JPH0531903B2 - - Google Patents

Info

Publication number
JPH0531903B2
JPH0531903B2 JP62094794A JP9479487A JPH0531903B2 JP H0531903 B2 JPH0531903 B2 JP H0531903B2 JP 62094794 A JP62094794 A JP 62094794A JP 9479487 A JP9479487 A JP 9479487A JP H0531903 B2 JPH0531903 B2 JP H0531903B2
Authority
JP
Japan
Prior art keywords
gas
reaction tower
pyrolysis
tower
inner cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62094794A
Other languages
Japanese (ja)
Other versions
JPS63260981A (en
Inventor
Mamoru Sano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP62094794A priority Critical patent/JPS63260981A/en
Publication of JPS63260981A publication Critical patent/JPS63260981A/en
Publication of JPH0531903B2 publication Critical patent/JPH0531903B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は可燃性廃棄物の廃プラスチツク、廃ゴ
ム、自動車用塗料などの固形性廃棄物を連続熱分
解し、その生成反応ガスを冷却凝縮して分級生成
し、また、精製することで、固形可燃性廃棄物を
完全ガス化して都市ガスを製造する可燃性廃棄物
熱分解ガス製造装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Field of Industrial Application) The present invention continuously thermally decomposes solid waste such as combustible waste plastics, waste rubber, and automobile paint, and The present invention relates to a combustible waste pyrolysis gas production device that completely gasifies solid combustible waste to produce city gas by cooling and condensing a reaction gas, classifying it, and purifying it.

(従来の技術) 従来から、プラスチツク単独のものを完全ガス
するのは困難であり(参考文献−プラスチツク廃
棄物の有効利用−熱分解ガス化プロセスP.92)、
都市ゴミのガス化の例としてそのゴミの中にプラ
スチツクを含有している程度のものである。
(Prior art) Conventionally, it has been difficult to fully gasify plastic alone (Reference - Effective use of plastic waste - Pyrolysis gasification process P.92).
An example of gasification of municipal waste is one in which the waste contains plastic.

一方、特公昭52−10451号公報には、乾溜ガス
を冷却装置において冷却して、タール、水蒸気ほ
か5種の混合液状生成物を捕集し、タールは別途
の分級蒸溜装置により各種の液体燃料として再資
源化し、他の液状生成物も夫々に分別され、工業
用原料として再利用される廃棄物の処理及び資源
化装置が示されている。
On the other hand, Japanese Patent Publication No. 52-10451 discloses that dry distilled gas is cooled in a cooling device to collect a mixed liquid product of tar, water vapor and five other types, and the tar is converted into various liquid fuels using a separate classification distillation device. A waste processing and resource recovery device is shown in which the waste is recycled as a resource, and other liquid products are also separated and reused as industrial raw materials.

また、特公昭52−47924号公報には、従前技術
で生成するガスの低位発熱量と、酸素化合物含有
の重質油の利用不能を解消するために、固形廃棄
物を外熱式乾溜炉で完全ガス化すべく、酸素含有
ガスあるいは水蒸気を混入した酸素含有ガスを熱
分解工程中に乾溜塔に吹き込み、生成カーボンを
乾溜塔内で燃焼させ、上部で精製した重質油を分
解改質して、全てをガス化する固形廃棄物乾溜炉
が示されている。
Furthermore, in Japanese Patent Publication No. 52-47924, in order to solve the low calorific value of the gas produced by the conventional technology and the unavailability of heavy oil containing oxygen compounds, solid waste is processed in an external heating type dry distillation furnace. In order to achieve complete gasification, oxygen-containing gas or oxygen-containing gas mixed with water vapor is blown into a dry distillation tower during the pyrolysis process, the generated carbon is combusted in the dry distillation tower, and the refined heavy oil is cracked and reformed in the upper part. , a solid waste dry distillation furnace is shown that gasifies all.

そして、本発明者が先に提案した特開昭61−
287488号公報では、廃棄物を高温乾溜させ、廃棄
物たるプラスチツク等から精製ガスを得るとする
も、これはバツチ処理システムによるため、その
ガス化率は僅かに16%であり、未だ不十分なもの
であつた。
Then, the present inventor proposed JP-A-61-
Publication No. 287488 states that waste is subjected to high-temperature dry distillation to obtain purified gas from waste plastics, etc., but since this uses a batch processing system, the gasification rate is only 16%, which is still insufficient. It was hot.

更に、同じく本発明者が提案した特願昭61−
280519号明細書にあつては、プラスチツク被覆電
線の連続熱分解において、被分解物たるプラスチ
ツクにつき、熱可塑性樹脂は400〜500℃で、熱硬
化性樹脂にあつては600〜700℃で全て反応が完了
し、その生成した高温の反応ガスは500mmH2Oの
自圧て排出され、冷却を受けると、凝縮液化する
油状炭化水素と、不液化炭化水素とに分級される
連続熱分解乾溜装置を示した。そして、これによ
る熱分解反応は、分解温度と分解時間(滞留時
間)に支配せられ、高温採用と滞留時間解消とに
より、可能なかぎり不液化炭化水素ガスの分級比
率を高めることができた。
Furthermore, the patent application filed in 1983, also proposed by the present inventor,
In the specification of No. 280519, in the continuous thermal decomposition of plastic-coated electric wires, thermoplastic resins react at 400 to 500°C, and thermosetting resins react at 600 to 700°C. Once completed, the generated high-temperature reaction gas is discharged under a self-pressure of 500 mmH 2 O, and when cooled, it is separated into oily hydrocarbons that condense and liquefy and non-liquefied hydrocarbons. Indicated. The resulting thermal decomposition reaction is controlled by the decomposition temperature and decomposition time (residence time), and by employing a high temperature and eliminating the residence time, it was possible to increase the classification ratio of non-liquefied hydrocarbon gas as much as possible.

(発明が解決しようとする問題点) ところが、特公昭52−10451号公報のものによ
ると、平均300℃、最高410℃の低温域での熱分解
方式であるため、これによつての生成比率の記載
はないものの、プラスチツク類の熱分解温度特性
の公知から、70〜80%は液状物質で、ガス化率は
僅かに10〜12%程度と推定される。しかも、ター
ルと他5種の混合液体の分級は、技術的、経済的
に工業生産において不可能であり、その混合液な
どは、所詮、焼却処分するほかはないのである。
また、燃料油、工業用材料として変換回収可能と
するも、それの具体性はなく、その生成事実から
みてガス製造とは程遠く、完全なガス化を図るも
のではなかつた。
(Problem to be solved by the invention) However, according to the publication of Japanese Patent Publication No. 52-10451, the method uses thermal decomposition at a low temperature range of 300°C on average and 410°C at maximum. Although there is no mention of this, based on the known thermal decomposition temperature characteristics of plastics, it is estimated that 70 to 80% of plastics are liquid substances and the gasification rate is only about 10 to 12%. Furthermore, classification of a mixed liquid of tar and five other substances is technically and economically impossible in industrial production, and the mixed liquid has no choice but to be incinerated.
In addition, although it was said that it could be converted and recovered as fuel oil or industrial material, there was no specificity regarding this, and considering the fact that it was produced, it was far from gas production and did not aim at complete gasification.

また、特公昭52−47924号公報に記載のガス化
方法は、その乾溜生成物をみると含水が多く、水
分が56.3%であることから、被分解物質としては
都市生ゴミを主としているものである。しかも、
発生ガス量は、対原料比が16.8%で、単位発熱量
が3053Kcal/Nm3であつて、都市ガス規格には
達しない低品位ガス品質であり、原料トン当たり
評価は本試験値、10倍換算値でみると、産気量
400m3/tで、得熱123万Kcal/Nm3であつて、
都市ガスの平均1/5の低位であつて全く使用に耐
えず、都市ガス代用品とすることは不可能であ
る。加えて、ガス化のために、621Nm3/tの酸
素と水蒸気とを消費して、僅か400Nm3/tのガ
ス生産量では、プラスチツクの完全ガス化とはい
えないものである。
In addition, in the gasification method described in Japanese Patent Publication No. 52-47924, the dry distilled product contains a lot of water, with a moisture content of 56.3%, so the decomposed material is mainly urban garbage. be. Moreover,
The amount of generated gas is 16.8% of the raw material, and the unit calorific value is 3053 Kcal/ Nm3 , which is a low-grade gas that does not meet city gas standards, and the evaluation per ton of raw material is 10 times the value of this test. In terms of converted value, production volume
400m 3 /t, heat gain is 1.23 million Kcal / Nm 3 ,
It is on average 1/5 of city gas, so it is completely unusable and cannot be used as a city gas substitute. In addition, 621 Nm 3 /t of oxygen and water vapor are consumed for gasification, and the gas production of only 400 Nm 3 /t does not completely gasify the plastic.

更に、本発明者が先に提案した特願昭61−
287488号公報による廃棄物熱分解乾溜機によれ
ば、分級比率は、凝縮液化する油状炭化水素で約
84%、不液化炭化水素ガスは約16%であつたが、
熱分解の間欠連続化により、分級比率を凝縮液化
油状炭化水素で約40〜50%に、不液化炭化水素ガ
スを60〜50%に高めることに成功したが、完全ガ
ス化は実現し得ない難点があつた。
Furthermore, the patent application 1986-
According to the waste pyrolysis dry distillation machine disclosed in Publication No. 287488, the classification ratio is approximately
84%, and non-liquefied hydrocarbon gas was about 16%.
Through intermittent continuous pyrolysis, we succeeded in increasing the classification ratio to approximately 40-50% for condensed liquefied oily hydrocarbons and 60-50% for non-liquefied hydrocarbon gas, but complete gasification cannot be achieved. There was a problem.

ところで、一般ガス事業者が供給する都市ガス
は、石炭・ナフサ・購入ガス・天然ガス・LPG
等を原料として製造したガスを精製、混合して、
供給規定に定める発熱量に調整したものである
が、都市ガス業界におけるガス製造は、約60%が
LNG(液化天然ガス)の気化ガスであり、これら
は、ナフサ(粗製ガソリン)の接触分解法、部分
燃焼法、LPGの接触分解、水素添加分解法、石
炭、コークスの熱分解乾溜法、石油精製オフガ
ス、天然ガス等によつて製造されている。固体原
料としては石炭、コークスが、液体原料としては
LNG、ナフサ、LPGが、気体原料としては天然
ガス、石油精製オフガスが夫々用いられており、
各原料とも、単相毎のガス製造であり、異相同時
あるいは混合製造方式などは一切なく、廃棄物は
原料として全く使用されてはいないものである。
By the way, city gas supplied by general gas companies includes coal, naphtha, purchased gas, natural gas, and LPG.
By refining and mixing gas produced using raw materials such as
It is adjusted to the calorific value specified in the supply regulations, but approximately 60% of gas production in the city gas industry is
It is vaporized gas of LNG (liquefied natural gas), and these are used in naphtha (crude gasoline) catalytic cracking method, partial combustion method, LPG catalytic cracking method, hydrogen cracking method, coal and coke pyrolysis dry distillation method, petroleum refining method. Manufactured using off-gas, natural gas, etc. Coal and coke are used as solid raw materials, and as liquid raw materials.
LNG, naphtha, and LPG are used as gaseous raw materials, and natural gas and petroleum refinery offgas are used, respectively.
For each raw material, gas is produced in a single phase, and there is no simultaneous production of different phases or mixed production methods, and no waste is used as a raw material.

