JPH05315268A - Plasma cvd apparatus - Google Patents

Plasma cvd apparatus

Info

Publication number
JPH05315268A
JPH05315268A JP4120396A JP12039692A JPH05315268A JP H05315268 A JPH05315268 A JP H05315268A JP 4120396 A JP4120396 A JP 4120396A JP 12039692 A JP12039692 A JP 12039692A JP H05315268 A JPH05315268 A JP H05315268A
Authority
JP
Japan
Prior art keywords
electrode
film
substrate
reaction chamber
frequency power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4120396A
Other languages
Japanese (ja)
Inventor
Naoki Suzuki
直樹 鈴木
Riyuuzou Houchin
隆三 宝珍
Toshimichi Ishida
敏道 石田
Yuichiro Yamada
雄一郎 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4120396A priority Critical patent/JPH05315268A/en
Publication of JPH05315268A publication Critical patent/JPH05315268A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce deposition of a film on a sidewall, etc., of a reaction chamber, to accelerate a film depositing speed and to control a film stress by providing a shielding plate on the side faces of both an electrode and a substrate base, and specifying an interval between the electrode the base. CONSTITUTION:Shielding plates 29, 30 ground at an interval of 1-2mm are respectively provided on an electrode 16 and a substrate base 22. A high frequency power is applied to the electrode 16, a low frequency power is applied to the base 22, and a distance between the electrode 16 and the base 22 is set to 4-10mm. Thus, a plasma is confined between the electrode and the base to increase a film depositing speed. Even if a film depositing speed is further increased, an SiN film of high quality having a small stress can deposited. In comparison with the case where the distance between the electrode and the base 23 is 11mm or more, a film depositing amount on the sidewall of a reaction chamber 14 is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体工業等における
薄膜形成工程に利用されるプラズマCVD装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma CVD apparatus used in a thin film forming process in the semiconductor industry and the like.

【0002】[0002]

【従来の技術】プラズマCVD装置は、SiN(窒化珪
素)、SiO2 (酸化珪素)及びSiON(オキシ窒化
珪素)のような物質を堆積することができ、半導体にお
いては層間絶縁膜や保護膜等の形成に利用されている。
2. Description of the Related Art A plasma CVD apparatus can deposit materials such as SiN (silicon nitride), SiO 2 (silicon oxide) and SiON (silicon oxynitride). In semiconductors, an interlayer insulating film, a protective film, etc. Is used to form.

【0003】以下、図2を参照しながら上述したプラズ
マCVD装置の一例によってSiN膜を堆積する場合に
ついて説明する。
Hereinafter, a case of depositing a SiN film by an example of the plasma CVD apparatus described above will be described with reference to FIG.

【0004】図2において、反応室1は真空排気口2を
有しかつ接地されている。3は電極で、高周波発振器か
らの電力がマッチングチューナ、高周波電力供給部4を
通って供給される。電極3は反応ガス導入管5から供給
された反応ガスを反応室1内に分散させて供給するため
のガス流出孔6を有する。7は反応室1と電極3を絶縁
するための絶縁リングである。8は反応ガス導入管5と
電極3とを絶縁するための絶縁管である。9は基板10
を載置するための基板台であり、接地されている。電極
3と基板台9の間の距離は20mm程度に設定されてい
る。11は基板台9及び基板10を加熱するためのヒー
ターブロックであり、ヒーター及び熱電対(図示せず)
が埋め込まれている。12はヒーターブロック11と反
応室1との間の熱移動を少なくするための絶縁リングで
ある。電極3、絶縁リング7、ヒーターブロック11、
絶縁リング12にはOリングシール(図示せず)が用い
られ、反応室1内の真空を保っている。13はOリング
が200°C以上に加熱されないように冷却水を流すた
めの水冷溝である。
In FIG. 2, the reaction chamber 1 has a vacuum exhaust port 2 and is grounded. An electrode 3 is supplied with electric power from a high frequency oscillator through a matching tuner and a high frequency power supply unit 4. The electrode 3 has a gas outflow hole 6 for dispersing and supplying the reaction gas supplied from the reaction gas introduction pipe 5 into the reaction chamber 1. Reference numeral 7 is an insulating ring for insulating the reaction chamber 1 and the electrode 3 from each other. Reference numeral 8 is an insulating tube for insulating the reaction gas introducing tube 5 and the electrode 3 from each other. 9 is a substrate 10
It is a substrate stand for mounting the and is grounded. The distance between the electrode 3 and the substrate table 9 is set to about 20 mm. Reference numeral 11 is a heater block for heating the substrate table 9 and the substrate 10, and a heater and a thermocouple (not shown).
Is embedded. Reference numeral 12 is an insulating ring for reducing heat transfer between the heater block 11 and the reaction chamber 1. Electrode 3, insulating ring 7, heater block 11,
An O-ring seal (not shown) is used for the insulating ring 12 to maintain the vacuum inside the reaction chamber 1. Reference numeral 13 is a water cooling groove for flowing cooling water so that the O-ring is not heated to 200 ° C. or higher.

