected, and the change occurs in the X-ray absorber film 3 and the mask substrate 2 thereunder. Strain distribution (deformation) can be simulated. Therefore, in order to arrange the deformed pattern at a desired position, it is possible to know how to initially displace it.

【0023】その後、Siウエハ1の裏面周辺部を支持
枠4に固定し、該支持枠に接触している部分以外のSi
ウエハ1の領域(中央領域)をウエットエッチングによ
り除去してメンブレン領域7を形成する。
After that, the peripheral portion of the back surface of the Si wafer 1 is fixed to the support frame 4, and Si other than the portion in contact with the support frame is fixed.
A region (central region) of the wafer 1 is removed by wet etching to form a membrane region 7.

【0024】次に、X線吸収体膜3表面に電子線レジス
ト膜を塗布し、前述のシミュレーションで得られたマス
ク歪予測値と逆位相の歪パターンを折り込んだマスクパ
ターンを電子線描画装置によって電子線レジスト膜に露
光する。電子線レジスト膜を露光すると予め変形したマ
スクが得られる。
Next, an electron beam resist film is applied to the surface of the X-ray absorber film 3, and a mask pattern in which a strain pattern having a phase opposite to the predicted mask strain value obtained by the above-described simulation is folded is formed by an electron beam drawing apparatus. The electron beam resist film is exposed. When the electron beam resist film is exposed to light, a mask deformed in advance is obtained.

【0025】次いで、レジスト膜をマスクとして反応性
イオンエッチング(RIE)によりX線吸収体膜3をパ
ターニングする。選択エッチングの行なわれたチップ領
域8は内部応力分布の変化によって変形する。電子線レ
ジスト膜5のマスクを除去すると、選択的X線透過領域
を形成したX線露光用マスクができあがる。
Next, the X-ray absorber film 3 is patterned by reactive ion etching (RIE) using the resist film as a mask. The chip region 8 subjected to the selective etching is deformed due to the change of the internal stress distribution. When the mask of the electron beam resist film 5 is removed, an X-ray exposure mask having a selective X-ray transmitting region is completed.

【0026】ここで、露光時にパターンを意図的に変形
(変位)しておくことにより、X線吸収体膜の選択エッ
チング後に得られるマスク形状を所望のものとすること
ができる。
Here, by intentionally deforming (displacement) the pattern at the time of exposure, the mask shape obtained after the selective etching of the X-ray absorber film can be made a desired shape.

【0027】なお、内部応力にある程度の分布があった
り、X線吸収体膜の選択エッチングによる応力分布の変
化を十分高精度に予想しにくい場合は、一旦シミュレー
ションに基づいてX線吸収体膜を選択エッチングし、そ
の結果実際に得られたマスクパターンを測定し、結果を
フィードバックして再度新たなX線吸収体膜の選択エッ
チングを行なうのがより好ましい。
If the internal stress has a certain degree of distribution or it is difficult to predict the change in the stress distribution due to the selective etching of the X-ray absorber film with sufficiently high accuracy, the X-ray absorber film is temporarily analyzed based on a simulation. It is more preferable to perform selective etching, measure the mask pattern actually obtained as a result, and feed back the result to perform selective etching of a new X-ray absorber film again.

【0028】また、X線吸収体膜3の堆積厚みをX線マ
スクのパターニング幅(ラインアンドスペース幅)で除
去したアスペクト比が大きくなると、2次元的歪分布予
測だけでは不十分となる。
Further, if the aspect ratio obtained by removing the deposited thickness of the X-ray absorber film 3 by the patterning width (line and space width) of the X-ray mask becomes large, the two-dimensional strain distribution prediction alone becomes insufficient.