また、都市ガス事業そのものは、公益性が極め
て高く、低廉な原料を確保し、安定、効率的なガ
ス供給システムを提供していなければならず、原
料の幅広い選択と、それを自在に活用できる効率
的な省資源形のガス製造プロセスの開発、更に
は、石炭、重質油等の原料についての検討が必要
である。また、今後は、重質油のみならず、将来
に亙つて量、価格とも安定して入手できると思わ
れる石炭あるいは石炭の液化油からのSNG(代替
天然ガス)等のガス化技術の開発も必要とされて
いる。
In addition, the city gas business itself has extremely high public interest, must secure inexpensive raw materials, and provide a stable and efficient gas supply system, allowing for a wide selection of raw materials and the ability to freely utilize them. It is necessary to develop efficient resource-saving gas production processes and to consider raw materials such as coal and heavy oil. In addition, in the future, we will develop gasification technology such as SNG (alternative natural gas) from not only heavy oil but also coal or liquefied coal oil, which is expected to be available stably in both quantity and price in the future. is necessary.

そこで本発明は、叙上のような従来存した諸事
情に鑑みなされたものであり、工業団地並びに都
市ゴミから発生する廃プラスチツク、廃ゴム、自
動車用廃塗料の固形原料を可能なかぎりでガス化
比率を高める熱分解反応を行い、冷却により凝縮
液化する油状炭化水素を別個の熱分解機によりガ
ス化して、精製炭化水素ガスを、一括して連続的
に混合しつつガス生成を行い、発熱量14000〜
16000Kcal/Nm3として、都市ガスの最高位での
11000Kcal/Nm3規格ガスより高い高位発熱量ガ
スを製造し、系外ガスホルダー等により空気稀釈
して都市ガス規格相当ガスを製造する可燃性廃棄
物熱分解ガス製造装置の提供を目的とする。
Therefore, the present invention was developed in view of the existing circumstances as described above, and the solid raw materials for waste plastics, waste rubber, and waste automobile paints generated from industrial parks and municipal waste are converted into gas as much as possible. A pyrolysis reaction is carried out to increase the conversion ratio, and the oily hydrocarbons that condense and liquefy upon cooling are gasified in a separate pyrolysis machine, and the purified hydrocarbon gas is continuously mixed all at once to generate gas and generate heat. Amount 14000~
As 16000Kcal/Nm 3 , the highest level of city gas
The purpose is to provide a combustible waste pyrolysis gas production device that produces gas with a higher calorific value higher than 11000 Kcal/Nm 3 standard gas and dilutes it with air using an external gas holder etc. to produce gas equivalent to city gas standards.

[発明の構成] (問題点を解決するための手段) 上述した問題点を解決するため、本発明にあつ
ては、固形可燃性廃棄物を乾溜内筒上部から間欠
投入し、外熱によつて乾溜内筒内で間欠的に連続
して熱分解反応を行い、ガスと炭化物とに分離生
成させる熱分解反応塔と、この熱分解反応塔での
反応発生ガスを冷却分級して得た油状炭化水素を
複数別個の熱分解筒内に噴射投入して熱分解反応
を行わせ、ガスと炭化物とに分離生成し、また、
ガスを別途に冷却分級して回収した低、中質生成
油を循環反復して再熱分解を行い、固体、液体の
異相原料を連続的に熱分解乾溜させて低炭化水素
ガスに生成させるガス分解反応塔と、前記熱分解
反応塔及びガス分解反応塔によつて得られた炭化
水素ガスを旋回遠心分離しつつ冷却凝縮して気
体、液体、固体の三相に分級し、分級された気体
の炭化水素ガスを洗滌、中和、過、精製するガ
ス精製装置とを備えていることを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above-mentioned problems, in the present invention, solid combustible waste is intermittently introduced from the upper part of the dry distillation inner cylinder, and is heated by external heat. A pyrolysis reaction tower that performs a pyrolysis reaction intermittently and continuously in a dry distillation inner cylinder to separate and produce gas and carbide, and an oily product obtained by cooling and classifying the reaction gas in this pyrolysis reaction tower. Hydrocarbons are injected into multiple separate pyrolysis cylinders to cause a pyrolysis reaction, separating them into gas and carbide, and
A gas that is produced by separately cooling and classifying the gas and then recycling and repeatedly re-pyrolyzing the recovered low- and medium-quality product oil, and continuously thermally decomposing and dry-distilling the solid and liquid heterogeneous raw materials to produce low-hydrocarbon gas. The hydrocarbon gas obtained by the decomposition reaction tower, the thermal decomposition reaction tower and the gas decomposition reaction tower is cooled and condensed while being centrifuged and classified into three phases: gas, liquid, and solid, and the classified gas is and a gas purification device for cleaning, neutralizing, filtering, and purifying hydrocarbon gas.

(作用) 本発明に係る可燃性廃棄物熱分解ガス製造装置
にあつては、熱分解反応塔において、上部から定
量計量しつつ間欠的に投入された固形可燃性廃棄
物を外熱による熱分解反応で、ガスと炭化物とに
分離生成させる。
(Function) In the combustible waste pyrolysis gas production apparatus according to the present invention, in the pyrolysis reaction tower, solid combustible waste is intermittently charged from the top while being quantitatively metered, and is pyrolyzed by external heat. The reaction separates and generates gas and carbide.

熱分解反応塔による固形可燃性廃棄物の熱分解
による生成の割合は25%以上の比率でガス化す
る。
The proportion of solid combustible waste produced by thermal decomposition in the pyrolysis reaction tower is gasified at a rate of 25% or more.

また、熱分解反応塔によつて得られた反応発生
ガスはガス精製装置によつて冷却分級される。
Further, the reaction generated gas obtained by the pyrolysis reaction tower is cooled and classified by a gas purification device.

そのときに生じる油状炭化水素を原料として、
ガス分解反応塔では、低炭化水素ガスを生成す
る。このガス分解反応塔における原料メーク油の
一次ガス反応化率は約50〜60%であり、冷却凝縮
で液化する油分は、中軽質性状で再び油水分離槽
に還元され、原料熱分解生成油状炭化水素を稀釈
しつつ混合して実質二次反応工程に入り、夫々が
平均約50%のガス化率をもつて順次無制限に分解
反応を受けつつ、ガス化を果たす反復熱分解を行
うのである。
Using the oily hydrocarbons produced at that time as raw material,
The gas cracking reaction tower produces low hydrocarbon gas. The primary gas conversion rate of the raw material make oil in this gas cracking reaction tower is approximately 50 to 60%, and the oil that liquefies through cooling and condensation is returned to the oil-water separation tank in a medium-light state and is converted into oily char produced by thermal decomposition of the raw material. Hydrogen is diluted and mixed and enters an essentially secondary reaction step, each of which undergoes an unlimited number of decomposition reactions in sequence with an average gasification rate of about 50%, and repeats thermal decomposition to achieve gasification.

そして、ガス精製装置においては、分級過後
にガスを洗滌、計量、過する。
In the gas purification device, the gas is washed, measured, and filtered after being classified.

(実施例) 以下、図面を参照して本発明の一実施例を説明
する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

図において示される符号10は熱分解反応塔で
あり、上部から定量計量しつつ間欠的に投入され
た固形可燃性廃棄物を外熱による熱分解反応で、
ガスと炭化物とに分離生成させる。
The reference numeral 10 shown in the figure is a pyrolysis reaction tower, in which solid combustible waste is intermittently charged while being quantitatively metered from the upper part, and undergoes a pyrolysis reaction using external heat.
Gas and carbide are separated and generated.

第3図乃至第6図に示すように、熱分解反応塔
10は設置面に据え付けられ、筒壁に配設したバ
ーナー11にて内部が高温化される断熱構造の外
筒12内に乾溜内筒13を配置した二重筒状に構
成される。
As shown in FIGS. 3 to 6, the pyrolysis reaction tower 10 is installed on an installation surface, and a dry distillation reactor is placed inside an outer cylinder 12 having an adiabatic structure and heated to a high temperature by a burner 11 installed on the cylinder wall. It has a double cylindrical shape with cylinders 13 arranged therein.

この熱分解反応塔10に投入される固形可燃性
廃棄物は、固体原料たる廃プラスチツク、廃ゴ
ム、それらの複合品あるいは混合品等であり、前
処理として大きさが約2mm程度に粉砕され、外筒
12上部開口を閉塞するよう、リブ14Aによつ
て補強された蓋部14に、炭酸ガス、窒素ガスの
不活性ガス雰囲気で内外を遮断するように、設け
られている連続間欠式原料自動投入機構15によ
つて乾溜内筒13内に投入される。
The solid combustible wastes input into the pyrolysis reaction tower 10 are solid raw materials such as waste plastics, waste rubber, composites or mixtures thereof, and are pulverized to a size of about 2 mm as a pretreatment. A continuous intermittent raw material automatic feeder is provided on the lid part 14 reinforced with ribs 14A to close the upper opening of the outer cylinder 12 so as to shut off the inside and outside with an inert gas atmosphere of carbon dioxide gas and nitrogen gas. It is charged into the dry distillation inner cylinder 13 by the charging mechanism 15.

原料自動投入機構15の下方には、投入原料拡
散板16が設けられており、原料自動投入機構1
5によつて投入された固形可燃性廃棄物は、投入
原料拡散板16によつて乾溜内筒13内で広く分
散され、熱分解の効率向上を図つている。
An input raw material diffusion plate 16 is provided below the automatic raw material input mechanism 15.
The solid combustible waste inputted by 5 is widely dispersed within the dry distillation inner cylinder 13 by the input material diffusion plate 16, thereby improving the efficiency of thermal decomposition.

また、乾溜内筒13の外周には、金属粉が充填
された山形状フイン37を放射状に配列し、ま
た、スパイラルフイン17を乾溜内筒13の下部
から上部に至るまで旋回上昇する帯状を呈するよ
うに形成してあり、乾溜内筒13と外筒12との
間での熱効率の向上を図つてある。
Further, on the outer periphery of the dry distillation inner cylinder 13, mountain-shaped fins 37 filled with metal powder are arranged radially, and the spiral fins 17 have a band shape that rotates upward from the bottom to the top of the dry distillation inner cylinder 13. This structure is designed to improve the thermal efficiency between the dry distillation inner cylinder 13 and the outer cylinder 12.

