JPH05334880A - Method for storing information and device therefor - Google Patents

Method for storing information and device therefor

Info

Publication number
JPH05334880A
JPH05334880A JP14277492A JP14277492A JPH05334880A JP H05334880 A JPH05334880 A JP H05334880A JP 14277492 A JP14277492 A JP 14277492A JP 14277492 A JP14277492 A JP 14277492A JP H05334880 A JPH05334880 A JP H05334880A
Authority
JP
Japan
Prior art keywords
light
storage medium
wavelength
information
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14277492A
Other languages
Japanese (ja)
Inventor
Hiroyuki Suzuki
博之 鈴木
Toshiyuki Shimada
俊之 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14277492A priority Critical patent/JPH05334880A/en
Publication of JPH05334880A publication Critical patent/JPH05334880A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/02Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/04Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using optical elements ; using other beam accessed elements, e.g. electron or ion beam

Landscapes

  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To realize a storage device which has a large capacity and whose access speed and data transfer speed are high by utilizing a photochemical hole burning(PHB) phenomenon. CONSTITUTION:To a storage medium 1 having the PHB phenomenon, the light of a light source 2 having a single or plural frequencies having band width being narrower than the band width of an absorption line is radiated selectively and simultaneously by a secondary space modulator 4 and a condensing system 5, and information is stored in parallel in a spatial dimension and a wavelength dimension. Also, the light generated from the light source 2 is radiated onto the storage medium 1, while making wavelength scan by a wavelength scanner 3, the light after transmission in a single or plural specific positions on the storage medium 1 is detected by a condensing system 6 and a two-dimensional detector 8, and the stored information is reproduced in parallel. In this regard, a cooling means 7 cools the storage medium 1 to an arbitrary temperature extending from a liquid helium temperature to a room temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は波長多重光メモリに関
し、特に極低温における光化学ホールバーニング現象を
利用した情報記憶方法及びその装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength division multiplexing optical memory, and more particularly to an information storage method and apparatus using the photochemical hole burning phenomenon at extremely low temperatures.

【0002】[0002]

【従来の技術】来るべき21世紀には音声、データ、文
字、動画像等の多種多様な情報が共通のネットワークに
よりやりとりされる文字通りのマルチメディア社会が到
来する。このような社会の実現には広帯域ネットワーク
の構築に加え、大容量で且つアクセス速度及びデータ転
送速度の速い情報記憶装置の開発が不可欠である。現状
の磁気ディスク装置と光ディスク装置とを比較すると、
前者がアクセス速度及びデータ転送速度において後者に
優るものの記憶容量の点では後者に劣る等、両装置とも
将来の情報記憶装置への要求性能を兼ね備えてはいな
い。
2. Description of the Related Art In the coming 21st century, there will be a literal multimedia society in which various kinds of information such as voice, data, characters and moving images are exchanged through a common network. In order to realize such a society, in addition to the construction of a broadband network, it is indispensable to develop an information storage device having a large capacity and a high access speed and a high data transfer speed. Comparing the current magnetic disk device and optical disk device,
The former is superior to the latter in access speed and data transfer speed, but is inferior to the latter in terms of storage capacity. Therefore, neither device has the required performance for future information storage devices.

【0003】そこで、レーザ光を熱源として利用し情報
記憶を行うヒートモード記憶である現状の光ディスク装
置では、レーザの短波長化による記憶密度の増大、光デ
ィスクの多数枚配列による大容量化、光ディスクの高速
回転化によるアクセス速度の高速化、マルチヘッドによ
るデータ転送速度の高速化等により、将来の情報記憶装
置への要求に答える努力がなされているが、今世紀末に
は限界に突き当たるとされている。また、光ディスクを
多数枚並べることにより装置全体としての記憶容量は増
大するが、光ディスク1枚当たりの記憶容量は限られる
ため、2枚以上の光ディスクに跨がる情報を必要とする
場合には、利用者が実際に情報を取り出すまでに長い時
間が必要である等の問題があった。
Therefore, in the current optical disk apparatus which is a heat mode memory for storing information by using laser light as a heat source, the storage density is increased by shortening the wavelength of the laser, the capacity is increased by arranging a large number of optical disks, and the optical disk Efforts are being made to meet future demands for information storage devices by increasing the access speed by increasing the rotation speed and increasing the data transfer speed by using the multi-head, but it is said that the limit will be reached at the end of this century. .. Further, by arranging a large number of optical discs, the storage capacity of the entire device increases, but the storage capacity per optical disc is limited, so when information that spans two or more optical discs is required, There was a problem that it took a long time for the user to actually retrieve the information.

