JPH05322740A - Analyzed for fiberlike particle in liquid - Google Patents

Analyzed for fiberlike particle in liquid

Info

Publication number
JPH05322740A
JPH05322740A JP3086237A JP8623791A JPH05322740A JP H05322740 A JPH05322740 A JP H05322740A JP 3086237 A JP3086237 A JP 3086237A JP 8623791 A JP8623791 A JP 8623791A JP H05322740 A JPH05322740 A JP H05322740A
Authority
JP
Japan
Prior art keywords
particle
light
outlet
particles
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3086237A
Other languages
Japanese (ja)
Other versions
JPH0692931B2 (en
Inventor
Shusuke Yoshiyama
秀典 吉山
Tsuyoshi Sagawa
強 寒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3086237A priority Critical patent/JPH0692931B2/en
Publication of JPH05322740A publication Critical patent/JPH05322740A/en
Publication of JPH0692931B2 publication Critical patent/JPH0692931B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To measure the length and diameter of a particle by passing fibrelike particles dispersed in a liquid through a minute pipe whose inlet and outlet are different in diameter, making the axes of the particles parallel with the main axis of the pipe, and detecting the scattering light of a particle. CONSTITUTION:Liquid where fiberlike particles 1 drift enters through an inlet 2 and gets out through an outlet 3 by a method in which pressure is added from the side of the inlet 2 or suction is conducted from the side of the outlet 3. As the diameter of the inlet 2 of this pipe is larger than that of the outlet 3, a pipe axis and that of a particle 1 become parallel with each other according as a particle 1 heads for the outlet 3 from the inlet 2. When the particles 1 is irradiated with light 4 whose the thickness of light passage is thin, a light scattering phenomenon is generated by a particle 1'' during a time that is from irradiation start at the tip of the particle 1'' to moving to the end. This scattering light is detected by means of a detector 5. The length of a particle 1 is calculated from a time detecting the scattering light and the movement speed of the particle 1. The diameter of a particle 1 is sought from the intensity of scattering on the basis of the theory of light scattering. As the thickness of the light 4 has relationship with resolving power, the thinner it is, the better it is.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液体中に浮遊する繊維
状粒子の直径と長さの測定技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for measuring the diameter and length of fibrous particles suspended in a liquid.

【0002】[0002]

【従来の技術】気体中に浮遊する繊維状粒子の大きさに
ついての計測方法について、従来の方法は繊維状粒子を
フィルタ叉は透明ガラス板上に採取し顕微鏡による直接
測定が最も簡単なものとされてきたが多大の労力を必要
とする点に問題があった。繊維状粒子が気体中に浮遊し
た状態での自動測定法は商業規模で発売されているもの
があるが、液体中の繊維状粒子についての自動計測法は
ない。
2. Description of the Related Art Regarding the method for measuring the size of fibrous particles suspended in a gas, the conventional method is that the fibrous particles are collected on a filter or a transparent glass plate and the direct measurement with a microscope is the simplest. However, there is a problem in that it requires a lot of labor. Although there is an automatic measurement method in the state where the fibrous particles are suspended in the gas on the commercial scale, there is no automatic measurement method for the fibrous particles in the liquid.

【0003】[0003]

【発明が解決しようとする課題】繊維状粒子の長さを測
定するため、一定方向に繊維状粒子の主軸を調整する技
術と直径を測定する方法を組合わせれば繊維状粒子の形
状を知ることが出来る。
In order to measure the length of a fibrous particle, it is possible to know the shape of the fibrous particle by combining a technique of adjusting the principal axis of the fibrous particle in a certain direction and a method of measuring the diameter. Can be done.

【0004】[0004]

【課題を解決するための手段】繊維状粒子の形状につい
ては円柱形に単純化することにより、直径と長さの二つ
の要素により表現できる。長さを測定するためには、検
出器内で粒子の主軸を一定方向に揃える方が計測に有利
である。そのために、微細管内を粒子が移動する時、粒
子の主軸と管の主軸が平行になることで長さを測定する
ことを特徴とする。
The shape of the fibrous particles can be represented by two elements of diameter and length by simplifying the shape of a cylinder. In order to measure the length, it is advantageous for the measurement that the principal axes of the particles are aligned in a certain direction in the detector. Therefore, when particles move in a fine tube, the main axis of the particle and the main axis of the tube are parallel to each other to measure the length.