また、前記バーナー11は、外筒12にその下
部にて一対にして、上方に向かつて千鳥形に120
度の角度をもつて順次高低差を設け、円筒切線方
向に取り付けられることで、均一な燃焼加熱作用
を発揮する。一方、燃焼廃ガスは乾溜内筒13外
周で螺旋上昇する前記スパイラルフイン17に沿
つて螺旋上昇して廃棄ガス吸入分配機の吸引力と
相俟つて、加熱ガスと受熱面との熱交換接触距離
のスパイラル的延長効果と、吸引速力を付加して
相乗された優れた均加熱能力を実現している。
The burners 11 are arranged in a pair at the lower part of the outer cylinder 12, and are arranged upwardly in a staggered manner.
By creating height differences sequentially at angles of 100 to 300 degrees and installing in the direction of the cylindrical cutting line, a uniform combustion heating effect is achieved. On the other hand, the combustion waste gas spirally rises along the spiral fin 17 on the outer periphery of the dry distillation inner cylinder 13, and together with the suction force of the waste gas suction distributor, the heat exchange contact distance between the heated gas and the heat receiving surface increases. The spiral extension effect and suction speed are added to achieve excellent uniform heating ability.

受熱面において、金属粉が充填された前記山形
状フイン37は、伝熱面積の倍加による受熱能力
の倍増と金属粉の高い伝導伝熱効果と相俟つて、
高い熱効率の向上を発揮する。
On the heat receiving surface, the mountain-shaped fins 37 filled with metal powder double the heat receiving capacity by doubling the heat transfer area, and together with the high conductive heat transfer effect of the metal powder,
Demonstrates high thermal efficiency improvement.

乾溜内筒13内には、前記蓋部14に支持され
ている攪拌機構18が配置されている。この攪拌
機構18は、蓋部14上部に配した上下攪拌エア
シリンダ19に蓋部14を貫挿して乾溜内筒13
内に位置している攪拌軸20を連結し、この攪拌
軸20に、中央攪拌翼21、下部攪拌翼22を
夫々固定して成る。この攪拌機構18において、
上下攪拌エアシリンダ19が始動を開始すると、
攪拌軸20を上下動させ、乾溜内筒13内部の固
形可燃性廃棄物を攪拌し、乾溜内筒13内での熱
雰囲気中に晒す。
A stirring mechanism 18 supported by the lid 14 is disposed inside the dry distillation inner cylinder 13 . This stirring mechanism 18 is constructed by inserting the lid 14 into a vertical stirring air cylinder 19 disposed on the upper part of the lid 14 to form a dry distillation inner cylinder 13.
A stirring shaft 20 located inside is connected, and a central stirring blade 21 and a lower stirring blade 22 are fixed to this stirring shaft 20, respectively. In this stirring mechanism 18,
When the vertical stirring air cylinder 19 starts,
The stirring shaft 20 is moved up and down to stir the solid combustible waste inside the dry distillation inner cylinder 13 and expose it to the hot atmosphere inside the dry distillation inner cylinder 13.

今、ここで、バーナー11によつて外筒12内
を予め加熱し、乾溜内筒13内を原料熱分解反応
温度である約750〜1000℃の高温範囲で筒内ガス
雰囲気を還元雰囲気に保持しておき、原料自動投
入機構15に内での不活性ガス雰囲気中を押圧通
過させることで固形可燃性廃棄物を一定数量ずつ
落下投入する。すると、原料の固形可燃性廃棄物
が塊状であつても、その落下速度で投入原料拡散
板16に衝突することで分散散開される。更に、
乾溜内筒13内を落下することで中央攪拌翼2
1、下部攪拌翼22によつて飛散状況となり、落
下衝撃により、落下速度を減じながら滞気する時
間を費やし、投入された固形可燃性廃棄物の表面
積は最大限に分解熱の有効なる受熱面を露呈す
る。そして、落下時間の延長と相俟つて、固形可
燃性廃棄物は乾溜内筒13底部に落着するまでの
間にほぼその約80%の質量は落下中に反応が進行
しつつ落底し、いわゆる、瞬間分解反応現象を生
起する。
Now, the inside of the outer cylinder 12 is preheated by the burner 11, and the gas atmosphere inside the cylinder is maintained in a reducing atmosphere within the dry distillation inner cylinder 13 at a high temperature range of approximately 750 to 1000°C, which is the raw material pyrolysis reaction temperature. Then, solid combustible waste is dropped into the automatic raw material input mechanism 15 in a fixed quantity by forcing it to pass through an inert gas atmosphere. Then, even if the solid combustible waste raw material is in the form of a lump, it collides with the input raw material diffusion plate 16 at the falling speed and is dispersed. Furthermore,
By falling inside the dry distillation inner cylinder 13, the central stirring blade 2
1. The lower agitation blade 22 causes the waste to scatter, and due to the impact of the fall, it spends time stagnant while reducing the falling speed, and the surface area of the input solid combustible waste is maximized as a heat-receiving surface that is effective for decomposition heat. to expose. Combined with the lengthening of the falling time, approximately 80% of the mass of the solid combustible waste falls to the bottom as the reaction progresses during the fall until it settles at the bottom of the dry distillation inner cylinder 13. , causing an instantaneous decomposition reaction phenomenon.

原料たる固形可燃性廃棄物の間欠投入頻度は、
原料組成により各種の方法があり、それは、例え
ば、概ね30〜60秒毎の定量定時投入方式が採用さ
れる。そして、前記瞬間分解中の反応部分は、小
粒子径の溶融状態となり、乾溜内筒13底部に着
底後堆積されるも、乾溜内筒13底部にに形成し
た筒内円錘部26に設けてある伝熱フイン23か
らの金属高伝熱による良好な伝導伝熱効果を受
け、概ね約15分以内に完全反応を終結する。
The frequency of intermittent input of solid combustible waste, which is the raw material, is
There are various methods depending on the composition of the raw materials, and for example, a fixed fixed amount feeding method approximately every 30 to 60 seconds is adopted. The reaction portion during the instantaneous decomposition becomes a molten state with a small particle size, and is deposited after reaching the bottom of the dry distillation inner cylinder 13, but is not deposited in the cylinder conical part 26 formed at the bottom of the dry distillation inner cylinder 13. Due to the good conductive heat transfer effect due to high heat transfer from the metal heat transfer fins 23, the complete reaction is completed within about 15 minutes.

なお、固形可燃性廃棄物の連続間欠による投入
によつて熱分解反応生成物たる炭化品と混合状態
になるほど、落下蓄積量が多くなると、前記攪拌
機構18による上下動作が行われ、それによつて
炭化品は静止状態ではなく、上下方向に攪拌作用
が生じるから、落底未分解原料の反応促進効果は
極めて大きくなる。
Note that when solid combustible waste is continuously and intermittently fed into a state where it becomes mixed with carbonized products, which are thermal decomposition reaction products, and the amount of accumulated fallen waste increases, the agitation mechanism 18 moves up and down. Since the carbonized product is not in a static state but is stirred in the vertical direction, the effect of accelerating the reaction of the undecomposed raw material at the bottom is extremely large.

しかして、熱分解反応は吸熱反応であるから、
乾溜内筒13容量に対し、被分解反応たる固形可
燃性廃棄物の質量の多寡は供給熱量の維持に重要
な影響を有する。したがつて、バツチ式大容量充
填式の反応手段によれば、その吸熱量は、大熱量
を必要とするも、本発明による間欠式連続の小量
回分式の投入単位方式によると、その吸熱量は、
熱分解反応の維持に必要な大熱容量の熱分解機能
に影響を与えることはなく、したがつて、熱分解
要因たる温度の維持と平均化の好条件が確保され
る利点を有する。
Therefore, since the thermal decomposition reaction is an endothermic reaction,
The mass of solid combustible waste to be decomposed with respect to the capacity of the dry distillation inner cylinder 13 has an important influence on maintaining the amount of heat supplied. Therefore, the batch-type, large-capacity filling type reaction means requires a large amount of heat to be absorbed, but the intermittent, continuous, small-volume, batch-type input unit system of the present invention requires a large amount of heat to be absorbed. The amount of heat is
It does not affect the thermal decomposition function of the large heat capacity required to maintain the thermal decomposition reaction, and therefore has the advantage of ensuring favorable conditions for maintaining and averaging the temperature, which is a factor in thermal decomposition.

乾溜内筒13内での熱分解後に生じる不分解物
あるいは炭化品は、乾溜内筒13底部に設けたカ
ーボン取出機構25にて排出される。第2図に示
すように、このカーボン取出機構25は、落下さ
れた炭化物の集積を考慮して円錐形に形成した乾
溜内筒13底部に構成される。円錘形の底部は、
耐火断熱材の保温支配内にあつて、熱分解反応を
生じさせるようにしてあり、円錘部分外周面に固
定してある前記伝熱フイン23を通じて乾溜内筒
13内壁に接した炭化物は加熱伝導、伝熱を受
け、瞬間分解の未反応部分の蓄積分解反応を発揮
する。また、間欠連続熱分解と時間継続と共に、
分解反応完了後の生成カーボンの堆積貯留の役割
に目的が転化される。
Undecomposable materials or carbonized products produced after thermal decomposition within the dry distillation inner cylinder 13 are discharged by a carbon removal mechanism 25 provided at the bottom of the dry distillation inner cylinder 13. As shown in FIG. 2, this carbon extraction mechanism 25 is constructed at the bottom of the dry distillation inner cylinder 13, which is formed into a conical shape in consideration of the accumulation of fallen carbides. The conical bottom is
Under the control of heat retention by the fireproof heat insulating material, a thermal decomposition reaction is caused, and the carbide in contact with the inner wall of the dry distillation inner cylinder 13 through the heat transfer fins 23 fixed to the outer peripheral surface of the conical part undergoes heat conduction. , Under heat transfer, the unreacted portion of the instantaneous decomposition exhibits an accumulation decomposition reaction. In addition, with intermittent continuous pyrolysis and time continuation,
The purpose is changed to the role of depositing and storing the carbon produced after the decomposition reaction is completed.

そして、このカーボン取出機構25は、乾溜内
筒13底部において、上部に筒内円錘部26を、
下部に底部取出円錘部27を配し、筒内円錘部2
6底部には、底部取出円錘部27外部に設けた揺
動シリンダ28の作動で揺動される筒内落下口扉
29によつて開放される排出口30が形成されて
おり、底部取出円錘部27底部には、ほぼ水平状
とした半円筒状の排出室31を区画形成し、この
排出室31の一端に配したモーターにて駆動する
スクリユーフイーダ32を排出室30内に支承す
る。排出室31の他端には排出落下筒33を下方
に垂設し、この排出落下筒33下端をカーボン冷
却水封部34内に位置させ、排出落下筒33に
は、炭酸ガス、窒素ガスの不活性雰囲気が形成さ
れる遮断部35を設ける。
This carbon extraction mechanism 25 has an inner cylinder conical part 26 at the top at the bottom of the dry distillation inner cylinder 13.
A bottom extraction conical portion 27 is disposed at the bottom, and a cylinder conical portion 2
A discharge port 30 is formed at the bottom of 6 and is opened by an in-cylinder drop port door 29 that is swung by the operation of a swing cylinder 28 provided outside the bottom ejection cone 27. A substantially horizontal semi-cylindrical discharge chamber 31 is defined at the bottom of the weight portion 27, and a screw feeder 32 driven by a motor disposed at one end of the discharge chamber 31 is supported within the discharge chamber 30. do. At the other end of the discharge chamber 31, a discharge drop tube 33 is installed vertically downward, and the lower end of this discharge drop tube 33 is located within the carbon cooling water seal 34. A blocking section 35 is provided in which an inert atmosphere is formed.