【0004】近年、大きな注目を集めている情報記憶方
法として、光化学ホールバーニング(PHB)現象を利
用した情報記憶方法がある。この情報記憶方法は光をそ
のまま利用して情報記憶を行うフォトンモード記憶であ
り、適切な反応系の選択とその特徴である“波長多重記
憶”により新方式の高速大容量の情報記憶装置の実現が
期待されている(例えば、W.E.Moerner ed.,“Persiste
nt Spectral Hole-Burning”Science and Application
s,Springer-Verlag (1988)参照)。
As an information storage method that has received a great deal of attention in recent years, there is an information storage method utilizing the photochemical hole burning (PHB) phenomenon. This information storage method is photon mode storage that uses light as it is to store information, and realizes a new type of high-speed, large-capacity information storage device by selecting an appropriate reaction system and its characteristic "wavelength multiple storage". Is expected (eg WEMoerner ed., “Persiste
nt Spectral Hole-Burning ”Science and Application
s, Springer-Verlag (1988)).

【0005】PHB現象を利用した情報記憶方法の原理
を図2に従って説明する。例えば、透明なポリマーや剛
体ガラス等のマトリクスに色素分子等のゲスト分子を分
散した系では、その吸収スペクトルは分子の電子状態が
有する本質的な幅(均一幅:Δωh )による広がりと、
個々のゲスト分子とマトリクスとの相互作用が微妙に異
なるために生じる不均一な広がり(不均一幅:Δωi
とを示す。ここで、充分、低温な状態においてはΔωh
《Δωi であるから、前述したような構造を有する吸収
体に狭い波長幅を備えた光を照射した場合、照射光のエ
ネルギーを共鳴的に吸収できるエネルギーサイトの分子
だけが選択的に励起され、化学反応を起すことにより、
その分子の吸収を別の波長域に移すことによってホール
を形成する。そして、ホールの有無によりデータビット
の「1」及び「0」を表すことができる。
The principle of the information storage method utilizing the PHB phenomenon will be described with reference to FIG. For example, in a system in which guest molecules such as dye molecules are dispersed in a matrix such as a transparent polymer or rigid glass, the absorption spectrum is broadened by the essential width (uniform width: Δω h ) of the electronic state of the molecule,
Inhomogeneous spread (inhomogeneous width: Δω i ) caused by subtle differences in the interaction between individual guest molecules and the matrix
Indicates. Here, in a sufficiently low temperature state, Δω h
<< Δω i Therefore, when an absorber having the above-mentioned structure is irradiated with light having a narrow wavelength width, only the molecules of the energy sites that can resonantly absorb the energy of the irradiation light are selectively excited. , By causing a chemical reaction,
A hole is formed by shifting the absorption of the molecule to another wavelength range. The presence / absence of holes can represent "1" and "0" of the data bit.

【0006】前述した情報記憶方法を用いた情報記憶装
置を実現するには、記憶媒体と光学システムとの両面に
おける技術開発が不可欠である。
In order to realize an information storage device using the above-described information storage method, technological development on both sides of the storage medium and the optical system is indispensable.

【0007】記憶媒体では、非破壊読み出し及び高速書
き込みが可能な光ゲート型電子移動反応に基くPHBメ
モリ材料の研究開発が進み、数ns〜数10nsで書き
込み可能な材料が見いだされている(例えば、T.P.Cart
er et al., J.Phys.Chem.,91,3998 (1987)、W.E.Moerne
r et al., Appl.Phys.Lett.,50,430 (1987) 、W.E.Moer
ner et al., Appl.Phys.Lett.,50,430 (1987) 及びH.Su
zuki et al., Jpn.J.Appl.Phys.,29,1146 (1990)参
照)。
In storage media, research and development of PHB memory materials based on an optical gate type electron transfer reaction capable of non-destructive reading and high speed writing have been advanced, and materials capable of writing in several ns to several tens of ns have been found (for example, , TPCart
er et al., J. Phys. Chem., 91 , 3998 (1987), WEMoerne
r et al., Appl.Phys.Lett., 50 , 430 (1987), WEMoer
ner et al., Appl. Phys. Lett., 50 , 430 (1987) and H. Su.
zuki et al., Jpn.J.Appl.Phys., 29 , 1146 (1990)).

