JPH05315335A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH05315335A
JPH05315335A JP11625692A JP11625692A JPH05315335A JP H05315335 A JPH05315335 A JP H05315335A JP 11625692 A JP11625692 A JP 11625692A JP 11625692 A JP11625692 A JP 11625692A JP H05315335 A JPH05315335 A JP H05315335A
Authority
JP
Japan
Prior art keywords
width
metal interconnection
wiring
metal wiring
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11625692A
Other languages
Japanese (ja)
Inventor
Shuzo Sasaki
修三 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11625692A priority Critical patent/JPH05315335A/en
Publication of JPH05315335A publication Critical patent/JPH05315335A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent a short circuit between interconnection lines caused by lateral hillocks, and to obtain a semiconductor integrated circuit which allows automatic design rule checks to be easily executed by arranging a metal interconnection line whose line width is finer than a specific value disposed adjacent to a metal interconnection line whose line width exceeds the specific value. CONSTITUTION:Aluminum films or aluminum alloy films are arranged on a semiconductor substrate at an interval of 2mum and less, and a number of metal interconnections 2a-2c, which are coated with a metal thin film having a high fusing point or a silicid thin film and are arranged in a laminated structure, are laid over the top surface of the alminum film or the aluminum alloy film. In such a semiconductor integrated circuit, a metal interconnection line 2c having a width L which is finer than 10mum is arranged adjacent to a metal interconnection line 2a which exceeds 10mum. It is desirable that the metal interconnection 2a which exceeds 10mum and the metal interconnection 2c whose width L is finer than 10mum be formed so that they can be always equal in electric potential. Thereby, the laminated metal interconnection line 2c having the fine line width L serves as a barrier, and it is possible to prevent a short circuit between the metal interconnection line and another laminated metal interconnection line 2b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積回路の積層
金属配線のレイアウトに利用する。本発明は、ラテラル
ヒロックによる配線間ショートを防止することができる
半導体集積回路に関する。
BACKGROUND OF THE INVENTION The present invention is used for the layout of laminated metal wiring of a semiconductor integrated circuit. The present invention relates to a semiconductor integrated circuit capable of preventing a short circuit between wirings due to a lateral hillock.

【0002】[0002]

【従来の技術】従来、半導体集積回路内部の電気的接続
はアルミニウムまたはアルミニウム合金により配線され
てきたが、集積回路の高集積化に伴なう金属配線の微細
化によって顕在化してきたストレスマイグレーション対
策として、高融点金属薄膜またはそのシリサイド薄膜を
配線の上層あるいは上下層に形成した積層金属配線が用
いられ始めている。
2. Description of the Related Art Conventionally, electrical connections inside semiconductor integrated circuits have been made of aluminum or aluminum alloys, but stress migration countermeasures have become apparent due to the miniaturization of metal wiring accompanying the high integration of integrated circuits. As a method, a laminated metal wiring in which a refractory metal thin film or a silicide thin film thereof is formed in the upper layer or the upper and lower layers of the wiring is beginning to be used.

【0003】この積層金属配線の場合、配線のアロイ処
理、パッシベーション膜形成などの後工程の熱処理時に
電源ラインなど数十μmの幅を持つ配線幅の広い積層金
属配線にラテラルヒロックが発生し、配線間隔が2μm
以下にレイアウトされた配線の場合には、隣接する他の
積層金属配線と配線間ショートする危険性がある。この
ラテラルヒロックによる配線間ショートを防止するため
に、従来は次の二つの手法がとられている。
In the case of this laminated metal wiring, lateral hillocks are generated in a wide laminated metal wiring having a width of several tens of μm such as a power supply line during a heat treatment of a post-process such as wiring alloying and formation of a passivation film. The spacing is 2 μm
In the case of the wirings laid out below, there is a risk of short-circuiting between the wiring and another adjacent laminated metal wiring. In order to prevent a short circuit between wirings due to this lateral hillock, the following two methods have been conventionally used.