【0029】すなわち、ライン状のX線遮蔽パターンで
はラインに直角方向の応力は解放されやすく、ラインと
平行な方向の応力は解放されにくい。応力解放の程度は
X線透過膜面からの高さによって異なるので、3次元的
解析が望まれる。
That is, in the line-shaped X-ray shielding pattern, the stress in the direction perpendicular to the line is easily released, but the stress in the direction parallel to the line is difficult to be released. Since the degree of stress release depends on the height from the X-ray transparent film surface, three-dimensional analysis is desired.

【0030】この場合、たとえばアスペクト比を変数と
してX線マスク縦断面における応力分布をシミュレート
し、2次元的解析に基づく応力分布に加えて3次元的応
力分布によるマスク歪を予測して、平面内歪分布を求
め、その逆位相歪パターンを折り込んだマスクパターニ
ングを行ない、X線露光用マスクを製造することが好ま
しい。
In this case, for example, by simulating the stress distribution in the X-ray mask longitudinal section with the aspect ratio as a variable, predicting the mask strain due to the three-dimensional stress distribution in addition to the stress distribution based on the two-dimensional analysis, It is preferable to obtain an internal strain distribution and perform mask patterning in which an antiphase strain pattern is folded to perform an X-ray exposure mask.

【0031】以下、より具体的実施例について説明す
る。支持基板として用いるたとえば直径4インチのSi
ウエハ1上に、CVD法を用いて厚さ2.5μmのSi
Cからなるマスク基板2を形成し、その上にスパッタ法
によって厚さ0.8μmのTaからなるX線吸収体膜3
を堆積する。スパッタリングの前後でSiウエハ1の平
坦度(フラットネス)を測定して、Ta膜の内蔵応力を
計算しておく。
Hereinafter, more specific examples will be described. Used as a supporting substrate, for example, Si having a diameter of 4 inches
2.5 μm thick Si is formed on the wafer 1 by the CVD method.
A mask substrate 2 made of C is formed, and an X-ray absorber film 3 made of Ta and having a thickness of 0.8 μm is formed thereon by a sputtering method.
Deposit. The flatness of the Si wafer 1 is measured before and after the sputtering to calculate the built-in stress of the Ta film.

【0032】次に、X線吸収体膜3を選択エッチングし
た時に生ずるであろう歪(変形)を応力分布に基づいて
シミュレートする。図2(A)は、この手法によって予
測された選択パターンを含むチップ領域8における歪分
布を示す。図の矢印の大きさが歪の大きさに、また矢印
の向きが歪の方向を表す。歪のシミュレーションにおい
ては、チップ領域8を2mm角の小領域に分割し、各領
域の中心点における歪を求めた。
Next, the strain (deformation) that would occur when the X-ray absorber film 3 is selectively etched is simulated based on the stress distribution. FIG. 2A shows the strain distribution in the chip region 8 including the selection pattern predicted by this method. The size of the arrow in the figure represents the magnitude of strain, and the direction of the arrow represents the direction of strain. In the strain simulation, the chip region 8 was divided into small regions of 2 mm square, and the strain at the center point of each region was obtained.

【0033】次に、Siウエハ1の裏面周辺部をセラミ
ックSiCからなる支持枠4に接着固定し、弗硝酸混合
液を用いてSiウエハ1を裏面よりエッチングする。こ
の工程によって、図1に図示したように、Siウエハ1
は支持枠4との接着部を除きエッチオフされて薄いメン
ブレン領域7が形成される。
Next, the periphery of the back surface of the Si wafer 1 is adhesively fixed to the support frame 4 made of ceramic SiC, and the Si wafer 1 is etched from the back surface using a mixed solution of fluorinated nitric acid. Through this process, as shown in FIG.
Is etched off except for the bonding portion with the support frame 4 to form a thin membrane region 7.

【0034】次に、TaからなるX線吸収体膜3の表面
に電子線レジスト膜(図示せず)を塗布し、上記した歪
予測値と逆位相の歪パターンを折り込んだ所望のマスク
パターンを電子線描画装置によって電子線レジスト膜に
描画し、現像する。
Next, an electron beam resist film (not shown) is applied to the surface of the X-ray absorber film 3 made of Ta, and a desired mask pattern in which a strain pattern having a phase opposite to the above-described strain prediction value is folded is formed. The electron beam resist film is drawn by an electron beam drawing apparatus and developed.