【0008】一方、PHB現象を利用した情報記憶装置
としては、音響光学素子に基く光偏向器とガルバノミラ
ーとによりレーザビームを記憶媒体にアクセスする装置
(F.M.Schellenberg et al.,Appl.Opt.,25,3207 (1986)
参照) 、並びに2つの音響光学素子に基く光偏向器によ
りレーザビームを記憶媒体にアクセスする装置(N.Asai
et al., Jpn.J.Appl.Phys.,31,699 (1992) 参照)が提
案されていた。
On the other hand, as an information storage device utilizing the PHB phenomenon, a device for accessing a storage medium with a laser beam by an optical deflector based on an acousto-optic device and a galvanometer mirror (FM Schellenberg et al., Appl. Opt., 25 , 3207 (1986)
And a device for accessing a storage medium with a laser beam by means of an optical deflector based on two acousto-optic elements (N. Asai
et al., Jpn.J.Appl.Phys., 31 , 699 (1992)) was proposed.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、前者の
装置ではアクセス時間がガルバノミラーの駆動時間であ
る約2msであって、現状の光ディスク装置より10倍
以上高速であるが、PHB記憶媒体が有する書き込み速
度のポテンシャルや将来の記憶装置のアクセス速度とし
ては遅すぎるという問題があった。また、後者の装置で
は光偏向器として非機械式の音響光学素子に基く光偏向
器だけを用いているので、アクセス時間をμsオーダへ
高速化することが可能であるが、偏向角度が小さいので
広い領域にアクセスすることができず、また、PHB記
憶媒体が有する書き込み速度のポテンシャルや将来の記
憶装置のアクセス速度としては、それでもなお遅すぎる
という問題があった。
However, in the former device, the access time is about 2 ms which is the driving time of the galvano mirror, which is 10 times faster than the current optical disk device, but the writing in the PHB storage medium is There is a problem that it is too slow as the potential of speed and the access speed of the storage device in the future. Further, in the latter device, since only the optical deflector based on the non-mechanical acousto-optic device is used as the optical deflector, the access time can be shortened to the order of μs, but the deflection angle is small. There is a problem that a wide area cannot be accessed, and the potential of the writing speed of the PHB storage medium and the access speed of future storage devices are still too slow.

【0010】本発明は前記従来の問題点に鑑み、PHB
現象を利用した、大容量で且つアクセス速度及びデータ
転送速度の速い情報記憶方法及びその装置を提供するこ
とを目的とする。
In view of the above conventional problems, the present invention provides a PHB.
An object of the present invention is to provide an information storage method and a device thereof, which utilizes a phenomenon and has a large capacity and a high access speed and a high data transfer speed.

【0011】[0011]

【課題を解決するための手段】本発明では前記目的を達
成するため、マトリクス中にゲスト分子が分散され、該
マトリクスとゲスト分子との相互作用が異なるために生
じる不均一な吸収線を有する記憶媒体上の単一あるいは
複数の任意の位置に、前記吸収線の帯域幅よりも狭いバ
ンド幅を有する単一又は複数の周波数を有する光を選択
的に且つ同時に照射し、空間次元及び波長次元において
並列的に前記ゲスト分子に光化学反応を起こさせて情報
を記憶するとともに、前記記憶媒体上の単一あるいは複
数の任意の位置に、前記吸収線の帯域幅よりも狭いバン
ド幅を有する単一又は複数の周波数を有する光を選択的
に且つ同時に波長走査を行いながら照射し、前記記憶媒
体上の単一もしくは複数の特定の位置を透過後の光か
ら、記憶された情報を並列的に再生する情報記憶方法、
並びにマトリクス中にゲスト分子が分散され、該マトリ
クスとゲスト分子との相互作用が異なるために生じる不
均一な吸収線を有する記憶媒体と、前記吸収線の帯域幅
よりも狭いバンド幅を有する単一又は複数の周波数の光
を発生する光源と、該光源の波長走査を行うための波長
走査器と、前記記憶媒体上の単一あるいは複数の任意の
位置に前記光源からの光を選択的に且つ同時に照射する
ための2次元空間変調器及び第1の集光系と、前記記憶
媒体を冷却するための冷却手段と、前記記憶媒体上の単
一もしくは複数の特定の位置を透過後の光を同時に2次
元的に検出するための2次元検出器及び第2の集光系と
を備え、情報の書き込み及び読み出しに当たって、前記
光源からの光を前記2次元空間変調器及び第1の集光系
により、前記記憶媒体上の単一あるいは複数の任意の位
置に選択的に且つ同時に空間次元及び波長次元において
並列的に照射することができるように構成した情報記憶
装置を提案する。
Means for Solving the Problems In order to achieve the above-mentioned object, the present invention has a memory having a non-uniform absorption line caused by the fact that guest molecules are dispersed in a matrix and the interaction between the guest molecules and the matrix is different. A single or a plurality of arbitrary positions on the medium are selectively and simultaneously irradiated with light having a single or a plurality of frequencies having a bandwidth narrower than the bandwidth of the absorption line, and in the spatial dimension and the wavelength dimension. A photochemical reaction is caused in the guest molecules in parallel to store information, and a single or a plurality of arbitrary positions on the storage medium having a bandwidth narrower than the bandwidth of the absorption line. Information stored by irradiating light having a plurality of frequencies selectively and simultaneously while performing wavelength scanning, and from light after passing through a single or a plurality of specific positions on the storage medium Information storage method of reproducing in parallel,
And a storage medium having a non-uniform absorption line generated due to different interaction between the guest molecule and the guest molecule dispersed in the matrix, and a single storage medium having a bandwidth narrower than that of the absorption line. Alternatively, a light source for generating light of a plurality of frequencies, a wavelength scanner for performing wavelength scanning of the light source, and a single or a plurality of arbitrary positions on the storage medium to selectively and selectively emit light from the light source. A two-dimensional spatial modulator and a first focusing system for simultaneously irradiating, a cooling means for cooling the storage medium, and a light after passing through a single or a plurality of specific positions on the storage medium. A two-dimensional detector for simultaneously two-dimensionally detecting and a second light-collecting system are provided, and in writing and reading information, the light from the light source is the two-dimensional spatial modulator and the first light-collecting system. By the memory Suggest configuration information storage device so that it can be irradiated in parallel in a single or a plurality of selectively and simultaneously spatial dimension and wavelength dimension at an arbitrary position on the body.