【0005】また、長さを検出するために照射する光の
繊維状粒子による散乱光を解析することにより繊維状粒
子の直径を測定できるようにした。
Further, the diameter of the fibrous particles can be measured by analyzing the scattered light by the fibrous particles of the light irradiated to detect the length.

【0006】[0006]

【実施例】【Example】

【図1】に示すように勾配のある管の入口12から出口13
までの間での粒子の主軸の動きを簡単に説明する。主軸
の向きが管軸と異なっている粒子7は流線に沿って入口
方向へ移動し、粒子8のような配置となる。さらに、粒
子の両端に及ぼす圧力の均衡が崩れ、9、10と移動し、
出口13付近で粒子11のように主軸と管軸は必ず平行にな
る。こうすることにより、液体中の粒子7の主軸がバラ
バラの方向を示していたが、入口から出口へ向かうに従
い、管軸と粒子のそれが平行になり管内を移動し出口へ
向かう。
1 shows an inlet 12 to an outlet 13 of a graded pipe as shown in FIG.
A brief explanation will be given of the movement of the main axis of the particle during the period. Particles 7 whose main axis direction is different from the tube axis move toward the inlet along the streamline, and are arranged like particles 8. Furthermore, the pressure balance exerted on both ends of the particle is broken, moving to 9 and 10,
In the vicinity of the outlet 13, the main axis and the tube axis are always parallel, like the particles 11. By doing so, the main axes of the particles 7 in the liquid were in different directions, but as the direction from the inlet to the outlet became parallel to that of the tube axis, the particles moved in the tube and moved toward the outlet.

【0007】[0007]

【図2】に本装置の検出部の概略を示す。液体中に繊維
状粒子が浮遊しており、図中で入口2の側から圧力を加
えるか、出口3の側から吸引する方法により液体は入口
から入り、出口から出ていく。この管は入口側の直径が
出口側の直径より大きくなっており液体が淀む事なく出
口へ移動し流れる。
FIG. 2 shows an outline of a detection unit of this device. The fibrous particles are suspended in the liquid, and the liquid enters from the inlet and exits from the outlet by a method of applying pressure from the inlet 2 side or sucking from the outlet 3 side in the figure. The diameter of the pipe on the inlet side is larger than the diameter on the outlet side, and the liquid moves to the outlet without flowing and flows.

【0008】検出方法は厚さの薄い光4を微細管全断面
に渡って照射すると、粒子1"の先端から照射されはじ
め、末端まで移動する時間、粒子1"により光散乱現象を
生じる。もし光源6の位置が固定してあり、粒子1"が長
ければ粒子による散乱光は長時間に渡って続けられる。
この粒子により散乱された散乱光を検出器である光電子
増倍管5で検出する。この検出器は粒子の先端が光線4に
より照射され始めた瞬間から粒子の末端まで移動する
間、散乱光を検出する。
In the detection method, when light 4 having a small thickness is irradiated over the entire cross section of the microtube, a light scattering phenomenon occurs due to the particles 1 "during the time when the particles 1" start to be irradiated from the tip to the end. If the position of the light source 6 is fixed and the particle 1 ″ is long, the light scattered by the particle can continue for a long time.
The scattered light scattered by the particles is detected by a photomultiplier tube 5 which is a detector. This detector detects scattered light as it travels from the moment the tip of the particle begins to be illuminated by the light beam 4 to the end of the particle.

【0009】繊維状粒子の長さ(L)は粒子による散乱
光を検出している時間(t)と繊維状粒子の移動速度
(v)から次式に示すように簡単に計算できる。
The length (L) of the fibrous particles can be easily calculated from the time (t) for detecting the scattered light by the particles and the moving speed (v) of the fibrous particles as shown in the following equation.