したがつて、筒内円錘部26内にカーボンがほ
ぼ充満されると、揺動シリンダ28の作動によつ
て筒内落下口扉29が自重でその支持回転軸を中
心として揺動開扉し、また、中央攪拌翼21の上
下動押圧力によつて、堆積貯留されていたカーボ
ンは底部取出円錘部27内に落下し、乾溜内筒1
3内から排出室31内に移動する。カーボンの落
下移動完了後は、揺動シリンダ28が再揺動して
排出口30を閉塞すべく筒内落下口扉29を押上
げ、乾溜内筒13と底部取出円錘部27とを分断
閉鎖する。
Therefore, when the cylinder inner conical portion 26 is almost filled with carbon, the cylinder drop opening door 29 swings open by its own weight around its support rotation axis due to the operation of the swing cylinder 28. In addition, due to the vertical pressing force of the central stirring blade 21, the accumulated and stored carbon falls into the bottom take-out conical part 27, and the carbon is removed from the dry distillation inner cylinder 1.
3 into the discharge chamber 31. After the carbon has completed its falling movement, the swinging cylinder 28 swings again to push up the cylinder drop port door 29 to close the discharge port 30, thereby separating and closing the dry distillation inner cylinder 13 and the bottom extraction conical portion 27. do.

底部取出円錘部27内に落下した熱分解生成カ
ーボンは、スクリユーフイーダ32によつて排出
室31内を螺旋旋回して排出落下筒33を経てカ
ーボン冷却水封部34内に至り、冷却回収され
る。カーボン回収に際しての乾溜内筒13内の
500℃前後の低圧生成ガスの大気とのシールは、
遮断部35での窒素ガスその他の不活性ガスの供
給によつて確保し、更に、カーボン冷却水封部3
4に位置した排出落下筒33下端によつて水封さ
れているからシールの二重安全性を発揮する。
The pyrolyzed carbon that has fallen into the bottom extraction cone 27 spirals inside the discharge chamber 31 by the screw feeder 32, passes through the discharge drop tube 33, and reaches the carbon cooling water seal 34, where it is cooled. It will be collected. Inside the dry distillation inner cylinder 13 during carbon recovery
Seal of low-pressure generated gas around 500℃ with the atmosphere is as follows:
This is ensured by supplying nitrogen gas or other inert gas at the shutoff section 35, and furthermore, the carbon cooling water sealing section 3
Since the lower end of the discharge tube 33 located at 4 is sealed against water, the double safety of the seal is achieved.

そして、外筒12の上部には、排気ガス導管3
9を経て排気ガス吸入分配機40が連結されてい
る。この排気ガス吸入分配機40によつて吸引さ
れた高温の排気ガスは、バーナー11の燃焼の支
障のない範囲内でその流量が自動制御されて外筒
12内と循環して熱源補助と流速による均一加熱
とを行う。その結果、バーナー11の負担軽減化
も実現し、相乗的は省エネルギー化により、従来
燃料消費利用の25%を節減し、分配余剰排ガスは
更にこの熱分解反応塔10とは別個に機能を発揮
するガス分解反応塔50の加熱機構に分流供給さ
れて利用される完全廃熱利用効果を発揮するよう
になる(第2図参照)。
In the upper part of the outer cylinder 12, an exhaust gas conduit 3 is provided.
An exhaust gas intake/distributor 40 is connected via 9. The high-temperature exhaust gas sucked by the exhaust gas intake distributor 40 has its flow rate automatically controlled within a range that does not interfere with the combustion of the burner 11, and circulates within the outer cylinder 12 depending on the heat source assistance and flow rate. Perform uniform heating. As a result, the burden on the burner 11 has been reduced, and synergistic energy savings have resulted in a 25% reduction in conventional fuel consumption, and the distributed surplus exhaust gas can also function independently from the pyrolysis reactor 10. The waste heat is supplied in a divided manner to the heating mechanism of the gas decomposition reaction tower 50 and utilized, thereby achieving a complete waste heat utilization effect (see FIG. 2).

こうした熱分解反応塔10による固形可燃性廃
棄物の熱分解による生成物は25%以上の比率でガ
ス化される。そして、反応ガスは、乾溜内筒13
内において一部が油的状態で塔内を上下還流しつ
つ順次ガス化され、気相変換の体積膨脹による発
生圧力は、500mmH2O程度になり、その圧力によ
つて外筒12上部に取り付けたガス取出口36か
ら後述するガス精製装置90に自噴状態で流出し
て移動する。一方、ガス反応以外の原料は、カー
ボン化して乾溜内筒13底部の排出口30から間
欠的に自動的に取り出され、その性状は、発熱量
が5000〜7000Kcal/Kgの粘結炭に匹敵する低灰
分の極めて優秀な固形燃料価を有し、活性炭原料
にも適し、その本熱分解収率は、原料種別の相違
はあるものの、3〜5%の範囲となり、その経済
評価も極めて高い。
The products resulting from the thermal decomposition of solid combustible waste in the thermal decomposition reaction tower 10 are gasified at a rate of 25% or more. Then, the reaction gas is transferred to the dry distillation inner cylinder 13.
Part of the oil inside the column is refluxed up and down inside the column and is sequentially gasified, and the pressure generated due to volume expansion during gas phase conversion is approximately 500 mmH 2 O. The gas flows out from the gas extraction port 36 into a gas purification device 90, which will be described later, in a self-injection state and moves. On the other hand, raw materials other than gas reactions are carbonized and automatically taken out intermittently from the outlet 30 at the bottom of the dry distillation inner cylinder 13, and its properties are comparable to coking coal with a calorific value of 5000 to 7000 Kcal/Kg. It has an extremely excellent solid fuel value with a low ash content, and is suitable as an activated carbon raw material.Although there are differences depending on the type of raw material, its main thermal decomposition yield is in the range of 3 to 5%, and its economic evaluation is also extremely high.

また、熱分解反応塔10によつて得られた反応
発生ガスはガス精製装置90によつて冷却分級さ
れ、そのときに生じる油状炭化水素を原料として
低炭化水素ガスに生成するガス分解反応塔50
は、熱分解反応塔10と並列に配置されており、
後述するガス冷却分級塔70における分離槽71
からの油分、及びガス精製装置90での各分級
過塔91,92,93における分離槽96からの
油分が供給されるようになつている。すなわち、
第1図に示すように、分離槽71,96に生成油
送油ライン80を接続し、油水分離機81を介し
て生成油貯留槽82に一旦貯留し、この生成油貯
留槽82からガス油自動投入器83によつてガス
分解反応塔50に供給されるようになつている。
Further, the reaction generated gas obtained by the thermal cracking reaction tower 10 is cooled and classified by a gas purification device 90, and the gas cracking reaction tower 50 generates a low hydrocarbon gas using the oily hydrocarbons produced at that time as a raw material.
is arranged in parallel with the thermal decomposition reaction tower 10,
Separation tank 71 in gas cooling classification tower 70 described later
The oil from the separation tank 96 in each of the classification towers 91, 92, and 93 in the gas purification device 90 is supplied. That is,
As shown in FIG. 1, a produced oil oil supply line 80 is connected to the separation tanks 71 and 96, and the produced oil is temporarily stored in a produced oil storage tank 82 via an oil-water separator 81. The gas is supplied to the gas decomposition reaction tower 50 by an automatic feeder 83.

このガス分解反応塔50は、第7図、第8図に
示すように、設置面に据え付けられ、筒壁に配設
したバーナー51にて内部が高温化される断熱構
造で、外部耐火材68によつて覆われたガス外筒
52内に複数の熱分解筒53を配した多塔式構造
に構成され、熱分解筒53径とガス外筒52高さ
との比率が6:1以上の縦長形状に形成されてい
る。
As shown in FIGS. 7 and 8, this gas decomposition reaction tower 50 is installed on an installation surface, and has an adiabatic structure in which the interior is heated to a high temperature by a burner 51 disposed on the cylinder wall, and has an external refractory material 68. It has a multi-column structure in which a plurality of pyrolysis cylinders 53 are arranged in a gas outer cylinder 52 covered with formed into a shape.

ガス外筒52内に配置された熱分解筒53は、
図示にあつては計4個にしてあるも、その数は限
定されず、また、各熱分解筒53は、熱分解筒5
3と同径の口径となつている4個の穿孔を有し、
かつガス外筒52開口に固定されている支持円盤
59にその上部で溶接によつて取付け吊持されて
いる。そして、この支持円盤59を底部として、
円筒を呈するガス室60をガス外筒52上部に形
成区画してある。また、各熱分解筒53下端は、
ガス外筒52内での燃焼室69下部に配した下部
防炎板67によつて保護されており、排気煙突6
3を経て排煙されるようになつている。
The pyrolysis cylinder 53 arranged inside the gas outer cylinder 52 is
Although the illustration shows a total of four pyrolysis cylinders, the number is not limited, and each pyrolysis cylinder 53 is
It has four perforations with the same diameter as 3,
The upper part of the support disk 59 is welded and suspended from the support disk 59 which is fixed to the opening of the gas outer cylinder 52. Then, with this support disk 59 as the bottom,
A gas chamber 60 having a cylindrical shape is formed and sectioned in the upper part of the gas outer cylinder 52. In addition, the lower end of each pyrolysis cylinder 53 is
The combustion chamber 69 inside the gas outer cylinder 52 is protected by a lower flameproof plate 67 arranged at the lower part, and the exhaust chimney 6
The smoke will be exhausted after 3.