【0012】[0012]

【作用】レーザ光を熱源として利用するヒートモード記
憶に対し、レーザ光をそのままの形で利用するフォトン
モード記憶においては、光が有する様々な性質をそのま
ま積極的に利用することができる。特に、PHB現象を
用いた光メモリにおいては、光が有する空間並列性及び
波長並列性を利用することができる。この場合、その並
列性の度合は、空間並列性の度合を表す空間並列度及び
波長並列性の度合を表す波長並列度の積、即ち(空間並
列度)×(波長並列度)(以後、全並列度と称す。)で
与えられる。本発明方法によれば、この並列性を利用す
ることにより、データ転送速度を最高で全並列度倍だけ
高速化することができる。また、本発明装置によれば、
ガルバノミラーや記憶媒体の回転等の機械的な移動を全
く用いていないので、アクセス速度を高速化することが
できる。
In the photon mode memory in which laser light is used as it is, in contrast to the heat mode memory in which laser light is used as a heat source, various properties of light can be positively utilized as they are. Particularly, in an optical memory using the PHB phenomenon, the spatial parallelism and wavelength parallelism of light can be utilized. In this case, the degree of parallelism is the product of the spatial parallelism indicating the degree of spatial parallelism and the wavelength parallelism indicating the degree of wavelength parallelism, that is, (spatial parallelism) × (wavelength parallelism) (hereinafter, the total It is referred to as the degree of parallelism.). According to the method of the present invention, by utilizing this parallelism, the data transfer rate can be increased at the maximum by the total parallel degree. According to the device of the present invention,
Since no mechanical movement such as rotation of the galvanometer mirror or storage medium is used, the access speed can be increased.

【0013】[0013]

【実施例】図1は本発明の一実施例を示すもので、図
中、1は記憶媒体、2は光源、3は波長走査器、4は2
次元空間変調器、5,6は集光系、7は冷却手段、8は
2次元検出器である。
1 shows an embodiment of the present invention, in which 1 is a storage medium, 2 is a light source, 3 is a wavelength scanner, and 4 is 2
A dimensional spatial modulator, 5 and 6 are light collecting systems, 7 is a cooling means, and 8 is a two-dimensional detector.

【0014】記憶媒体1は、マトリクスとその中に分散
されたゲスト分子とからなり、マトリクスとゲスト分子
との相互作用が異なるために不均一な吸収線を示す。ゲ
スト分子は波長多重記憶が可能であれば何でも良いが、
非破壊読み出し及び高速書き込みが可能な光ゲート型電
子移動反応に基くPHBメモリ材料等の、数ns〜数1
0nsで書き込み可能な材料であることが望ましい(例
えば、T.P.Carter etal., J.Phys.Chem.,91,3998 (198
7)、W.E.Moerner et al., Appl.Phys.Lett.,50,430 (19
87) 、W.E.Moerner et al., Appl.Phys.Lett.,50,430
(1987) 及びH.Suzuki et al., Jpn.J.Appl.Phys.,29,11
46 (1990)参照)。
The storage medium 1 is composed of a matrix and guest molecules dispersed therein, and exhibits nonuniform absorption lines because the interaction between the matrix and the guest molecules is different. Any guest molecule may be used as long as it is capable of wavelength multiplexing storage,
Several nanoseconds to several 1 such as PHB memory materials based on photo-gate type electron transfer reaction capable of non-destructive reading and high speed writing
It is desirable that the material can be written in 0 ns (for example, TP Carter et al., J. Phys. Chem., 91 , 3998 (198
7), WEMoerner et al., Appl.Phys.Lett., 50 , 430 (19
87), WEMoerner et al., Appl.Phys.Lett., 50, 430
(1987) and H.Suzuki et al., Jpn.J.Appl.Phys., 29, 11
46 (1990)).