【数1】[Equation 1]

【0010】L = v ・ tL = v.t

【0011】粒子の直径は光の散乱理論に基ずいて、散
乱強度から求めることができる。または、直径と散乱強
度の関係を粒径が既知の繊維状粒子により、校正してお
けば、直ちに粒子1”の直径が求まる。ここで光4の厚さ
は分解能に関係するため、できるだけ薄いほうが良い。
The diameter of the particles can be determined from the scattering intensity based on the light scattering theory. Alternatively, if the relationship between the diameter and the scattering intensity is calibrated with fibrous particles of known particle size, the diameter of particle 1 ″ can be immediately obtained. Since the thickness of light 4 is related to resolution, it is as thin as possible. Better.

【0012】[0012]

【発明の効果】本発明に従えば、液体中に浮遊する繊維
状粒子をフィルタやガラス板上に捕集して顕微鏡で大き
さと長さを測定するという多大の労力と時間を必要とす
ることなく、自動的に測定できる。
According to the present invention, it requires a great deal of labor and time to collect fibrous particles floating in a liquid on a filter or a glass plate and measure the size and length with a microscope. No, it can be measured automatically.

【図面の簡単な説明】[Brief description of drawings]

【図1】液体中の繊維状粒子が微細管中を移動する様子
を模式的に表わした説明図である。
FIG. 1 is an explanatory view schematically showing how fibrous particles in a liquid move in a fine tube.

【図2】本装置の検出部の[Fig. 2] Fig. 2 shows a detector of the present apparatus.

【請求項1】について概略を示した説明図である。1. It is an explanatory view showing an outline of [1].

【図3】本装置の検出部のFIG. 3 shows a detection unit of the device.

【請求項2】について概略を示した説明図である。2. FIG. 2 is an explanatory diagram showing an outline of the above.

【図4】本装置の検出部の正面図である。FIG. 4 is a front view of a detection unit of the present device.

【符号の説明】[Explanation of symbols]

1,1',1" 繊維状粒子 2 微細管入口 3 微細管出口 4 光 5 検出器(光電子倍増管) 6 光源 7,8,9,10,11 繊維状粒子 12 勾配管入口 13 勾配管出口 1,1 ', 1 "Fibrous particles 2 Micro tube inlet 3 Micro tube outlet 4 Light 5 Detector (photomultiplier tube) 6 Light source 7,8,9,10,11 Fibrous particles 12 Gradient tube inlet 13 Gradient tube outlet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 入口と出口の直径の異なる微細管とその
出口に微小幅の光線を発生する光源および光検出器と信
号処理器を備え、液体中に分散する繊維状(円柱)粒子
の直径と長さを測定するため、光線により照射された粒
子の散乱光を検出器で検出し、信号処理器により、散乱
光を検出している時間から繊維状粒子の長さを、散乱強
度から大きさを測定することを特徴とする装置
1. A diameter of a fibrous (cylindrical) particle dispersed in a liquid, comprising a fine tube having different inlet and outlet diameters, and a light source for generating a light beam of a minute width, a photodetector and a signal processor at the outlet thereof. In order to measure the length and the length, the detector detects the scattered light of the particle irradiated by the light beam, and the signal processor measures the length of the fibrous particle from the time when the scattered light is detected, Device for measuring height
【請求項2】 該光線と該検出器の組が、該微細管の途
中に設置されたものからなる、請求項1の液体中繊維状
粒子分析計
2. A fibrous particle analyzer in liquid according to claim 1, wherein the set of the light beam and the detector is provided in the middle of the fine tube.
JP3086237A 1991-03-26 1991-03-26 Fibrous particle analyzer in liquid Expired - Lifetime JPH0692931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3086237A JPH0692931B2 (en) 1991-03-26 1991-03-26 Fibrous particle analyzer in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3086237A JPH0692931B2 (en) 1991-03-26 1991-03-26 Fibrous particle analyzer in liquid