各熱分解筒53内には、ガス外筒52上部の開
口を閉塞する蓋部54からの吊り下げによつて着
脱可能な、カーボンを取出させるカートリツジ5
5を備え、熱分解筒53の中心に取り付けてある
円柱軸56には、上部に円錘板形の上部加熱板5
7を設け、次段には、円柱軸56を中心にして上
下6等分された横腕部先端に円形下向きの加熱板
58を設けてある。そして、噴霧投入された原料
メーク油は上部加熱板57に接触して伝熱を受け
つつ、高温の雰囲気加熱の両加熱によつて吸熱反
応しつつ落下し、熱分解筒53の底部に落下する
までに概ね反応を終了し、生成したカーボンはカ
ートリツジ55の底部に順次蓄積される。この蓄
積されたカーボンは、その保有熱によつて熱媒体
的効果を発揮し、後続するメーク油の未反応微粒
子の反応促進に大きな効果を発揮する。
Inside each pyrolysis cylinder 53 is a cartridge 5 for taking out carbon, which is detachable by hanging from a lid part 54 that closes the opening at the top of the gas outer cylinder 52.
5, and a cylindrical shaft 56 attached to the center of the pyrolysis cylinder 53 has a conical plate-shaped upper heating plate 5 at the top.
7, and in the next stage, a circular downward heating plate 58 is provided at the tip of a horizontal arm portion which is divided into six equal parts, upper and lower, with the cylindrical shaft 56 as the center. Then, the sprayed raw material make oil comes into contact with the upper heating plate 57 and receives heat transfer, and falls while undergoing an endothermic reaction due to both high-temperature atmospheric heating and falling to the bottom of the pyrolysis cylinder 53. By this time, the reaction has almost finished, and the generated carbon is accumulated at the bottom of the cartridge 55. This accumulated carbon exhibits a heat transfer effect due to its retained heat, and has a great effect on promoting the reaction of unreacted fine particles of make oil that follows.

また、ガス分解反応塔50に供給される原料メ
ーク油は、各熱分解筒53に対して15秒の間隔を
もつて順次に噴霧投入され、各熱分解筒53毎に
おける投入−反応のサイクルは、1分毎にしてあ
る。このサイクルが理想的な反応時間となつてガ
ス化が行われ、生成ガスは自圧力により、順次に
15秒毎にガス室60より噴出し、量的に均等なガ
ス製造が実現する。
Further, the raw material make oil supplied to the gas cracking reaction tower 50 is sprayed into each pyrolysis cylinder 53 sequentially at an interval of 15 seconds, and the injection-reaction cycle for each pyrolysis cylinder 53 is , every minute. This cycle provides the ideal reaction time for gasification, and the produced gas is sequentially released under its own pressure.
Gas is ejected from the gas chamber 60 every 15 seconds, achieving uniform gas production in quantity.

なお、原料メーク油は、重量比が2〜3%の割
合で、低灰分炭化物を生成し、生成されたカーボ
ンは、有底のカートリツジ55内に蓄積され、例
えば1日の工程終了後に熱分解筒53を強制外空
冷するか、自然冷却するかのいずれかにより降温
後、蓋部54を開蓋し、カートリツジ55を吊り
上げ、ガス分解反応塔50外で別途処理する。
In addition, the raw material make oil produces low ash charcoal at a weight ratio of 2 to 3%, and the produced carbon is accumulated in the bottomed cartridge 55 and is thermally decomposed after the completion of the process for one day. After the temperature of the cylinder 53 is lowered by either forced external air cooling or natural cooling, the lid part 54 is opened, the cartridge 55 is lifted, and it is separately processed outside the gas decomposition reaction tower 50.

また、原料メーク油の一次ガス反応化率は約50
〜60%であり、冷却凝縮で液化する油分は、中軽
質性状で再び油水分離機81に還元され、原料熱
分解生成油状炭化水素を稀釈しつつ混合して実質
二次反応工程に入り、夫々が平均約50%のガス化
率をもつて順次無制限に分解反応を受けつつ、ガ
ス化を果たす反復熱分解を行うものである。
In addition, the primary gas reaction rate of raw make oil is approximately 50
~60%, and the oil content that liquefies through cooling and condensation is returned to the oil/water separator 81 in medium and light properties, where it is diluted and mixed with the oily hydrocarbons produced by thermal decomposition, and essentially enters a secondary reaction process. The process involves repeating thermal decomposition to achieve gasification while undergoing an unlimited number of sequential decomposition reactions with an average gasification rate of approximately 50%.

このような複数の熱分解筒53を備えた有底多
塔式のガス分解反応塔50の熱的環境は、各熱分
解筒53において、その口径が小さく、熱伝達距
離が短くなるから、外熱の伝達速力は極めて速く
なり、必要分解温度は継続的に確保される。加え
て、原料となるメーク油は少量ずつの間欠投入な
ので、その熱分解吸熱量の影響も少なく、カート
リツジ55の底部にはメーク油が液状のままで蓄
積することがなく、いわゆる、瞬間分解を行う利
点を有している。
The thermal environment of the bottomed multi-column type gas cracking reaction tower 50 equipped with such a plurality of pyrolysis cylinders 53 is such that each pyrolysis cylinder 53 has a small diameter and a short heat transfer distance. The heat transfer rate becomes extremely fast and the necessary decomposition temperature is continuously maintained. In addition, since the make oil used as a raw material is intermittently added in small amounts, the influence of its thermal decomposition endotherm is small, and the make oil does not accumulate in a liquid state at the bottom of the cartridge 55, which prevents so-called instant decomposition. has the advantage of doing so.

また、ガス分解反応塔50においての熱源は、
バーナー51のみならず、熱分解反応塔10によ
つて得られる排熱をも利用する併用方式が採用さ
れている。すなわち、第2図に示すように、熱分
解反応塔10の排気ガス導管39に連結した排気
ガス吸入分配機40によつて、ガス外筒52底部
に配した排熱送入口62から高温排熱ガスが送り
入れられ、その加熱の有効な再利用を図る。な
お、排気ガス吸入分配機40によつての熱分配
は、例えば、熱分解反応塔10とガス分解反応塔
50との比率を4:6程度とする。
Moreover, the heat source in the gas decomposition reaction tower 50 is
A combined system is adopted in which not only the burner 51 but also exhaust heat obtained from the thermal decomposition reaction tower 10 is utilized. That is, as shown in FIG. 2, high-temperature exhaust heat is transferred from the exhaust heat inlet 62 arranged at the bottom of the gas cylinder 52 by the exhaust gas suction distributor 40 connected to the exhaust gas conduit 39 of the pyrolysis reaction tower 10. Gas is pumped in, and the heating is effectively reused. Note that heat distribution by the exhaust gas suction distributor 40 is performed at a ratio of about 4:6 between the thermal decomposition reaction tower 10 and the gas decomposition reaction tower 50, for example.

このようにして、各熱分解筒53からの得られ
れた反応自噴ガスは、ガス室60内に受け入れら
れ、ガス室60に取付けたガス導管61を経てガ
ス冷却分級塔70に排出されるようになつている
(第7図参照)。
In this way, the reaction self-propelled gas obtained from each pyrolysis cylinder 53 is received in the gas chamber 60 and discharged to the gas cooling classification tower 70 via the gas conduit 61 attached to the gas chamber 60. (See Figure 7).

このガス冷却分級塔70は、サイクロン式外水
冷型に形成されており、第2図、第7図、第9図
に示すように、上部側壁にガス導管61を接続
し、ガス中の油分を貯留分離する分離槽71を底
部に区画した外筒72を形成する。この外筒72
上部の蓋部から外筒72内に遠心筒73を垂設
し、ガス導管61から導入されたガスが外筒72
と遠心筒73との間で旋回し、冷却されるように
する。また、外筒72内には、分離槽71に行く
に従い次第に小径となる内筒74を配装して内筒
74内をサイクロン室75と成し、内筒74外周
に多数の放熱フイン76を列設し、内筒74と外
筒72との間は冷却室77と成して冷却水を循環
させる。更に、遠心筒73内に位置させて、蓋部
にはガス導出管78を接続し、次工程での第一次
分級過塔91にガスを排出するようにしてあ
る。
This gas-cooled classification tower 70 is formed as a cyclone-type external water-cooled type, and as shown in FIGS. 2, 7, and 9, a gas conduit 61 is connected to the upper side wall to remove oil in the gas. An outer cylinder 72 is formed in which a separation tank 71 for storage and separation is partitioned at the bottom. This outer cylinder 72
A centrifugal tube 73 is vertically disposed inside the outer tube 72 from the upper lid, and the gas introduced from the gas conduit 61 flows into the outer tube 72.
and the centrifugal cylinder 73, and is cooled. In addition, an inner cylinder 74 whose diameter gradually becomes smaller toward the separation tank 71 is disposed inside the outer cylinder 72 to form a cyclone chamber 75 inside the inner cylinder 74, and a large number of heat dissipation fins 76 are provided on the outer periphery of the inner cylinder 74. A cooling chamber 77 is formed between the inner cylinder 74 and the outer cylinder 72 to circulate cooling water. Further, it is located inside the centrifugal tube 73, and a gas outlet pipe 78 is connected to the lid, so that the gas is discharged to the primary classification tower 91 in the next step.

また、冷却室77は、図示のように、その冷却
水路を区画板79によつて、例えば5個にした複
数に分離形成してあり、こうすることで、区画毎
の単位水量は少量となつて流入冷却水量は増加す
るから、冷却効果が顕著になる利点を有する。
In addition, as shown in the figure, the cooling chamber 77 has its cooling channels separated into a plurality of, for example, five sections, by a partition plate 79. By doing this, the unit amount of water for each section is small. Since the amount of inflowing cooling water increases, there is an advantage that the cooling effect becomes more pronounced.

このガス冷却分級塔70の直前でのガス導管6
1には、緊急遮断弁65を備えた冷却水路66を
設け、また、ガス冷却分級塔70の後にも、逆止
弁を有する冷却水路85をガス導出管78に配設
し、緊急遮断弁65、逆止弁で高温ガスからの伝
熱被害を防止しつつ、次工程でのガス精製装置9
0における第一次分級過塔91で合流する原料
ガスの逆流を防止している。
Gas conduit 6 immediately before this gas cooling classification tower 70
1 is provided with a cooling water channel 66 equipped with an emergency cutoff valve 65, and also after the gas cooling classification tower 70, a cooling waterway 85 with a check valve is provided in the gas outlet pipe 78. , while preventing heat transfer damage from high-temperature gas with a check valve, gas purification equipment 9 in the next process.
This prevents backflow of the raw material gases that merge in the primary classification tower 91 at 0.

熱分解反応塔10、ガス分解反応塔50からの
複式形態によつて得られた反応生成ガスは、ガス
精製装置90によつて過され、精製される。
The reaction product gas obtained from the thermal decomposition reaction tower 10 and the gas decomposition reaction tower 50 in the dual mode is filtered and purified by the gas purification device 90.

このガス精製装置90は、直列、並列の組合せ
て配列された複数の分級過塔91,92,93
を順次配設して、気体たる炭化水素ガスと、液体
たる油状炭化水素、タール混合液、水分と、固体
たる微粒子炭化物の5種類、三相に分級し、更
に、気体たる炭化水素ガスを水封洗滌、過する
ようにして成る。
This gas purification device 90 includes a plurality of classification towers 91, 92, 93 arranged in series and parallel.
are arranged in sequence to classify the gaseous hydrocarbon gas into five types of three phases: gaseous hydrocarbon gas, liquid oily hydrocarbon, tar mixture, moisture, and solid fine particle carbide. It is formed as if it were sealed and washed.