【0004】図3(a)および(b)はラテラルヒロッ
ク発生を防止するプロセスを説明する図である。この方
法は、半導体基板1上に積層金属配線2を形成した後、
同図(a)に示すように300℃以下の低温条件のプラ
ズマアシスト化学気相成長法(以下プラズマCVDとい
う)により1000Å程度の薄いプラズマ酸化膜3を短
時間で成長させ、この薄いプラズマ酸化膜3で積層金属
配線2を被覆した状態で400〜450℃、5〜30分
のアロイ処理を実施し、その後300〜400℃の条件
のプラズマCVDにより数千Åの厚い無機膜から成るパ
ッシベーション膜4を形成させるものである。
FIGS. 3A and 3B are views for explaining the process for preventing the occurrence of lateral hillocks. In this method, after the laminated metal wiring 2 is formed on the semiconductor substrate 1,
As shown in FIG. 4A, a thin plasma oxide film 3 of about 1000 Å is grown in a short time by a plasma-assisted chemical vapor deposition method (hereinafter referred to as plasma CVD) under a low temperature condition of 300 ° C. or less, and this thin plasma oxide film is formed. 3, the alloy treatment is performed at 400 to 450 ° C. for 5 to 30 minutes with the laminated metal wiring 2 being covered, and then the passivation film 4 made of a thick inorganic film of several thousand liters is formed by plasma CVD at 300 to 400 ° C. Is formed.

【0005】図4は配線レイアウトによってラテラルロ
ックによる配線間ショートを防止する方法を説明する図
である。この方法では、配線形成後の熱処理工程でラテ
ラルヒロック5の発生するおそれのある数十μm幅の配
線幅の広い積層金属配線2aは、他の積層金属配線2b
から十分距離を置いて配置され、ラテラルヒロック5が
発生してもショートしないようにレイアウトされてい
る。
FIG. 4 is a diagram for explaining a method of preventing a short circuit between wirings due to a lateral lock by a wiring layout. In this method, the laminated metal wiring 2a having a wide wiring width of several tens of μm in which the lateral hillocks 5 may be generated in the heat treatment step after the wiring formation is replaced with another laminated metal wiring 2b.
It is arranged at a sufficient distance from, and is laid out so as not to cause a short circuit even if a lateral hillock 5 is generated.

【0006】[0006]

【発明が解決しようとする課題】図3に示すラテラルヒ
ロックそのものの発生を防止する方法は、工程数の増加
につながり、また熱処理時の熱応力が積層金属配線を被
覆している薄いプラズマ酸化膜の強度的に弱い部分に集
中し、薄いプラズマ酸化膜を突きやぶりより大きなラテ
ラルヒロックを生じる可能性がある。
The method of preventing the generation of lateral hillocks shown in FIG. 3 leads to an increase in the number of steps, and the thermal stress during heat treatment causes a thin plasma oxide film covering the laminated metal wiring. Concentrates on the weaker areas of, and strikes the thin plasma oxide film, which may cause larger lateral hillocks.

【0007】また、図4に示す配線レイアウトでは、配
線間ショートを防止するためには、例えば発生するラテ
ラルヒロック長の平均が1μmの場合に4μm程度の配
線間隔を設定する必要があり、回路の高集積化にとって
問題となる。さらに、近年実施されているコンピュータ
による自動設計ルールチェックプログラムでは、配線間
隔のチェックは最小許容配線間隔によりチェックされる
のが通例であり、したがって最小許容配線間隔として1
μm前後の値が用いられる集積回路では、配線幅の太い
配線に隣接した配線間隔が適正な間隔で設計されている
か否かを自動設計ルールチェックによりチェックするこ
とは難しい。そのため人の手によるマニュアルチェック
が介入せざるを得ず回路設計チェックの能率を低下させ
る問題がある。
Further, in the wiring layout shown in FIG. 4, in order to prevent a short circuit between wirings, it is necessary to set a wiring interval of about 4 μm when the average of the generated lateral hillock length is 1 μm. It becomes a problem for high integration. Furthermore, in an automatic design rule check program executed by a computer in recent years, it is customary to check the wiring interval based on the minimum allowable wiring interval.
In an integrated circuit in which a value of around μm is used, it is difficult to check by automatic design rule check whether or not wiring intervals adjacent to a wiring having a large wiring width are designed at proper intervals. Therefore, there is a problem that the manual check by human beings has to intervene and the efficiency of the circuit design check is lowered.

【0008】本発明はこのような背景により行われたも
ので、ラテラルヒロックによる配線間ショートを防止
し、かつ自動設計ルールチェックを容易に行うことがで
きる半導体集積回路を提供することを目的とする。
The present invention has been made under such a background, and an object thereof is to provide a semiconductor integrated circuit capable of preventing a short circuit between wirings due to a lateral hillock and easily performing an automatic design rule check. ..