【0015】光源2は、前述した不均一な吸収線の帯域
幅よりも狭いバンド幅を有する単一又は複数の周波数の
光を発し、波長走査器3により波長走査を行う。2次元
空間変調器4及び集光系5は、前記記憶媒体1上の単一
あるいは複数の任意の位置に前記光源2からの光を選択
的に且つ同時に照射する。2次元空間変調器4として
は、例えば液晶空間変調器、光電融合素子(QCS効果
素子)、非線形エタロン等があるが、並列度、応答速
度、入力感度、コントラスト、動作波長及びメモリ性等
の特徴により使い分けることができる。
The light source 2 emits light of a single or a plurality of frequencies having a bandwidth narrower than the bandwidth of the above-mentioned nonuniform absorption line, and the wavelength scanner 3 performs wavelength scanning. The two-dimensional spatial modulator 4 and the light converging system 5 selectively and simultaneously irradiate the light from the light source 2 to a single position or a plurality of arbitrary positions on the storage medium 1. The two-dimensional spatial modulator 4 includes, for example, a liquid crystal spatial modulator, a photoelectric fusion element (QCS effect element), a non-linear etalon, etc., but features such as parallelism, response speed, input sensitivity, contrast, operating wavelength and memory property. It can be used properly according to.

【0016】冷却手段7は前記記憶媒体1を冷却するた
めのものであり、記憶媒体1を液体ヘリウム温度から室
温までの任意の温度に冷却することができる。2次元検
出器8及び集光系6は、前記記憶媒体1上の単一もしく
は複数の特定の位置を透過後の光を同時に2次元的に検
出する。具体的には、フォトダイオードアレイやCCD
検出器等が考えられる。
The cooling means 7 is for cooling the storage medium 1 and can cool the storage medium 1 to any temperature from liquid helium temperature to room temperature. The two-dimensional detector 8 and the condenser system 6 simultaneously two-dimensionally detect the light after passing through a single or a plurality of specific positions on the storage medium 1. Specifically, a photodiode array or CCD
A detector may be considered.

【0017】情報の書き込み及び読み出しに当たって
は、前記光源2からの光を前記2次元空間変調器4及び
集光系5により、前記記憶媒体1上の単一あるいは複数
の任意の位置に選択的に且つ同時に空間次元及び波長次
元において並列的に照射することができるように構成し
た。
In writing and reading information, the light from the light source 2 is selectively moved to a single or a plurality of arbitrary positions on the storage medium 1 by the two-dimensional spatial modulator 4 and the condensing system 5. Moreover, it is configured such that irradiation can be performed in parallel in the space dimension and the wavelength dimension at the same time.

【0018】以下、具体的に説明する。まず、市販のポ
リメチルメタクリレート(以下、PMMAと略記す
る。)のクロロホルム溶液中に、メタルフリーテトラフ
ェニルポルフィリン(以下、TPPと略記する。)及び
9−ブロムアントラセン(以下、9−ABrと略記す
る。)を乾燥時の濃度がそれぞれ5×10-3M及び5×
10-2Mとなるように加えた後、透明ガラス性基板上
に、窒素ガス雰囲気下において50〜60°Cで一昼夜
キャストし、さらにロータリーポンプ減圧下において1
50°Cで二昼夜放置することにより溶媒を完全に除去
し、厚さ約50μmのフィルムを得た。
A detailed description will be given below. First, metal-free tetraphenylporphyrin (hereinafter abbreviated as TPP) and 9-bromoanthracene (hereinafter abbreviated as 9-ABr) in a chloroform solution of commercially available polymethylmethacrylate (hereinafter abbreviated as PMMA). .) Has a dry concentration of 5 × 10 −3 M and 5 ×, respectively.
After adding it to 10 -2 M, it was cast on a transparent glass substrate at 50 to 60 ° C under nitrogen gas atmosphere all day and night, and further, the pressure was reduced to 1 by a rotary pump under reduced pressure.
The solvent was completely removed by leaving it at 50 ° C. for two days and nights to obtain a film having a thickness of about 50 μm.

【0019】この記憶媒体1を液体ヘリウム温度まで冷
却し、Arレーザ励起のリング色素レーザ光をAO変調
器によりパルス状にした光(波長:645.00nm、パルス
幅:30ns、バンド幅:500kHz )を1パルス
(照射エネルギー:20μJ/cm2 )と、Arレーザ
光をAO変調器によりパルス状にした光(波長: 514.5
nm、パルス幅:30ns)を1パルス(照射エネルギ
ー:50μJ/cm2 )を同軸光とし、強誘電体液晶か
らなる空間光変調器4を通して等価な5本の平行光線と
し、集光系5により5μmφに絞り込み、図3(a) に示
すように記憶媒体1の位置A,B,C,D,Eに同時に
照射した。
Light (wavelength: 645.00 nm, pulse width: 30 ns, band width: 500 kHz) obtained by cooling the storage medium 1 to the temperature of liquid helium and making the ring dye laser light excited by Ar laser into a pulse shape by the AO modulator is used. 1 pulse (irradiation energy: 20 μJ / cm 2 ) and pulsed Ar laser light by an AO modulator (wavelength: 514.5
nm, pulse width: 30 ns) 1 pulse (irradiation energy: 50 μJ / cm 2 ) is made into coaxial light, and it is made into 5 parallel light rays equivalent through the spatial light modulator 4 made of ferroelectric liquid crystal. The aperture was narrowed down to 5 μmφ and the positions A, B, C, D and E of the storage medium 1 were simultaneously irradiated as shown in FIG.