分級、過は、第1図に示すように、第一次分
級過塔91においては、前記熱分解反応塔10
での熱分解反応生成ガスと、前記ガス分解反応塔
50での生成ガスとが合流し、第二次分級過塔
92においては、第一次分級過塔91からの
過ガスが、更に、第三次分級過塔93において
は、第二次分級過塔92からの過ガスが夫々
流入されるものとし、次いで、洗滌されるように
なつている。
As shown in FIG.
The gas produced by the thermal decomposition reaction in the gas decomposition reaction tower 50 is combined with the gas produced in the gas decomposition reaction tower 50, and in the second classification tower 92, the pergas from the first classification tower 91 is further passed through the second classification tower 92. In the tertiary classification tower 93, the filtrate gases from the second classification tower 92 are respectively introduced and are then washed.

各分級過塔91,92,93は、複数のサイ
クロン式外水冷型に形成されており、第2図に示
すように、上部側壁にガス導入管95を接続し、
ガス中の油分を貯留分離する分離槽96を底部に
区画した外筒97を形成する。この外筒97上部
の蓋部から外筒97内に遠心筒98を垂設し、ガ
ス導入管95から導入されたガスが外筒97と遠
心筒98との間で旋回し、冷却されるようにす
る。また、外筒97内には、分離槽96に行くに
従い次第に小径となる内筒99を配装して内筒9
9内をサイクロン室100と成し、内筒99外周
に多数の放熱フイン101を列設し、内筒99と
外筒97との間は冷却室102と成して冷却水を
循環させる。更に、遠心筒98内に位置させて、
蓋部にはガス導出管103を接続し、次段の分級
過塔92,93あるいは第一次水封洗滌機10
5にガスを排出するようにしてある。
Each of the classification towers 91, 92, 93 is formed into a plurality of cyclone type external water-cooled type, and as shown in FIG. 2, a gas introduction pipe 95 is connected to the upper side wall.
An outer cylinder 97 is formed in which a separation tank 96 for storing and separating oil in the gas is partitioned at the bottom. A centrifugal tube 98 is vertically disposed inside the outer tube 97 from the lid at the top of the outer tube 97, so that the gas introduced from the gas introduction tube 95 is rotated between the outer tube 97 and the centrifugal tube 98 and cooled. Make it. In addition, an inner cylinder 99 whose diameter gradually becomes smaller as it goes to the separation tank 96 is disposed inside the outer cylinder 97.
A cyclone chamber 100 is formed within the inner cylinder 99, a large number of heat radiation fins 101 are arranged in a row around the outer circumference of the inner cylinder 99, and a cooling chamber 102 is formed between the inner cylinder 99 and the outer cylinder 97 to circulate cooling water. Furthermore, it is located within the centrifugal tube 98,
A gas outlet pipe 103 is connected to the lid, and the next stage classification towers 92, 93 or the first water seal washer 10 are connected to the gas outlet pipe 103.
5, the gas is discharged.

したがつて、ガス導入管95にて導入されたガ
スは、遠心筒98外周に沿つて旋回される間に冷
却され、冷却に伴ない生じた油分は分離槽96に
一旦貯留後、前記ガス分解反応塔50に排出され
る一方、遠心筒98内、ガス導出管103を経て
排出される。この冷却、分離を繰り返すことで、
前記熱分解反応塔10、ガス分解反応塔50内で
高温化されたガスも次第に冷却され、また、油分
が分離される。
Therefore, the gas introduced through the gas introduction pipe 95 is cooled while being swirled along the outer periphery of the centrifugal tube 98, and the oil produced during cooling is temporarily stored in the separation tank 96 and then decomposed by the gas. While being discharged to the reaction tower 50, it is also discharged through the centrifugal tube 98 and the gas outlet pipe 103. By repeating this cooling and separation,
The gas heated to high temperature in the thermal decomposition reaction tower 10 and gas decomposition reaction tower 50 is also gradually cooled, and oil is separated.

なお、ガス分解反応塔50からの生成ガスは、
これの専用の前記ガス冷却分級塔70によつて旋
回冷却を受け、凝縮分級後に第一次分級過塔9
1に至り、熱分解反応塔10で生成されたガスと
混合の上、次段の第二次分級過塔92に至る。
この第一次分級過塔91での冷却凝縮で気体、
液体、固体に分級された油状炭化水素とタール分
は、性状重質分であり、第二次分級過塔92で
冷却分級される油状炭化水素は性状中質分であ
り、更に、第三次分級過塔93で冷却分級され
る油状炭化水素は性状軽質分であり、このように
して完全分級され、夫々に留出成分も分離される
のであり、被生成ガスは以後液化分離しないガス
となつて次工程へ流出する。
Note that the generated gas from the gas decomposition reaction tower 50 is
This is subjected to swirl cooling by the gas-cooled classification tower 70 dedicated to this, and after condensation and classification, the primary classification tower 9
1, mixed with the gas produced in the thermal decomposition reaction tower 10, and then transported to the next stage, the second classification tower 92.
By cooling and condensing in this primary classification tower 91, gas,
Oily hydrocarbons and tar fractions classified into liquids and solids are heavy components, and oily hydrocarbons cooled and classified in the secondary classification column 92 are medium components. The oily hydrocarbons that are cooled and classified in the classification tower 93 are light in nature, and are completely classified in this way, and the distillate components are also separated, and the produced gas becomes a gas that will not be liquefied and separated thereafter. and flows to the next process.

分級過後のガスは洗滌、計量、過される。
すなわち、第一次水封洗滌機105において、中
和剤水溶液を通過の際に、ガス中に浮遊する微粒
子炭化物とタールと分は中和洗滌され、次工程と
水封をもつて環境を遮断する。ガスフイルター1
06においては、微細繊維質で精密なタール微粒
子と微炭化粉とが捕集せられて過を受ける。ガ
ス計量器107において、ガス流量、ガス比重、
ガス熱量、ガス圧力等が自動計測されて記録さ
れ、夫々の検出装置で出力される電気信号によ
り、ガス製造部門の制御資料とされる。二次水封
洗滌機108において、最終洗滌を経て次工程と
水封をもつて遮断し、ガス生成を完了する。
The gas after classification is washed, measured, and filtered.
That is, in the first water seal washing machine 105, when passing through the neutralizing agent aqueous solution, particulate carbide and tar suspended in the gas are neutralized and washed, and the next process and the environment are shut off using a water seal. do. gas filter 1
In step 06, fine fibrous fine tar particles and fine carbonized powder are collected and filtered. In the gas meter 107, the gas flow rate, gas specific gravity,
Gas calorific value, gas pressure, etc. are automatically measured and recorded, and electrical signals output from each detection device are used as control data for the gas production department. In the secondary water seal washing machine 108, after final washing, the next step is shut off with a water seal, and gas generation is completed.

なお、図中符号109は圧送機、110はガス
ホルダー、111は整圧機である。
In the figure, reference numeral 109 is a pressure feeder, 110 is a gas holder, and 111 is a pressure regulator.

以上に説明した実施例による熱分解ガス製造装
置において、固形可燃性廃棄物を原料としてのガ
ス生成実験を行つた結果は次の通りである。
The results of a gas production experiment using solid combustible waste as a raw material in the pyrolysis gas production apparatus according to the embodiment described above are as follows.

すなわち、熱分解反応塔10の乾溜内筒13の
容積が600立に対し、30秒サイクルで2.5Kg宛づつ
で合計300Kgを投入し、連続熱分解を行い、冷却
分級した結果、ガス化率55%たる165Kg(比重
1.067、産気量154Nm3、発熱量16400Kcal/Nm3
得熱2525600Kcal)のガスを得、油状炭化水素収
率40%で120Kg、タール収率2%で6Kg、カーボ
ン収率3%で9Kg、合計45%収率で135Kgを得た。
That is, the volume of the dry distillation inner cylinder 13 of the pyrolysis reaction tower 10 is 600 cubic meters, and a total of 300 kg is charged in 2.5 kg increments in a 30-second cycle, and as a result of continuous pyrolysis and cooling classification, the gasification rate is 55. %165Kg (specific gravity
1.067, production volume 154Nm 3 , calorific value 16400Kcal/Nm 3 ,
A gas with a heat gain of 2,525,600 Kcal was obtained, and 120 Kg was obtained with an oily hydrocarbon yield of 40%, 6 Kg with a tar yield of 2%, 9 Kg with a carbon yield of 3%, and 135 Kg with a total yield of 45%.

また、油状炭化水素とタール合計126Kgを、4
筒式のガス分解反応塔50の容積400立に対し、
30秒サイクルで1Kg強宛づつ連続分解を行い、冷
却分級した結果、58%収率で73Kgのガスを得、油
状炭化水素(中質系)40%収率で50Kgと、カーボ
ン2%収率で3Kgとの合計42%収率で53Kgを得
た。続いて、ガス分解反応塔50で第二次反応に
入り、油状炭化水素50Kgを1Kg宛づつ、30秒サイ
クル、60回で連続熱分解を行い、冷却分級した結
果、50%収率で25Kgのガスを得、油状炭化水素
(軽質系)を50%収率で25Kgを得た。引続き、第
三次反応に入り、油状炭化水素(軽質系)25Kgを
1Kg宛づつ、30秒サイクル、25回で連続熱分解を
行い、冷却分級した結果、40%収率で10Kgのガス
を得、油状炭化水素(極く軽量で比重0.72と粗製
ガソリンに類似する)60%収率で15Kgを得た。
In addition, a total of 126 kg of oily hydrocarbons and tar were added to 4
For the volume of the cylindrical gas decomposition reaction tower 50 of 400 cubic meters,
As a result of continuous decomposition of a little over 1 kg in a 30 second cycle and cooling classification, 73 kg of gas was obtained with a 58% yield, 50 kg with a 40% yield of oily hydrocarbons (medium type), and a 2% yield of carbon. 53 kg was obtained with a total yield of 42%. Next, a second reaction begins in the gas cracking reaction tower 50, where 50 kg of oily hydrocarbons are continuously thermally decomposed 60 times in a 30-second cycle, and 25 kg of oily hydrocarbons are produced with a 50% yield. Gas was obtained, and 25 kg of oily hydrocarbons (light type) were obtained with a yield of 50%. Next, in the third reaction, 25 kg of oily hydrocarbon (light type) was continuously thermally decomposed 25 times in a 30 second cycle, and 10 kg of gas was obtained with a yield of 40%. , 15Kg of oily hydrocarbon (very light, specific gravity 0.72, similar to crude gasoline) was obtained with a 60% yield.

以上を総合した結果は、ガス化累計273Kgで収
率91%、油化累計15Kgで収率5%、カーボン累計
12Kgで収率4%で、総計300Kgを完全回収し、100
%の物質転換をなした。
The result of combining the above is 91% yield with a total of 273 kg of gasification, 5% yield with a total of 15 kg of oil conversion, and a cumulative total of carbon.
With a yield of 4% for 12 kg, a total of 300 kg was completely recovered, and 100
% material conversion.