Publications (2)

Publication Number Publication Date
JPH05322740A true JPH05322740A (en) 1993-12-07
JPH0692931B2 JPH0692931B2 (en) 1994-11-16

Family

ID=13881192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3086237A Expired - Lifetime JPH0692931B2 (en) 1991-03-26 1991-03-26 Fibrous particle analyzer in liquid

Country Status (1)

Country Link
JP (1) JPH0692931B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515337A (en) * 1999-12-03 2003-05-07 エックスワイ,インコーポレイテッド Improved flow cytometer nozzle and flow cytometer sample handling method
US8274655B2 (en) 2009-02-05 2012-09-25 Massachusetts Institute Of Technology Method and system for in situ aerosol thermo-radiometric analysis
US9757726B2 (en) 2013-03-14 2017-09-12 Inguran, Llc System for high throughput sperm sorting
US10371622B2 (en) 2013-03-14 2019-08-06 Inguran, Llc Device for high throughput sperm sorting
US10662408B2 (en) 2013-03-14 2020-05-26 Inguran, Llc Methods for high throughput sperm sorting

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515337A (en) * 1999-12-03 2003-05-07 エックスワイ,インコーポレイテッド Improved flow cytometer nozzle and flow cytometer sample handling method
JP2012047760A (en) * 1999-12-03 2012-03-08 Xy Llc Improved flow cytometer nozzle and flow cytometer sample handling method
JP5019497B2 (en) * 1999-12-03 2012-09-05 エックスワイ,エルエルシー Improved flow cytometer nozzle and flow cytometer sample handling method
US8274655B2 (en) 2009-02-05 2012-09-25 Massachusetts Institute Of Technology Method and system for in situ aerosol thermo-radiometric analysis
US9757726B2 (en) 2013-03-14 2017-09-12 Inguran, Llc System for high throughput sperm sorting
US10371622B2 (en) 2013-03-14 2019-08-06 Inguran, Llc Device for high throughput sperm sorting
US10662408B2 (en) 2013-03-14 2020-05-26 Inguran, Llc Methods for high throughput sperm sorting
US11591566B2 (en) 2013-03-14 2023-02-28 Inguran, Llc Methods for high throughput sperm sorting

Also Published As

Publication number Publication date
JPH0692931B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
US3984307A (en) Combined particle sorter and segregation indicator
FI70481C (en) FOER FARING PROCESSING OF CELLVOLYMEN
JP4965561B2 (en) Cytometer cell counting and sizing system
JP3335645B2 (en) Particle detection system using non-viscous flow generating nozzle
US3827555A (en) Particle sorter with segregation indicator
JP5443787B2 (en) A device that counts fibers in the air with high accuracy
JPH07500660A (en) Electro-optical device for measuring single entities of fibers or other samples
US5456102A (en) Method and apparatus for particle counting and counter calibration
RU2006108798A (en) OPTICAL FLOW METER FOR MEASURING GAS AND LIQUID FLOW IN PIPELINES
US3680962A (en) Contaminant detector comprising means for selectively applying pressure to liquify bubbles
JPH10311748A (en) Method for detecting distribution of mass flow rate in one surface
CN209416865U (en) A kind of oil liquid Particulate Pollution detection device
JPH05322740A (en) Analyzed for fiberlike particle in liquid
JPH0346777B2 (en)
US6005662A (en) Apparatus and method for the measurement and separation of airborne fibers
US6122054A (en) Device for measuring the concentration of airborne fibers
CN109632588A (en) A kind of oil liquid Particulate Pollution detection device and method
JPS6236542A (en) Particle analyzer
JPH10318908A (en) Pollen monitor
JPS63201554A (en) Particle analyzing device
JP2000503405A (en) Airborne fiber concentration measurement device
JP2720069B2 (en) Flow cell analyzer
JPH0498145A (en) Counting device for particulates in fluid
JPH02196943A (en) Sample cell for measuring microobject
Tufto Sampling efficiencies of particulate sampling inlets

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term