【0020】次に、Arレーザ励起のリング色素レーザ
光をAO変調器によりパルス状とした光(波長:645.02
nm、パルス幅:30ns、バンド幅:500kHz )
を1パルス(照射エネルギー:20μJ/cm2 )と、
Arレーザ光をAO変調器によりパルス状にした光(波
長: 514.5nm、パルス幅:30ns)を1パルス(照
射エネルギー:50μJ/cm2 )を同軸光とし、強誘
電体液晶からなる空間光変調器4を通して等価な4本の
平行光線とし、集光系5により5μmφに絞り込み、記
憶媒体1の位置A,E,F,Gに同時に照射した。
Next, a ring dye laser beam excited by an Ar laser is pulsed by an AO modulator (wavelength: 645.02).
nm, pulse width: 30 ns, band width: 500 kHz)
1 pulse (irradiation energy: 20 μJ / cm 2 ),
Spatial light modulation consisting of a ferroelectric liquid crystal using 1 pulse of pulsed light (wavelength: 514.5 nm, pulse width: 30 ns) of Ar laser light pulsed by an AO modulator (irradiation energy: 50 μJ / cm 2 ). Equivalent four parallel light beams were made to pass through the device 4, narrowed down to 5 μmφ by the condensing system 5, and irradiated at positions A, E, F and G of the storage medium 1 at the same time.

【0021】次に、前記リング色素レーザ光を前記空間
光変調器4を通して記憶媒体1の位置A,B,C,D,
E,F,Gに対応する等価な7本の平行光線とし、集光
系5により5μmφに絞り込み、波長を644.98nmから
645.04nmまで走査したところ、Arレーザ光と同時に
照射したリング色素レーザ光の波長に対応して、図3
(b) に示すようにTPPのQ1 吸収帯にホールの形成が
確認された。
Next, the ring dye laser light is passed through the spatial light modulator 4 to the positions A, B, C, D, on the storage medium 1.
Equivalent to 7 parallel rays corresponding to E, F, G, and narrowed down to 5μmφ by the condensing system 5, wavelength from 644.98nm
Scanning up to 645.04 nm shows that the wavelength of the ring dye laser light irradiated at the same time as the Ar laser light is shown in FIG.
As shown in (b), formation of holes was confirmed in the Q 1 absorption band of TPP.

【0022】また、市販のPMMAのクロロホルム溶液
中に、TPP及び9−ABrを乾燥時の濃度がそれぞれ
5×10-3M及び5×10-2Mとなるように加えた後、
透明ガラス性基板上に、窒素ガス雰囲気下において50
〜60°Cで一昼夜キャストし、さらにロータリーポン
プ減圧下において150°Cで二昼夜放置することによ
り溶媒を完全に除去し、厚さ約50μmのフィルムを得
た。
Further, TPP and 9-ABr were added to a commercially available chloroform solution of PMMA so that the concentrations when dried were 5 × 10 −3 M and 5 × 10 −2 M, respectively, and then,
50 on a transparent glass substrate under a nitrogen gas atmosphere.
The solvent was completely removed by casting at -60 ° C for one day and one night and then for two days at 150 ° C under reduced pressure of a rotary pump to obtain a film having a thickness of about 50 µm.

【0023】この記憶媒体1を液体ヘリウム温度まで冷
却し、5個の可視光cw半導体レーザを並べてアレイ光
源とした光(波長:644.98nm,644.99nm,645.00n
m,645.01nm,645.02nm、照射エネルギー:20μ
J/cm2 、照射時間:10s)と、Arレーザ光(波
長: 514.5nm、照射時間:10s、照射エネルギー:
50μJ/cm2 )を同軸光とし、強誘電体液晶からな
る空間光変調器4を通して等価な5本の平行光線とし、
集光系5により5μmφに絞り込み、図4(a)に示すよ
うに記憶媒体1の位置A,B,C,D,Eに同時に照射
した。
This storage medium 1 is cooled to the temperature of liquid helium, and five visible light cw semiconductor lasers are arranged to form an array light source (wavelengths: 644.98 nm, 644.99 nm, 645.00 n).
m, 645.01 nm, 645.02 nm, irradiation energy: 20 μ
J / cm 2 , irradiation time: 10 s, Ar laser light (wavelength: 514.5 nm, irradiation time: 10 s, irradiation energy:
50 μJ / cm 2 ) as coaxial light, and 5 parallel light rays equivalent through the spatial light modulator 4 made of ferroelectric liquid crystal,
The light was focused to 5 μmφ by the condensing system 5, and the positions A, B, C, D, and E of the storage medium 1 were simultaneously irradiated as shown in FIG.