【0035】この時、各パターンの位置と形状を補正す
ればより正確であるが、簡単には対象面内を小区画に分
割し、小区画内のマスク形状はそのままにし、中心位置
のみを移動させればよい。これはEB露光においてマス
クを載置するステージの位置を調節することのみによっ
て実行できる。
At this time, it is more accurate if the position and shape of each pattern are corrected, but it is easy to divide the target surface into small sections, leave the mask shape in the small sections unchanged, and move only the center position. You can do it. This can be performed only by adjusting the position of the stage on which the mask is placed in the EB exposure.

【0036】EB露光をたとえばステップアンドリピー
ト方式で行なう間、ステージ位置を調整することにより
容易に歪補正が行なえる。露光後、レジスト膜を現像し
てレジストマスクを得る。
While the EB exposure is performed by the step-and-repeat method, for example, the distortion can be easily corrected by adjusting the stage position. After exposure, the resist film is developed to obtain a resist mask.

【0037】このようにして、パターニングされたレジ
スト膜5をマスクとして反応性イオンエッチング(RI
E)によって、X線吸収体膜3のパターニングを行な
う。RIEは、たとえば塩素系のガスを用いて加熱せず
に行なう。
Using the resist film 5 thus patterned as a mask, reactive ion etching (RI
According to E), the X-ray absorber film 3 is patterned. RIE is performed, for example, using a chlorine-based gas without heating.

【0038】この異方性ドライエッチングのエッチ速度
は、金属で大きく、SiCで小さいので、マスク基板2
がストッパとして働く。この結果、たとえばラインアン
ドスペースパターンを0.8μm幅で含むチップ領域8
が形成される。
Since the etching rate of this anisotropic dry etching is large for metal and small for SiC, the mask substrate 2
Acts as a stopper. As a result, for example, the chip area 8 including a line and space pattern with a width of 0.8 μm
Is formed.

【0039】電子線レジスト膜5を除去すれば、図1に
示した構造のX線露光用マスクが得られる。X線吸収体
膜の選択エッチング前に、チップ領域8に形成される逆
位相歪パターン内蔵レジストの例を、図2(B)に示
す。25mm平方程度のチップ領域の場合、歪の最大値
はたとえば0.2μm程度以下とすることができる。電
子線露光装置の1フィールドを1mm2 以下に抑えるな
らば、ステップアンドリピート方式でステージのみに帰
還をかけても各領域のつなぎ精度の劣化は0.02μm
以下に抑えられ、実用上問題はない。
By removing the electron beam resist film 5, an X-ray exposure mask having the structure shown in FIG. 1 is obtained. FIG. 2B shows an example of the resist having an antiphase distortion pattern formed in the chip region 8 before the selective etching of the X-ray absorber film. In the case of a chip area of about 25 mm square, the maximum value of strain can be, for example, about 0.2 μm or less. If one field of the electron beam exposure apparatus is suppressed to 1 mm 2 or less, deterioration of the connection accuracy of each area is 0.02 μm even if feedback is applied only to the stage by the step-and-repeat method.
It is suppressed to the following and there is no practical problem.

【0040】図2(B)で示したレジストマスクを用い
て、下のX線吸収体膜を選択エッチングすると、応力分
布が変化してマスクは全体として変形する。変形の結
果、図2(C)に示すように、所望のパターンからのず
れが非常に少ないパターンを有するX線露光用マスクが
得られる。各小領域中心点はほぼ所望の位置に配置され
る。
When the lower X-ray absorber film is selectively etched using the resist mask shown in FIG. 2B, the stress distribution changes and the mask deforms as a whole. As a result of the deformation, as shown in FIG. 2C, an X-ray exposure mask having a pattern with a very small deviation from the desired pattern is obtained. The center points of the respective small areas are arranged at almost desired positions.