【0005】以上のように構成されたプラズマCVD装
置の動作を以下説明する。基板台9上の基板10をヒー
ターブロック11で約300°Cに加熱し、反応室1に
はガス流出孔6からSiH4 (モノシラン)ガスを20
sccm、N2 (窒素)ガスを100sccm、NH3
(アンモニア)ガスを60sccm流した状態で、反応
室1を約2torrに真空保持する。電極3には13.
56MHzの高周波電力が400W印加され、電極3と
基板台9間でプラズマ放電を起こす。反応室1中の反応
ガスとしてのSiH4 ガス、N2 ガス、NH3 ガスはプ
ラズマのエネルギーにより分解され、基板10上にSi
N(シリコンナイトライド)膜を堆積する。
The operation of the plasma CVD apparatus configured as described above will be described below. The substrate 10 on the substrate table 9 is heated to about 300 ° C. by the heater block 11, and SiH 4 (monosilane) gas is supplied to the reaction chamber 1 through the gas outflow holes 6 to 20 ° C.
sccm, N 2 (nitrogen) gas at 100 sccm, NH 3
The reaction chamber 1 is vacuum-held at about 2 torr with a flow of (ammonia) gas of 60 sccm. The electrode 3 has 13.
400 W of high frequency power of 56 MHz is applied to cause plasma discharge between the electrode 3 and the substrate table 9. SiH 4 gas, N 2 gas, and NH 3 gas as reaction gases in the reaction chamber 1 are decomposed by the energy of plasma, and Si on the substrate 10
Deposit an N (silicon nitride) film.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
ような構成では膜堆積速度が約3000オングストロー
ム/分と遅く、かつ放電によって励起・解離されたガス
が電極3、ヒータブロック11あるいは反応室1の側壁
に到達して膜堆積が起こり、1回堆積する毎にエッチン
グ除去する必要があり、生産性が悪いという問題点を有
していた。
However, in the above structure, the film deposition rate is as slow as about 3000 angstrom / min, and the gas excited / dissociated by the discharge causes the gas in the electrode 3, the heater block 11 or the reaction chamber 1 to flow. There is a problem that film deposition occurs when it reaches the side wall, and it needs to be removed by etching each time it is deposited, resulting in poor productivity.

【0007】本発明は上記従来の問題点に鑑み、反応室
側壁等への膜堆積を少なくし、膜堆積速度を速くし、か
つ膜堆積速度を速くすると生じる膜応力をコントロール
することができるプラズマCVD装置を提供することを
目的とする。
In view of the above-mentioned conventional problems, the present invention reduces the film deposition on the side wall of the reaction chamber, increases the film deposition rate, and controls the film stress generated when the film deposition rate is increased. An object is to provide a CVD device.

【0008】[0008]

【課題を解決するための手段】本発明のプラズマCVD
装置は、反応ガス導入口と真空排気口を有する反応室
と、反応室内で基板を載置する基板台と、基板台を加熱
するヒーターブロックと、基板台に低周波電力を供給す
る手段と、基板台側面に間隙を設けて配設されかつ接地
された下部側面シールド板と、基板台に対して4〜10
mmの間隔を設けて対向配置されかつ高周波電力が供給さ
れる高周波電極と、高周波電極の側面に間隙を設けて配
設されかつ接地された上部側面シールド板とから成るこ
とを特徴とする。
Means for Solving the Problems Plasma CVD of the present invention
The apparatus is a reaction chamber having a reaction gas inlet and a vacuum exhaust port, a substrate table on which a substrate is placed in the reaction chamber, a heater block for heating the substrate table, and means for supplying low frequency power to the substrate table, The lower side shield plate, which is arranged on the side surface of the substrate base with a gap and is grounded, and 4 to 10 relative to the substrate base.
It is characterized by comprising high-frequency electrodes which are arranged opposite to each other with a space of mm and which is supplied with high-frequency power, and an upper side shield plate which is arranged with a gap on the side surface of the high-frequency electrode and is grounded.

【0009】好適には、基板台と下部側面シールド板の
間隙及び高周波電極と上部側面シールド板の間隙は約1
〜2mmに設定される。
Preferably, the gap between the substrate table and the lower side shield plate and the gap between the high frequency electrode and the upper side shield plate are about 1.
It is set to ~ 2mm.

【0010】[0010]