【0009】[0009]

【課題を解決するための手段】本発明は、半導体基板上
に、アルミニウム膜もしくはアルミニウム合金膜が2μ
m以下の間隔をもって配置され、その上面に高融点金属
薄膜もしくはシリサイド薄膜が被覆された積層構造の複
数の金属配線を有する半導体集積回路において、10μ
mを超える配線幅の金属配線に隣接して10μmよりも
微細幅の金属配線を配置したことを特徴とする。
According to the present invention, an aluminum film or an aluminum alloy film having a thickness of 2 μm is formed on a semiconductor substrate.
In a semiconductor integrated circuit having a plurality of metal wirings of a laminated structure which are arranged at intervals of m or less and whose upper surface is covered with a refractory metal thin film or a silicide thin film,
It is characterized in that a metal wiring having a finer width than 10 μm is arranged adjacent to a metal wiring having a wiring width exceeding m.

【0010】前記10μmを超える金属配線と前記10
μmよりも微細幅の金属配線とが常に同電位となるよう
に形成されることが望ましい。
The metal wiring exceeding 10 μm and the metal wiring
It is desirable that the metal wiring having a width finer than μm is always formed to have the same potential.

【0011】[0011]

【作用】幅の広い積層金属配線に隣接配置されたラテラ
ルヒロックが発生しにくい微細幅の積層金属配線がバリ
アとなって他の積層金属配線との配線間ショートを防止
する。また、幅の広い積層金属配線と微細幅の積層金属
配線とを同電位にすることによって電気伝導をよくし、
自動設計ルールチェックを容易に行うことができる。
The laminated metal wiring having a fine width in which lateral hillocks are unlikely to be formed adjacent to the laminated metal wiring having a large width serves as a barrier to prevent short-circuiting between other laminated metal wirings. Further, by increasing the potential of the wide laminated metal wiring and the fine-width laminated metal wiring, the electric conduction is improved,
The automatic design rule check can be performed easily.

【0012】[0012]

【実施例】次に、本発明実施例を図面に基づいて説明す
る。 (第一実施例)図1は本発明第一実施例における配線レ
イアウトを示す図である。
Embodiments of the present invention will now be described with reference to the drawings. (First Embodiment) FIG. 1 is a diagram showing a wiring layout in a first embodiment of the present invention.

【0013】本発明第一実施例は、半導体基板上に、ア
ルミニウム膜もしくはアルミニウム合金膜が2μm以下
の間隔をもって配置され、その上面に高融点金属薄膜も
しくはシリサイド薄膜が被覆された積層構造の複数の金
属配線の中で、10μmを超える配線幅の広い積層金属
配線2aに隣接して10μmよりも微細幅の積層金属配
線2cが配置され、配線幅の広い積層金属配線2aと微
細幅の積層金属配線2cとは常に同電位となるように形
成される。
In the first embodiment of the present invention, a plurality of laminated structures in which an aluminum film or an aluminum alloy film is arranged at intervals of 2 μm or less on a semiconductor substrate, and a refractory metal thin film or a silicide thin film is coated on the upper surface thereof Among the metal wirings, a laminated metal wiring 2c having a fine width of more than 10 μm is arranged adjacent to the laminated metal wiring 2a having a wide wiring width of more than 10 μm. 2c is always formed to have the same potential.

【0014】すなわち、ラテラルヒロックの発生する恐
れのある配線幅の広い(例えば数十μmの)積層金属配
線2aには設計ルール上許容される最小配線間隔および
最小配線幅で設計された微細幅(例えば1μm)の積層
金属配線2cが隣接配置され、この微細幅の積層金属配
線2cがバリアとなって他の積層金属配線2bとの配線
間ショートを防止する。なお、図1中では微細幅の積層
金属配線2cは電気的にフローティングしているが配線
幅の広い積層金属配線2aと接続させて同電位としても
よい。また、実施すべき配線幅は積層する膜の材質およ
び積層構造により若干異なるが、幅10μm以上の積層
配線に適用することが望ましい。
That is, for the laminated metal wiring 2a having a wide wiring width (for example, several tens of μm) in which a lateral hillock may occur, the minimum wiring interval and the fine width designed with the minimum wiring width allowed by the design rule ( For example, a laminated metal wiring 2c of 1 μm) is arranged adjacently, and the laminated metal wiring 2c having a fine width serves as a barrier to prevent a short circuit between wirings with another laminated metal wiring 2b. Although the laminated metal wiring 2c having a fine width is electrically floating in FIG. 1, it may be connected to the laminated metal wiring 2a having a wide wiring width to have the same potential. Further, the wiring width to be implemented is slightly different depending on the material of the film to be laminated and the laminated structure, but it is desirable to apply it to laminated wiring having a width of 10 μm or more.