本実施例によつて製造されたガスの組成は、第
10図での成分組成比較表に明らかな通りであ
る。
The composition of the gas produced in this example is as is clear from the component composition comparison table in FIG.

すなわち、本実施例でのガスは、高位発熱量成
分たる低級炭化水素分が73%、低位発熱量分24.9
%の計97%、不燃分2.1%であるのに対し、従来
の他のものの平均は、高位発熱量成分たる低級炭
化水素分が21%、低位発熱量分61.7%の計82.7
%、不燃分17.3%である。したがつて、本発明で
のガスは、他のものに比較し、約98%が可燃分で
あり、高位ガスを73%も含有し、各種類がバラン
スしている優秀なものである。
That is, in the gas in this example, the lower hydrocarbon content, which is a higher calorific value component, was 73%, and the lower calorific value component was 24.9%.
%, and non-flammable content is 2.1%, whereas the average of other conventional products is 21% lower hydrocarbon content, which is a higher calorific value component, and 61.7% lower calorific value content, for a total of 82.7%.
%, and the non-flammable content is 17.3%. Therefore, compared to other gases, the gas used in the present invention is excellent in that it contains approximately 98% combustible matter and 73% higher-order gases, with each type being well balanced.

また、本発明者が先に提案した特開昭61−
287488号による従来のバツチ処理システムによる
と、ガス化率は16%であり、また、特願昭61−
180519号明細書での連続熱分解処理システムによ
れば、ガス化率は、50〜60%と進歩したが、本発
明での熱分解ガス製造装置によつてそのガス化率
は、91%に達したものである。
In addition, the present inventor previously proposed JP-A-61-
According to the conventional batch processing system according to No. 287488, the gasification rate is 16%.
According to the continuous pyrolysis treatment system in the specification of No. 180519, the gasification rate has improved to 50 to 60%, but with the pyrolysis gas production device of the present invention, the gasification rate has increased to 91%. It has been achieved.

[発明の効果] したがつて、本発明によれば、固形可燃性廃棄
物を乾溜内筒13上部から間欠投入し、外熱によ
つて乾溜内筒13内で間欠的に連続して熱分解反
応を行い、ガスと炭化物とに分離生成させる熱分
解反応塔10と、この熱分解反応塔10での反応
発生ガスを冷却分級して得た油状炭化水素を複数
の熱分解筒53内に噴射投入して熱分解反応を行
わせ、ガスと炭化物とに分離生成し、また、ガス
を別途に冷却分級して回収した低、中質生成油を
循環反復して再熱分解を行い、固体、液体の異相
原料を連続的に熱分解乾溜させて低炭化水素ガス
に生成させるガス分解反応塔50と、前記熱分解
反応塔10及びガス分解反応塔50によつて得ら
れた炭化水素ガスを旋回遠心分離しつつ冷却凝縮
して気体、液体、固体の三相に分級し、分級され
た気体の炭化水素ガスを洗滌、中和、過、精製
するガス精製装置90とを備えているから、固形
可燃性廃棄物を、気体なる炭化水素ガスと、液体
たる油状炭化水素、タール混合液、水分と、固体
たる微粒子炭化物の5種類、三相に分級し、更
に、液体たる油状炭化水素を乾溜させてガス化
し、このようにして複合式に得られた気体たる炭
化水素ガスを水封洗滌、過する完全乾溜させる
ことで、これを都市ガスと同様なガスとして利用
できるものであり、従来、この種の固形可燃性廃
棄物の処理が重要な問題となつていたのを極めて
簡単に解決できるものである。
[Effects of the Invention] Therefore, according to the present invention, solid combustible waste is intermittently introduced from the upper part of the dry distillation inner cylinder 13, and thermally decomposed intermittently and continuously in the dry distillation inner cylinder 13 by external heat. A pyrolysis reaction tower 10 in which a reaction is carried out to separate and generate gas and carbide, and oily hydrocarbons obtained by cooling and classifying the reaction generated gas in this pyrolysis reaction tower 10 are injected into a plurality of pyrolysis cylinders 53. The gas is separately cooled and classified, and the collected low and medium quality oil is recycled and re-thermally decomposed to produce solids and charcoal. A gas cracking reaction tower 50 that continuously pyrolyzes and dry-distills a liquid heterogeneous raw material to produce a low hydrocarbon gas, and swirls the hydrocarbon gas obtained by the pyrolysis reaction tower 10 and the gas cracking reaction tower 50. Since it is equipped with a gas purification device 90 that performs centrifugal separation, cooling and condensation to classify into three phases of gas, liquid, and solid, and washes, neutralizes, filters, and purifies the classified gaseous hydrocarbon gas, it Combustible waste is classified into five types, three phases: gaseous hydrocarbon gas, liquid oily hydrocarbon, tar mixture, water, and solid particulate carbide, and then the liquid oily hydrocarbon is dry distilled. By completely dry distilling the gaseous hydrocarbon gas obtained in this way through water ring washing and filtration, it can be used as a gas similar to city gas. This is a very simple solution to the serious problem of disposing of solid combustible waste.

すなわち、可燃性廃棄物のプラスチツク類、各
種ゴム類、紙、木材等は、それらを処理するの
に、例えば、埋立て処理を行うとしてもそれの用
地を確保するのか困難であり、また、焼却燃焼さ
せるとしても、それに伴なう有害ガスの発生等に
よつて膨大な処理経費を必要とし、環境破壊の原
因ともなつているのである。これに対し、本発明
によれば、これらの従来存した問題点を解決する
ばかりでなく、固形可燃性廃棄物を極めて有効な
資源として利用するのであり、ガス原料として、
極めてローコストな都市ガス原料とするのであ
る。
In other words, it is difficult to secure a site for combustible waste such as plastics, various rubbers, paper, wood, etc. even if they are to be disposed of in a landfill, and it is also difficult to incinerate them. Even if it were to be burned, it would require enormous processing costs due to the generation of harmful gases, and it would also be a cause of environmental destruction. In contrast, the present invention not only solves these conventional problems, but also utilizes solid combustible waste as an extremely effective resource.
This makes it an extremely low-cost raw material for city gas.

しかも、本発明装置での稼動は、24時間の連続
運転が可能であり、ガス発生は、間欠式に投入さ
れる原料の熱分解反応がほぼ瞬間的であり、その
投入回分毎のサイクルピーク量が等高線を有する
均一発生であるから、その制御は、専ら原料投入
の停止、継続、投入量増減、サイクル変更などの
簡単な操作のみで安全確保に行え、緊急停止、発
進が充分に可能である。
Moreover, the device of the present invention can be operated continuously for 24 hours, and the gas generation is almost instantaneous due to the thermal decomposition reaction of the raw materials that are intermittently fed, and the cycle peak amount for each batch of gas generated is almost instantaneous. Since it occurs uniformly with contour lines, it can be controlled safely by simply stopping and continuing raw material input, increasing or decreasing input amount, and changing the cycle, and emergency stop and start are fully possible. .

また、従来の廃棄物の処理経費負担は極めて大
きいものが必要とされるが、本発明によれば、資
源化処理によつて、従来の費用負担は不要とな
り、加えて、埋立用地が不要となる利益も大き
く、費用的にも大きな節減効果を発揮し、埋立立
地費、公害防止費用が節減される経済効果も極め
て大きい。
In addition, conventional waste treatment requires an extremely large burden of expense, but according to the present invention, due to resource recycling treatment, the conventional expense burden is no longer necessary, and in addition, no landfill site is required. The benefits are also large, and the economic effect of reducing landfill costs and pollution prevention costs is also extremely large.