【0041】ラインアンドスペース幅が短縮され、X線
吸収体膜3の厚みの幅に対する比であるアスペクト比が
大きくなると、2次元的歪予測では不十分となる。たと
えば、ライン幅0.4μm、アスペクト比2の場合、上
記した実施例におけるTaスパッタリング前後における
応力測定値から2次元解析によってシミュレートされる
2次元的歪分布を用いて補正しても十分高い精度が得ら
れなくなる。
When the line-and-space width is shortened and the aspect ratio, which is the ratio of the thickness of the X-ray absorber film 3 to the width, is increased, the two-dimensional strain prediction becomes insufficient. For example, when the line width is 0.4 μm and the aspect ratio is 2, the accuracy is sufficiently high even if correction is performed using the two-dimensional strain distribution simulated by the two-dimensional analysis from the stress measurement values before and after Ta sputtering in the above-described embodiment. Will not be obtained.

【0042】図3(A)は、実際にX線透過マスクを形
成した時に得られる歪分布の例を示す。一辺24mmの
チップ領域を一辺2mmの小区画に分割し、各小区画で
の基準点の移動をピン状の線分で示す。図2(A)と図
3(A)の対比から、マスクパターンの形成によって変
化する応力分布による歪の2次元的分布に誤差が生じて
いることが判る。これは以下のように説明できる。
FIG. 3A shows an example of strain distribution obtained when an X-ray transmission mask is actually formed. A chip area of 24 mm on a side is divided into small sections of 2 mm on a side, and movement of the reference point in each small section is shown by a pin-shaped line segment. From the comparison between FIG. 2A and FIG. 3A, it can be seen that an error occurs in the two-dimensional strain distribution due to the stress distribution that changes due to the formation of the mask pattern. This can be explained as follows.

【0043】アスペクト比の大きなマスクを面に垂直に
切断したマスク縦断面において、アスペクト比の大きさ
によって応力解放の程度が異なる。ライン状のX線遮蔽
マスクの場合、ラインと平行な方向は応力が解放されに
くいが、ラインと垂直な方向は応力が容易に解放され
る。
In a mask longitudinal section obtained by cutting a mask having a large aspect ratio perpendicularly to the surface, the degree of stress relief varies depending on the size of the aspect ratio. In the case of a line-shaped X-ray shielding mask, stress is not easily released in the direction parallel to the line, but stress is easily released in the direction perpendicular to the line.

【0044】縦断面の歪分布をエッチング前のTa膜の
内部応力を5.0×108 dyne/cm2 の一様なも
のとしてシミュレートすると、たとえば図3(B)のよ
うな分布が得られる。
When the strain distribution in the longitudinal section is simulated assuming that the internal stress of the Ta film before etching is uniform at 5.0 × 10 8 dyne / cm 2 , a distribution as shown in FIG. 3B is obtained, for example. Be done.

【0045】図3(B)からも明らかなように、ライン
幅が狭くなるとラインに垂直方向の応力は大部分解放さ
れてしまう。これに対して、ラインと平行な方向の応力
は残る。形成すべきパターンに応じてこのような縦断面
内歪分布を求め、チップ領域8面内の歪分布に折り込ん
だ3次元的歪分布を求めることによって実際に生じる歪
を高精度にシミュレートできる。
As is clear from FIG. 3B, most of the stress in the direction perpendicular to the line is released when the line width becomes narrow. On the other hand, the stress in the direction parallel to the line remains. By obtaining such a strain distribution in the vertical cross section according to the pattern to be formed and obtaining the three-dimensional strain distribution folded into the strain distribution in the plane of the chip region 8, the strain actually generated can be simulated with high accuracy.