【0015】同図中のWは配線幅の広い積層金属配線2
aの配線幅を示し、SおよびLは設計ルール上許容され
る最小配線間隔および最小配線幅を示す。 (第二実施例)図2は本発明第二実施例における配線レ
イアウトを示す図である。この第二実施例では、第一実
施例のように配線幅の広い積層金属配線2aに隣接して
微細幅の積層金属配線2cを最小配線間隔および最小配
線幅で追加する代わりに、配線幅の広い積層金属配線2
aからラテラルヒロックを生じない配線幅(例えば10
μm未満)の積層金属配線を微細幅の積層金属配線20
cとして最小配線間隔で分離し、かつ電気的に同電位と
して積極的に電気伝導に寄与させている。これにより第
一実施例の場合より2×最小配線幅分だけ集積化が可能
となる。
W in the figure is a laminated metal wiring 2 having a wide wiring width.
The wiring width of a is shown, and S and L show the minimum wiring interval and the minimum wiring width which are allowed in the design rule. (Second Embodiment) FIG. 2 is a diagram showing a wiring layout in a second embodiment of the present invention. In the second embodiment, as in the first embodiment, instead of adding the laminated metal wiring 2c having a fine width adjacent to the laminated metal wiring 2a having a wide wiring width with the minimum wiring interval and the minimum wiring width, Wide laminated metal wiring 2
Wiring width that does not cause lateral hillock from a (for example, 10
a laminated metal wiring having a fine width
As c, they are separated at the minimum wiring interval, and are electrically contributed to the same potential by positively contributing to electric conduction. As a result, it becomes possible to integrate by 2 × the minimum wiring width as compared with the case of the first embodiment.

【0016】同図中のW′は変更された配線幅の広い積
層金属配線20aの配線幅を示し、Wm は微細幅の積層
金属配線20cの配線幅を示し、 L≦Wm <ラテラルヒロックの生じる配線幅 の関係があり、有効配線幅Wは W=W′+2Wm となる。
In the figure, W'represents the wiring width of the modified laminated metal wiring 20a having a wide wiring width, W m represents the wiring width of the laminated metal wiring 20c having a fine width, and L≤W m <lateral hillock The effective wiring width W is W = W '+ 2W m .

【0017】[0017]

【発明の効果】以上説明したように本発明によれば、1
0μm以上の配線幅を有する積層金属配線に隣接して1
0μmよりも微細な積層金属配線を同電位で設置するこ
とにより、プロセス変更なしにラテラルヒロックによる
配線間ショートを防止することができ、コンピュータに
よる自動設計ルールチェックを容易に行うことができる
効果がある。
As described above, according to the present invention, 1
1 adjacent to a laminated metal wiring having a wiring width of 0 μm or more
By installing the laminated metal wiring finer than 0 μm at the same potential, it is possible to prevent a short circuit between the wirings due to the lateral hillock without changing the process, and it is possible to easily perform the automatic design rule check by the computer. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第一実施例における配線レイアウトを示
す図。
FIG. 1 is a diagram showing a wiring layout in a first embodiment of the present invention.

【図2】本発明第二実施例における配線レイアウトを示
す図。
FIG. 2 is a diagram showing a wiring layout according to a second embodiment of the present invention.

【図3】(a)および(b)は従来例におけるラテラル
ヒロックを防止するプロセスを説明する断面図。
3A and 3B are cross-sectional views illustrating a process of preventing lateral hillocks in a conventional example.