【0024】次に、前記半導体レーザ光を前記空間光変
調器4を通して記憶媒体1の位置A,B,C,D,Eに
対応する等価な5本の平行光線とし、集光系5により5
μmφに絞り込み、波長を644.95nmから645.05nmま
で走査したところ、Arレーザ光と同時に照射した半導
体色素レーザ光の波長に対応して、図4(b) に示すよう
にTPPのQ1 吸収帯にホールの形成が確認された。
Next, the semiconductor laser light is made into five equivalent parallel light rays corresponding to the positions A, B, C, D and E of the storage medium 1 through the spatial light modulator 4, and the parallel light rays are made 5 by the focusing system 5.
When the wavelength was narrowed down to μmφ and the wavelength was scanned from 644.95 nm to 645.05 nm, the Q 1 absorption band of TPP was detected as shown in FIG. 4 (b), corresponding to the wavelength of the semiconductor dye laser light irradiated at the same time as the Ar laser light. The formation of holes was confirmed.

【0025】[0025]

【発明の効果】以上説明したように本発明によれば、従
来のように記憶媒体のアクセスに音響光学素子に基く光
偏向器やガルバノミラーを用いることなく、情報の書き
込み及び読み出しに当たって単一又は複数の周波数を有
する光源からの光を、2次元空間変調器及び集光系によ
り、記憶媒体上の単一あるいは複数の任意の位置に選択
的に且つ同時に空間次元及び波長次元において並列的に
照射することができるため、PHB現象を利用した、大
容量で且つアクセス速度及びデータ転送速度の速い情報
記憶方法及びその装置を実現できる。
As described above, according to the present invention, it is possible to write or read information without using an optical deflector or a galvanometer mirror based on an acousto-optic device for accessing a storage medium as in the prior art. Light from a light source having a plurality of frequencies is selectively and simultaneously irradiated in parallel in a spatial dimension and a wavelength dimension on a single or plural arbitrary positions on a storage medium by a two-dimensional spatial modulator and a condensing system. Therefore, it is possible to realize a large-capacity information storage method utilizing the PHB phenomenon and having a high access speed and a high data transfer speed, and an apparatus thereof.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】PHB現象を利用した情報記憶方法の原理の説
明図
FIG. 2 is an explanatory diagram of the principle of an information storage method using the PHB phenomenon.

【図3】記憶媒体への情報の書き込み位置の一例及びそ
の際の記憶情報を示す波長−吸収強度特性を示す図
FIG. 3 is a diagram showing an example of a writing position of information on a storage medium and wavelength-absorption intensity characteristics showing stored information at that time.

【図4】記憶媒体への情報の書き込み位置の他の例及び
その際の記憶情報を示す波長−吸収強度特性を示す図
FIG. 4 is a diagram showing another example of a writing position of information on a storage medium and a wavelength-absorption intensity characteristic showing stored information at that time.

【符号の説明】[Explanation of symbols]