【0046】このようにして得た歪を逆位相としてマス
クパターンの位置を補正し、電子線描画装置のステージ
に帰還すると、高精度のX線露光用マスクを製造するこ
とができる。
By correcting the position of the mask pattern by using the distortion thus obtained as an antiphase and returning to the stage of the electron beam drawing apparatus, a highly accurate X-ray exposure mask can be manufactured.

【0047】上記実施例では、X線吸収体膜3の素材と
してTaを用いたが、これ以外にもWやAu等、他の重
金属材料を用い得ることは自明である。また、マスク基
板2の材料としてヤング率の高い他の材料、たとえばS
iやダイヤモンドライクカーボン等を用いることができ
る。勿論、支持枠4の材料も様々に選択することができ
る。
Although Ta is used as the material of the X-ray absorber film 3 in the above embodiment, it is obvious that other heavy metal materials such as W and Au can be used. Further, as the material of the mask substrate 2, another material having a high Young's modulus, for example, S
i, diamond-like carbon or the like can be used. Of course, the material of the support frame 4 can be variously selected.

【0048】以上実施例に沿って本発明を説明したが、
本発明はこれらに制限されるものではない。たとえば、
種々の変更、改良、組み合わせ等が可能なことは当業者
に自明であろう。
The present invention has been described above with reference to the embodiments.
The present invention is not limited to these. For example,
It will be apparent to those skilled in the art that various modifications, improvements, combinations and the like can be made.

【0049】[0049]

【発明の効果】以上説明したように、本発明によれば、
結果として位置精度の高いX線露光用マスクを得ること
ができる。
As described above, according to the present invention,
As a result, an X-ray exposure mask with high positional accuracy can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例によるX線露光用マスクの構造
を示す図である。
FIG. 1 is a diagram showing a structure of an X-ray exposure mask according to an embodiment of the present invention.

【図2】本発明の実施例によるX線露光用マスクの製造
方法を説明するための概念図である。
FIG. 2 is a conceptual diagram for explaining a method of manufacturing an X-ray exposure mask according to an embodiment of the present invention.

【図3】パターン形状に依存するマスク歪のシミュレー
ト例を示す。
FIG. 3 shows a simulation example of mask distortion depending on a pattern shape.

【符号の説明】[Explanation of symbols]

1 Siウエハ 2 マスク基板 3 X線吸収体膜 4 支持枠 7 メンブレン領域 8 チップ領域 1 Si wafer 2 Mask substrate 3 X-ray absorber film 4 Support frame 7 Membrane area 8 Chip area