【図4】従来における配線間ショートを防止するための
配線レイアウトを示す図。
FIG. 4 is a diagram showing a conventional wiring layout for preventing a short circuit between wiring lines.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 積層金属配線 2a、20a 配線幅の広い積層金属配線 2b 他の積層金属配線 2c、20c 微細幅の積層金属配線 3 薄いプラズマ酸化膜 4 パッシベーション膜 5 ラテラルヒロック 1 semiconductor substrate 2 laminated metal wiring 2a, 20a laminated metal wiring with wide wiring 2b other laminated metal wiring 2c, 20c laminated metal wiring with fine width 3 thin plasma oxide film 4 passivation film 5 lateral hillocks

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に、アルミニウム膜もしく
はアルミニウム合金膜が2μm以下の間隔をもって配置
され、その上面に高融点金属薄膜もしくはシリサイド薄
膜が被覆された積層構造の複数の金属配線を有する半導
体集積回路において、 10μmを超える配線幅の金属配線に隣接して10μm
よりも微細幅の金属配線を配置したことを特徴とする半
導体集積回路。
1. A semiconductor integrated device having an aluminum film or an aluminum alloy film arranged at an interval of 2 μm or less on a semiconductor substrate, and having a plurality of metal wirings of a laminated structure covered with a refractory metal thin film or a silicide thin film on the upper surface thereof. In the circuit, 10 μm adjacent to the metal wiring with a wiring width exceeding 10 μm
A semiconductor integrated circuit in which metal wiring having a finer width than that of the semiconductor integrated circuit is arranged.
【請求項2】 前記10μmを超える金属配線と前記1
0μmよりも微細幅の金属配線とが常に同電位となるよ
うに形成された請求項1記載の半導体集積回路。
2. The metal wiring having a thickness of more than 10 μm and the metal wiring
2. The semiconductor integrated circuit according to claim 1, wherein the metal wiring having a width smaller than 0 μm is always formed to have the same potential.
JP11625692A 1992-05-08 1992-05-08 Semiconductor integrated circuit Pending JPH05315335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11625692A JPH05315335A (en) 1992-05-08 1992-05-08 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11625692A JPH05315335A (en) 1992-05-08 1992-05-08 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH05315335A true JPH05315335A (en) 1993-11-26

Family

ID=14682614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11625692A Pending JPH05315335A (en) 1992-05-08 1992-05-08 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH05315335A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165091A (en) * 2004-12-03 2006-06-22 Nec Electronics Corp Semiconductor integrated device, its designing method, designing device, and program
JP2009081268A (en) * 2007-09-26 2009-04-16 Nec Electronics Corp Evaluation pattern of occurrence status of hillock, substrate provided with the same, and evaluation method
JP2016171205A (en) * 2015-03-12 2016-09-23 株式会社東芝 Semiconductor device and semiconductor device manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165091A (en) * 2004-12-03 2006-06-22 Nec Electronics Corp Semiconductor integrated device, its designing method, designing device, and program
JP2009081268A (en) * 2007-09-26 2009-04-16 Nec Electronics Corp Evaluation pattern of occurrence status of hillock, substrate provided with the same, and evaluation method
US7807998B2 (en) 2007-09-26 2010-10-05 Nec Electronics Corporation Evaluation pattern suitable for evaluation of lateral hillock formation
JP2016171205A (en) * 2015-03-12 2016-09-23 株式会社東芝 Semiconductor device and semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
JPH05206135A (en) Manufacture of semiconductor device
JPH0917785A (en) Aluminum-based metal interconnection for semiconductor device
JPH05315335A (en) Semiconductor integrated circuit
US4680854A (en) Forming low resistivity hillock free conductors in VLSI devices
JP3375460B2 (en) Semiconductor device
JPH0945688A (en) Interconnection structure and its formation method
KR100256271B1 (en) Metal wiring method of semiconductor device
KR100303796B1 (en) Method for forming metal interconnection of semiconductor device
JP2599349B2 (en) Semiconductor device
JP3249444B2 (en) Method for manufacturing semiconductor device
JP2998454B2 (en) Method for manufacturing semiconductor device
KR0139599B1 (en) Mechod of forming metal wiring in semiconducotr device
JPH01251741A (en) Semiconductor device
KR930011461B1 (en) Method of forming submicron wiring of semiconductor integrated circuit
JPH0574956A (en) Electrode structure for semiconductor device
JPH0645333A (en) Semiconductor device
JPH03169018A (en) Manufacture of semiconductor integrated circuit
JPH05206142A (en) Integerated circuit and manufacture thereof
JPH0456226A (en) Semiconductor device
JPH03280431A (en) Manufacturing process and device of multilayer wiring
JPH07142485A (en) Formation of al based wiring
JPH0536693A (en) Semiconductor device suppressing hillock and suppressing method for hillock
JPS6230687B2 (en)
JPH07193130A (en) Manufacture of semiconductor device
JPS59224142A (en) Forming method of multilayer interconnection