1…記憶媒体、2…光源、3…波長走査器、4…2次元
空間変調器、5,6…集光系、7…冷却手段、8…2次
元検出器。
DESCRIPTION OF SYMBOLS 1 ... Storage medium, 2 ... Light source, 3 ... Wavelength scanner, 4 ... Two-dimensional spatial modulator, 5,6 ... Condensing system, 7 ... Cooling means, 8 ... Two-dimensional detector.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 マトリクス中にゲスト分子が分散され、
該マトリクスとゲスト分子との相互作用が異なるために
生じる不均一な吸収線を有する記憶媒体上の単一あるい
は複数の任意の位置に、前記吸収線の帯域幅よりも狭い
バンド幅を有する単一又は複数の周波数を有する光を選
択的に且つ同時に照射し、空間次元及び波長次元におい
て並列的に前記ゲスト分子に光化学反応を起こさせて情
報を記憶するとともに、 前記記憶媒体上の単一あるいは複数の任意の位置に、前
記吸収線の帯域幅よりも狭いバンド幅を有する単一又は
複数の周波数を有する光を選択的に且つ同時に波長走査
を行いながら照射し、前記記憶媒体上の単一もしくは複
数の特定の位置を透過後の光から、記憶された情報を並
列的に再生することを特徴とする情報記憶方法。
1. A guest molecule is dispersed in a matrix,
A single or a plurality of arbitrary positions on the storage medium having a non-uniform absorption line caused by a different interaction between the matrix and the guest molecule, and a single band having a bandwidth narrower than the bandwidth of the absorption line. Alternatively, light having a plurality of frequencies is selectively and simultaneously irradiated to cause a photochemical reaction in the guest molecules in parallel in a space dimension and a wavelength dimension to store information, and a single or a plurality of information on the storage medium is stored. Is irradiated with light having a single or a plurality of frequencies having a bandwidth narrower than that of the absorption line selectively and simultaneously while performing wavelength scanning. An information storage method characterized in that stored information is reproduced in parallel from light that has passed through a plurality of specific positions.
【請求項2】 マトリクス中にゲスト分子が分散され、
該マトリクスとゲスト分子との相互作用が異なるために
生じる不均一な吸収線を有する記憶媒体と、 前記吸収線の帯域幅よりも狭いバンド幅を有する単一又
は複数の周波数の光を発生する光源と、 該光源の波長走査を行うための波長走査器と、 前記記憶媒体上の単一あるいは複数の任意の位置に前記
光源からの光を選択的に且つ同時に照射するための2次
元空間変調器及び第1の集光系と、 前記記憶媒体を冷却するための冷却手段と、 前記記憶媒体上の単一もしくは複数の特定の位置を透過
後の光を同時に2次元的に検出するための2次元検出器
及び第2の集光系とを備え、 情報の書き込み及び読み出しに当たって、前記光源から
の光を前記2次元空間変調器及び第1の集光系により、
前記記憶媒体上の単一あるいは複数の任意の位置に選択
的に且つ同時に空間次元及び波長次元において並列的に
照射することができるように構成したことを特徴とする
情報記憶装置。
2. A guest molecule is dispersed in a matrix,
A storage medium having a non-uniform absorption line caused by a different interaction between the matrix and the guest molecule, and a light source for generating light of a single or a plurality of frequencies having a bandwidth narrower than the bandwidth of the absorption line. A wavelength scanner for performing wavelength scanning of the light source, and a two-dimensional spatial modulator for selectively and simultaneously irradiating light from the light source to a single or a plurality of arbitrary positions on the storage medium. And a first condensing system, a cooling unit for cooling the storage medium, and 2 for simultaneously two-dimensionally detecting light that has passed through a single or a plurality of specific positions on the storage medium. A two-dimensional spatial modulator and a first light-collecting system, for writing and reading information, the two-dimensional spatial modulator and the first light-collecting system.
An information storage device characterized in that it can be selectively and simultaneously irradiated in parallel in the space dimension and the wavelength dimension to a single position or a plurality of arbitrary positions on the storage medium.
JP14277492A 1992-06-03 1992-06-03 Method for storing information and device therefor Pending JPH05334880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14277492A JPH05334880A (en) 1992-06-03 1992-06-03 Method for storing information and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14277492A JPH05334880A (en) 1992-06-03 1992-06-03 Method for storing information and device therefor

Publications (1)

Publication Number Publication Date
JPH05334880A true JPH05334880A (en) 1993-12-17

Family

ID=15323281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14277492A Pending JPH05334880A (en) 1992-06-03 1992-06-03 Method for storing information and device therefor

Country Status (1)

Country Link
JP (1) JPH05334880A (en)

Similar Documents

Publication Publication Date Title
Moerner Molecular electronics for frequency domain optical storage: Persistent spectral hole-burning- A review
US4101976A (en) Frequency selective optical data storage system
US6483735B1 (en) Two-photon, three-or four-dimensional, color radiation memory
CN108320758B (en) Reversible phase-change material high-density storage device
US5420845A (en) Methods of varying optical properties, optical devices, information recording media and information recording methods and apparatuses
AU669136B2 (en) Improved surface-enhanced raman optical data storage system
Dvornikov et al. Materials and systems for two photon 3-D ROM devices
US5568460A (en) Optical recording and/or reproducing apparatus and method utilizing stimulated photon echo
Bjorklund et al. Cryogenic frequency domain optical mass memory
Ao et al. Spatial resolution and data addressing of frequency domain optical storage materials in the near IR regime
US4855951A (en) Method for erasing recording in a PHB memory
JPH05334880A (en) Method for storing information and device therefor
EP0527551B1 (en) Methods of varying optical properties, optical devices, information recording media and information recording methods and apparatus
JP2722631B2 (en) Optical recording method and reproducing method using stimulated photon echo, recording apparatus and reproducing apparatus
GB2198546A (en) Method of optically recording and reading information
JP3532743B2 (en) Optical recording method
Lenth et al. High-density frequency-domain optical recording
JP2718496B2 (en) Optical memory device
JP3472186B2 (en) Optical recording medium and optical recording device
EP0425278B1 (en) Optical record reproducing method and apparatus utilizing stimulated photon echo
JPH03183033A (en) Optical recorder and reproducer utilizing induced phton echo
Dvornikov et al. Studies of new nondestructive read-out media for two-photon 3D high-density storage
JP2001281796A (en) Organic optical recording medium and optical recording and reproducing device
JP2577633B2 (en) Optical storage media
JP2000019572A (en) Optical recording medium