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 X線透過膜(2)上にX線吸収体膜
(3)を形成する工程と、 前記X線吸収体膜(3)に働く内部応力を測定する工程
と、 前記X線吸収体膜(3)を所定マスク形状にパターニン
グした時、応力分布の変化により生じるマスクの歪をシ
ミュレートする工程と、 前記マスク歪を補償するように逆方向に変形させたパタ
ーンで前記X線吸収体膜(3)をパターニングする工程
とを含むX線露光用マスクの製造方法。
1. A step of forming an X-ray absorber film (3) on an X-ray transparent film (2); a step of measuring an internal stress acting on the X-ray absorber film (3); When the absorber film (3) is patterned into a predetermined mask shape, a step of simulating the distortion of the mask caused by a change in stress distribution, and the X-ray with a pattern deformed in the opposite direction so as to compensate the mask distortion A method of manufacturing a mask for X-ray exposure, which comprises a step of patterning the absorber film (3).
【請求項2】 前記内部応力を測定する工程は、前記X
線吸収体膜(3)形成前後の表面のフラットネス測定を
含む請求項1記載のX線露光用マスクの製造方法。
2. The step of measuring the internal stress comprises:
The method for producing an X-ray exposure mask according to claim 1, which comprises measuring the flatness of the surface before and after the formation of the line absorber film (3).
【請求項3】 前記マスクの歪をシミュレートする工程
は、所望マスク形状の平面配置と厚さとを考慮して行な
う請求項1ないし2記載のX線露光用マスクの製造方
法。
3. The method for manufacturing an X-ray exposure mask according to claim 1, wherein the step of simulating the distortion of the mask is performed in consideration of the plane arrangement and the thickness of a desired mask shape.
【請求項4】 前記X線吸収体膜(3)をパターニング
する工程は、X線吸収体膜(3)上にレジスト膜を形成
し、X線透過膜を支持する支持基板(1)をステージ上
に載置し、シミュレーションで得られた位置変動を補償
するようにステージ位置を制御して露光を行なうことを
含む請求項1〜3のいずれかに記載のX線露光用マスク
の製造方法。
4. In the step of patterning the X-ray absorber film (3), a resist film is formed on the X-ray absorber film (3) and a support substrate (1) supporting the X-ray transmission film is staged. 4. The method for manufacturing an X-ray exposure mask according to claim 1, further comprising: placing on top of the mask and performing exposure by controlling a stage position so as to compensate for a positional variation obtained by simulation.
【請求項5】 さらに歪を補償するようにパターニング
を行なったX線吸収体膜のパターニング位置を測定し、
所望パターン位置との差を検出し、その差も補償するよ
うに新たなX線吸収体膜をパターニングする工程を含む
請求項4記載のX線露光用マスクの製造方法。
5. The patterning position of the X-ray absorber film which is further patterned to compensate for strain is measured,
5. The method of manufacturing an X-ray exposure mask according to claim 4, including a step of detecting a difference from a desired pattern position and patterning a new X-ray absorber film so as to compensate for the difference.
JP13938292A 1992-05-29 1992-05-29 Manufacture of mask for x-ray exposure Withdrawn JPH05335217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13938292A JPH05335217A (en) 1992-05-29 1992-05-29 Manufacture of mask for x-ray exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13938292A JPH05335217A (en) 1992-05-29 1992-05-29 Manufacture of mask for x-ray exposure

Publications (1)

Publication Number Publication Date
JPH05335217A true JPH05335217A (en) 1993-12-17

Family

ID=15244017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13938292A Withdrawn JPH05335217A (en) 1992-05-29 1992-05-29 Manufacture of mask for x-ray exposure

Country Status (1)

Country Link
JP (1) JPH05335217A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000025351A1 (en) * 1998-10-28 2000-05-04 Nikon Corporation Method and device for producing mask
JP2002365785A (en) * 2001-06-07 2002-12-18 Mitsubishi Electric Corp Mask manufacturing system, mask manufacturing method and method of manufacturing semiconductor device using the same
US6924497B2 (en) 2000-04-25 2005-08-02 California Institute Of Technology Systems for measuring stresses in line features formed on substrates
JP2006189454A (en) * 2000-04-27 2006-07-20 California Inst Of Technology Real-time evaluation of stress field and characteristic in line structure formed on substrate
US7363173B2 (en) 2004-06-01 2008-04-22 California Institute Of Technology Techniques for analyzing non-uniform curvatures and stresses in thin-film structures on substrates with non-local effects
US7487050B2 (en) 2004-06-01 2009-02-03 California Institute Of Technology Techniques and devices for characterizing spatially non-uniform curvatures and stresses in thin-film structures on substrates with non-local effects
JP2010102356A (en) * 2002-03-29 2010-05-06 Hoya Corp Method of producing mask blank and method of producing transfer mask
US7930113B1 (en) 2007-04-17 2011-04-19 California Institute Of Technology Measuring stresses in multi-layer thin film systems with variable film thickness
US7966135B2 (en) 2004-06-01 2011-06-21 California Institute Of Technology Characterizing curvatures and stresses in thin-film structures on substrates having spatially non-uniform variations
JP2016187043A (en) * 2016-06-13 2016-10-27 大日本印刷株式会社 Manufacturing method of template for nanoimprint lithography