更に、従来のガス製造販売は、都市ガスが1800
万世帯に、LPG(プロパンガス)が2000万世帯に
夫々供給されているも、本発明によつて得られる
都市ガスなみの生成ガスは、第三のガス供給源と
して極めて合理的なものである。例えば、現在の
都市ガスでの原料使用量は、1212万tであり、
114兆キロカロリーのガス得熱販売量である。そ
して、本発明での原料使用量が、1000万tである
と、それから得られるガス量は、産気量において
80億Nm3得熱において112兆キロカロリーに達し、
まさにこれは、全都市ガスと比肩できる巨大な新
ガス源を提供できることを意味する。したがつ
て、現在の都市ガスに匹敵するガス資源化の産
業、生活ガス消費価格は合理的に半減され、原料
の安定確保ができる計り知れない有効な効果があ
る。
Furthermore, conventional gas production and sales are limited to 1,800 yen for city gas.
Although LPG (propane gas) is supplied to 20 million households and 20 million households, the gas produced by the present invention, which is equivalent to city gas, is extremely rational as a third gas supply source. . For example, the current amount of raw material used for city gas is 12.12 million tons.
Gas heat sales amounted to 114 trillion kilocalories. If the amount of raw material used in the present invention is 10 million tons, the amount of gas obtained from it will be
It reaches 112 trillion kcal in 8 billion Nm3 fever,
This means that we can provide a huge new gas source that can rival all city gas. Therefore, the consumption price of industrial and domestic gas, which is comparable to the current city gas, will be rationally halved, and this will have an immeasurable and effective effect in ensuring a stable supply of raw materials.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図は全体
の配置平面図、第2図は処理系統概略を表す断面
図、第3図は熱分解反応塔の断面図、第4図は熱
分解反応塔の蓋部における横断面図、第5図は同
じく乾溜内筒での横断面図、第6図は同じく筒内
円錘部での横断面図、第7図はガス分解反応塔及
びガス冷却分級塔での断面図、第8図はガス分解
反応塔の横断面図、第9図はガス冷却分級塔の横
断面図、第10図は本発明装置によつて得られた
ガスと従来のものによつて得られたガスとの成分
組成比較表である。 10……熱分解反応塔、11……バーナー、1
2……外筒、13……乾溜内筒、14……蓋部、
14A……リブ、15……原料自動投入機構、1
6……投入原料拡散板、17……スパイラルフイ
ン、18……攪拌機構、19……上下攪拌エアシ
リンダ、20……攪拌軸、21……中央攪拌翼、
22……下部攪拌翼、23……伝熱フイン、25
……カーボン取出機構、26……筒内円錘部、2
7……底部取出円錘部、28……揺動シリンダ、
29……筒内落下口扉、30……排出口、31…
…排出室、32……スクリユーフイーダ、33…
…排出落下筒、34……カーボン冷却水封部、3
5……遮断部、36……ガス取出口、37……山
形状フイン、39……排気ガス導管、40……排
気ガス吸入分配機、50……ガス分解反応塔、5
1……バーナー、52……ガス外筒、53……熱
分解筒、54……蓋部、55……カートリツジ、
56……円柱軸、57……上部加熱板、58……
加熱板、59……支持円盤、60……ガス室、6
1……ガス導管、62……排熱送入口、63……
排気煙突、65……緊急遮断弁、66……冷却水
路、67……下部防炎板、68……外部耐火材、
69……燃焼室、70……ガス冷却分級塔、71
……分離槽、72……外筒、73……遠心筒、7
4……内筒、75……サイクロン室、76……放
熱フイン、77……冷却室、78……ガス導出
管、79……区画板、80……生成油油送ライ
ン、81……油水分離機、82……生成油貯留
槽、83……ガス油自動投入器、85……冷却水
路、90……ガス精製装置、91……第一次分級
過塔、92……第二次分級過塔、93……第
三次分級過塔、95……ガス導入管、96……
分離槽、97……外筒、98……遠心筒、99…
…内筒、100……サイクロン室、101……放
熱フイン、102……冷却室、103……ガス導
出管、105……一次水封洗滌機、106……ガ
スフイルター、107……ガス計量器、108…
…二次水封洗滌機、109……圧送機、110…
…ガスホルダー、111……整圧機。
The drawings show an embodiment of the present invention, in which Fig. 1 is a plan view of the overall layout, Fig. 2 is a sectional view showing an outline of the processing system, Fig. 3 is a sectional view of a thermal decomposition reaction tower, and Fig. 4 is a thermal decomposition reaction column. FIG. 5 is a cross-sectional view of the lid of the cracking reaction tower, FIG. 5 is a cross-sectional view of the dry distillation inner cylinder, FIG. 6 is a cross-sectional view of the conical part of the cylinder, and FIG. 7 is a cross-sectional view of the gas cracking reaction tower and 8 is a cross-sectional view of the gas-cooled classification tower, FIG. 9 is a cross-sectional view of the gas-cooled classification tower, and FIG. 10 is a cross-sectional view of the gas obtained by the apparatus of the present invention. This is a comparison table of component composition with gas obtained by conventional gas. 10...Pyrolysis reaction tower, 11...Burner, 1
2...Outer cylinder, 13...Dry distillation inner cylinder, 14...Lid part,
14A...Rib, 15...Raw material automatic feeding mechanism, 1
6... Input raw material diffusion plate, 17... Spiral fin, 18... Stirring mechanism, 19... Vertical stirring air cylinder, 20... Stirring shaft, 21... Central stirring blade,
22... lower stirring blade, 23... heat transfer fin, 25
...Carbon extraction mechanism, 26...Cylinder conical part, 2
7... Bottom take-out conical part, 28... Swing cylinder,
29... Cylinder drop port door, 30... Discharge port, 31...
...Discharge chamber, 32... Screw feeder, 33...
...Discharge drop tube, 34...Carbon cooling water seal, 3
5... Shutoff part, 36... Gas outlet, 37... Mountain-shaped fin, 39... Exhaust gas conduit, 40... Exhaust gas suction distributor, 50... Gas decomposition reaction tower, 5
DESCRIPTION OF SYMBOLS 1... Burner, 52... Gas cylinder, 53... Pyrolysis cylinder, 54... Lid part, 55... Cartridge,
56... Cylindrical shaft, 57... Upper heating plate, 58...
Heating plate, 59...Support disk, 60...Gas chamber, 6
1...Gas conduit, 62...Exhaust heat inlet, 63...
Exhaust chimney, 65...Emergency shutoff valve, 66...Cooling channel, 67...Lower flameproof plate, 68...External fireproof material,
69... Combustion chamber, 70... Gas cooling classification tower, 71
... Separation tank, 72 ... Outer tube, 73 ... Centrifugal tube, 7
4...Inner cylinder, 75...Cyclone chamber, 76...Radiation fin, 77...Cooling chamber, 78...Gas outlet pipe, 79...Dividing plate, 80...Produced oil oil delivery line, 81...Oil water Separator, 82...Produced oil storage tank, 83...Gas oil automatic feeder, 85...Cooling channel, 90...Gas purification device, 91...Primary classification tower, 92...Second classification Passing tower, 93...Third classification passing tower, 95...Gas introduction pipe, 96...
Separation tank, 97...Outer tube, 98...Centrifugal tube, 99...
...Inner cylinder, 100...Cyclone chamber, 101...Radiation fin, 102...Cooling chamber, 103...Gas outlet pipe, 105...Primary water seal washer, 106...Gas filter, 107...Gas meter , 108...
...Secondary water seal washing machine, 109...Press feeding machine, 110...
...Gas holder, 111...Pressure regulator.

Claims (1)

【特許請求の範囲】 1 固形可燃性廃棄物を乾溜内筒上部から間欠投
入し、外熱によつて乾溜内筒内で間欠的に連続し
て熱分解反応を行い、ガスと炭化物とに分離生成
させる熱分解反応塔と、 この熱分解反応塔での反応発生ガスを冷却分級
して得た油状炭化水素を複数別個の熱分解筒内に
噴射投入して熱分解反応を行わせ、ガスと炭化物
とに分離生成し、また、ガスを別途に冷却分級し
て回収した低、中質生成油を循環反復して再熱分
解を行い、固体、液体の異相原料を連続的に熱分
解乾溜させて低炭化水素ガスに生成させるガス分
解反応塔と、 前記熱分解反応塔及びガス分解反応塔によつて
得られた炭化水素ガスを旋回遠心分離しつつ冷却
凝縮して気体、液体、固体の三相に分級し、分級
された気体の炭化水素ガスを洗滌、中和、過、
精製するガス精製装置とを備えていることを特徴
とする可燃性廃棄物熱分解ガス製造装置。 2 前記熱分解反応塔での燃焼加熱の高温排熱ガ
スを利用してガス分解反応塔の熱源となすよう、
熱分解反応塔とガス分解反応塔との間に排気ガス
吸入分配機を配した特許請求の範囲第1項記載の
可燃性廃棄物熱分解ガス製造装置。
[Scope of Claims] 1. Solid combustible waste is intermittently introduced from the top of the dry distillation inner cylinder, and a thermal decomposition reaction is performed intermittently and continuously in the dry distillation inner cylinder using external heat, separating it into gas and char. A pyrolysis reaction tower is used to generate the gas, and oily hydrocarbons obtained by cooling and classifying the gas generated from the reaction in this pyrolysis reaction tower are injected into multiple separate pyrolysis cylinders to perform a pyrolysis reaction. The low- and medium-quality product oil is separated into charcoal and produced, and the gas is separately cooled and classified. The low- and medium-quality product oil is recycled and re-thermally decomposed, and the solid and liquid different-phase raw materials are continuously pyrolyzed and distilled. a gas cracking reaction tower that generates low hydrocarbon gas using the thermal cracking reaction tower, and a hydrocarbon gas obtained by the thermal cracking reaction tower and the gas cracking reaction tower that is cooled and condensed while being rotated and centrifuged to form three gases, liquids, and solids. Classified into phases, the classified hydrocarbon gas is washed, neutralized, filtered,
A combustible waste pyrolysis gas production device comprising: a gas purification device for purifying gas; 2. Utilizing the high-temperature exhaust heat gas from combustion heating in the pyrolysis reaction tower as a heat source for the gas cracking reaction tower,
The combustible waste pyrolysis gas production apparatus according to claim 1, wherein an exhaust gas suction distributor is arranged between the pyrolysis reaction tower and the gas decomposition reaction tower.
JP62094794A 1987-04-17 1987-04-17 Apparatus for producing pylorytic gas from combustible waste Granted JPS63260981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62094794A JPS63260981A (en) 1987-04-17 1987-04-17 Apparatus for producing pylorytic gas from combustible waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62094794A JPS63260981A (en) 1987-04-17 1987-04-17 Apparatus for producing pylorytic gas from combustible waste

Publications (2)

Publication Number Publication Date
JPS63260981A JPS63260981A (en) 1988-10-27
JPH0531903B2 true JPH0531903B2 (en) 1993-05-13

Family

ID=14119979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62094794A Granted JPS63260981A (en) 1987-04-17 1987-04-17 Apparatus for producing pylorytic gas from combustible waste

Country Status (1)

Country Link
JP (1) JPS63260981A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2922036B2 (en) * 1991-10-31 1999-07-19 日東電工株式会社 Pressure-sensitive adhesive excellent in heat resistance and method for producing the adhesive sheet
FR2697528B1 (en) * 1992-10-30 1994-12-30 Jean Dispons Process for cracking waste polyethylene or other polyolefins for the production of artificial waxes or other hydrocarbons.
DE4328188C2 (en) * 1993-08-21 1996-04-18 Hoechst Ag Process for the production of synthesis gas
KR100375569B1 (en) * 2000-05-29 2003-03-15 주식회사 영엔지니어링 Pyrolysis apparatus for polymeric wastes
JP2009298979A (en) * 2008-06-17 2009-12-24 Shimizu Corp Biomass gasification apparatus
JP7013408B2 (en) * 2019-03-27 2022-01-31 パンパシフィック・カッパー株式会社 Gas-liquid separator

Also Published As

Publication number Publication date
JPS63260981A (en) 1988-10-27

Similar Documents

Publication Publication Date Title
RU2175075C2 (en) Method and device for electrical energy generation (alternatives)
Bridgwater et al. A review of biomass pyrolysis and pyrolysis technologies
US4166786A (en) Pyrolysis and hydrogenation process
CA1113881A (en) Process and apparatus for treating a comminuted solid carbonizable material
EP0764196B1 (en) Improved pyrolytic conversion of organic feedstock and waste
US3655518A (en) Retort system for oil shales and the like
US5922092A (en) Bottom feed - updraft gasification system
US4162959A (en) Production of hydrogenated hydrocarbons
US4105502A (en) Simplified liquefaction pyrolysis process and apparatus therefor
RU2714816C1 (en) Method of converting carbon-containing material into synthesis gas with low content of resin
CN110451754A (en) A kind of method for innocent treatment of greasy filth pyrolysis
MXPA05008871A (en) Apparatus and method for coal gasification.
WO1994003760A1 (en) Processes and means for waste resources utilization
JP2004534903A (en) How to create clean energy from coal
JPS5851038B2 (en) Seizouhouhouunarabini Sonosouchi
CN202576344U (en) Equipment for extracting oil fuel from sandy oil sludge or/and organic waste
CN106947509A (en) The system and method that a kind of plastics pyrolytic gasification prepares oil product
EP0703957B1 (en) Bottom feed - updraft gasification system
US20060076275A1 (en) Process for the recovery of hydrocarbon fractions from hydrocarbonaceous solids
JPH0531903B2 (en)
USRE29312E (en) Gasification of carbonaceous solids
US5008005A (en) Integrated coke, asphalt and jet fuel production process and apparatus
CN110283609B (en) Pyrolysis-coking combined process and system for preparing coal tar by pyrolyzing pulverized coal
CN104560100A (en) Waste tire pyrolysis system and pyrolysis method
CN1102605C (en) Process for treating waste rubber or plastics and its gasifying equipment