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000025351A1 (en) * 1998-10-28 2000-05-04 Nikon Corporation Method and device for producing mask
US6924497B2 (en) 2000-04-25 2005-08-02 California Institute Of Technology Systems for measuring stresses in line features formed on substrates
JP2006189454A (en) * 2000-04-27 2006-07-20 California Inst Of Technology Real-time evaluation of stress field and characteristic in line structure formed on substrate
JP2002365785A (en) * 2001-06-07 2002-12-18 Mitsubishi Electric Corp Mask manufacturing system, mask manufacturing method and method of manufacturing semiconductor device using the same
JP4510328B2 (en) * 2001-06-07 2010-07-21 株式会社ルネサステクノロジ Mask manufacturing system, mask manufacturing method, and semiconductor device manufacturing method using the same
JP2010102356A (en) * 2002-03-29 2010-05-06 Hoya Corp Method of producing mask blank and method of producing transfer mask
US7363173B2 (en) 2004-06-01 2008-04-22 California Institute Of Technology Techniques for analyzing non-uniform curvatures and stresses in thin-film structures on substrates with non-local effects
US7487050B2 (en) 2004-06-01 2009-02-03 California Institute Of Technology Techniques and devices for characterizing spatially non-uniform curvatures and stresses in thin-film structures on substrates with non-local effects
US7966135B2 (en) 2004-06-01 2011-06-21 California Institute Of Technology Characterizing curvatures and stresses in thin-film structures on substrates having spatially non-uniform variations
US7930113B1 (en) 2007-04-17 2011-04-19 California Institute Of Technology Measuring stresses in multi-layer thin film systems with variable film thickness
JP2016187043A (en) * 2016-06-13 2016-10-27 大日本印刷株式会社 Manufacturing method of template for nanoimprint lithography

Similar Documents

Publication Publication Date Title
JP2003534652A (en) Method and system for selectively optimizing line width during a lithographic process
EP0038808A4 (en) Ion beam lithography process and apparatus using step-and repeat exposure.
CN101171545B (en) Computer readable mask shrink control processor
JP3251362B2 (en) Exposure apparatus and exposure method
JPH05335217A (en) Manufacture of mask for x-ray exposure
US7456031B2 (en) Exposure device, exposure method, and semiconductor device manufacturing method
EP0808477A1 (en) Fabrication and use of a sub-micron dimensional standard
JP3675421B2 (en) Mask pattern correction method, mask manufacturing method, mask, and semiconductor device manufacturing method
US5375157A (en) X-ray mask structure and a production method thereof, an exposure method using the X-ray mask structure, and a device fabricated by using the X-ray mask structure
JP3292909B2 (en) Calculation method of pattern position distortion
US7647568B2 (en) Manufacturing method of mask and optimization method of mask bias
CN104520769B (en) Substrate and corresponding photolithography method for high-resolution electric lithography art
JP4245900B2 (en) Method for manufacturing transfer mask and transfer mask substrate
JPH09289149A (en) X-ray mask and manufacture thereof
JP2000315641A (en) Mask for exposing electron beam, its manufacture and manufacture of semiconductor
US9377701B2 (en) Mask overlay control
CN112881960A (en) Wafer-level measurement standard device and preparation method thereof
JP2004235221A (en) Manufacturing method of mask, forming method of pattern, photomask for measuring distortion and manufacturing method of semiconductor device
JP2638576B2 (en) Manufacturing method of X-ray exposure mask
JPS5887821A (en) Manufacture of mask for x-ray lithography
JPH0562888A (en) X-ray mask and transferring method for pattern using the same
JPS6081750A (en) Aperture diaphragm and its manufacturing method
JP2001023880A (en) Method for formation of pattern, electron beam lithography system using the same, and optical parts manufactured thereby
CN116500711A (en) Two-dimensional grating standard substance with self-tracing angle and preparation method thereof
JPH01256126A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803