【作用】本発明の上記した構成によると、電極と基板台
共に側面にシールド板を設けたことにより反応室側壁と
の放電が起こらず、かつ電極と基板台の間隔を通常の2
0mmに対して4〜10mmと狭く設定したことにより、プ
ラズマが電極と基板台間で閉じ込められてプラズマ密度
が増加し、そのためプラズマ放電によって生じた電子の
エネルギーによって励起・解離される反応ガスの分子が
増加して基板上への膜堆積速度が増加する。一方、膜堆
積速度が増加すると、堆積された膜の膜密度が低くなっ
て膜応力(引張応力)が増大するが、基板に低周波電力
を供給することにより高周波では追従できなかったイオ
ンも追従できて膜へのイオン衝撃が起こり、このイオン
衝撃を受けながら膜が堆積することにより膜密度が増加
するとともに膜の応力が引張応力から圧縮応力へと変化
する。かくして、膜堆積速度を速くできて生産性が向上
するとともに、膜密度が増大してクラックの原因となる
膜応力もコントロールすることができ、また反応室側壁
への堆積が少なくなりエッチング工程を少なくできる。
According to the above-mentioned structure of the present invention, since the shield plate is provided on the side surface of both the electrode and the substrate table, no discharge occurs between the side wall of the reaction chamber and the distance between the electrode and the substrate table is set to a normal value.
By setting the width as narrow as 4 to 10 mm with respect to 0 mm, the plasma is confined between the electrode and the substrate table, and the plasma density increases, so that the molecules of the reaction gas that are excited and dissociated by the energy of the electrons generated by the plasma discharge. Increases the film deposition rate on the substrate. On the other hand, when the film deposition rate increases, the film density of the deposited film decreases and the film stress (tensile stress) increases. However, by supplying low-frequency power to the substrate, ions that could not be tracked at high frequencies are tracked. As a result, ion bombardment of the film occurs, and the film density increases due to the film deposition while receiving the ion bombardment, and the film stress changes from tensile stress to compressive stress. Thus, the film deposition rate can be increased to improve productivity, the film density can be increased and the film stress that causes cracks can be controlled, and the deposition on the side wall of the reaction chamber can be reduced to reduce the etching process. it can.

【0011】[0011]

【実施例】以下、本発明の一実施例のプラズマCVD装
置について図1を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A plasma CVD apparatus according to an embodiment of the present invention will be described below with reference to FIG.

【0012】図1において、反応室14は真空排気口1
5を有し、アースに接地されている。16はプラズマ放
電用の電極である。高周波発振器(周波数13.56M
Hz)からの電力が、マッチングチューナ、フィルタ、
高周波電力供給部17を通ってこの電極16に供給され
る。電極16は、反応ガス導入管18から供給された反
応ガスを反応室14内にシャワー状に分散させて供給す
るためのガス流出孔19を有する。20は反応室14と
電極16とを絶縁するためのアルミナからなる絶縁リン
グである。21は反応ガス導入管18と電極16を絶縁
するためのアルミナからなる絶縁管である。
In FIG. 1, the reaction chamber 14 has a vacuum exhaust port 1
5 and is grounded to earth. Reference numeral 16 is an electrode for plasma discharge. High frequency oscillator (frequency 13.56M
Power from the (Hz) matching tuner, filter,
It is supplied to the electrode 16 through the high frequency power supply unit 17. The electrode 16 has a gas outflow hole 19 for dispersing and supplying the reaction gas supplied from the reaction gas introduction pipe 18 into the reaction chamber 14 in a shower shape. Reference numeral 20 is an insulating ring made of alumina for insulating the reaction chamber 14 and the electrode 16 from each other. Reference numeral 21 is an insulating tube made of alumina for insulating the reaction gas introducing tube 18 and the electrode 16.

【0013】22は基板23を載置するための基板台で
ある。24は基板台22及び基板23を加熱するための
ヒーターブロックであり、ヒーター及び熱電対(図示せ
ず)が埋め込まれている。25はヒーターブロック24
と反応室14の間の熱移動を少なくするための絶縁物
(例えばアルミナ)からなる絶縁リングである。基板台
22には低周波発振器(400KHz)からの電力がマ
ッチングチューナ、フィルタ、低周波電力供給部26を
通って供給される。27はアルミナからなる絶縁リング
で、Oリングを用いて反応室14を真空に保っている。
電極16、絶縁リング20、ヒーターブロック25にも
Oリングシール(図示せず)が用いられ、反応室14内
の真空を保っている。28はOリングが200°C以上
に加熱されないように冷却水を流すための水冷溝であ
る。
Reference numeral 22 is a substrate table on which a substrate 23 is placed. Reference numeral 24 is a heater block for heating the substrate table 22 and the substrate 23, in which a heater and a thermocouple (not shown) are embedded. 25 is a heater block 24
The insulating ring is made of an insulating material (eg, alumina) for reducing heat transfer between the reaction chamber 14 and the reaction chamber 14. Electric power from a low frequency oscillator (400 KHz) is supplied to the substrate table 22 through a matching tuner, a filter, and a low frequency power supply unit 26. Reference numeral 27 is an insulating ring made of alumina, and an O ring is used to keep the reaction chamber 14 in a vacuum.
O-ring seals (not shown) are also used for the electrodes 16, the insulating ring 20, and the heater block 25 to maintain the vacuum inside the reaction chamber 14. Reference numeral 28 is a water cooling groove for flowing cooling water so that the O-ring is not heated above 200 ° C.

【0014】29は電極16と反応室14側壁との放電
が生じないように電極16から約1〜2mmの間隙を保つ
ように設けられた上部側面シールド板であり、接地され
ている。30は基板台22と反応室14側壁との放電が
生じないように基板台22から約1〜2mmの間隙を保つ
ように設けられた下部側面シールド板であり、接地され
ている。
Reference numeral 29 is an upper side shield plate which is provided so as to maintain a gap of about 1 to 2 mm from the electrode 16 so as to prevent discharge between the electrode 16 and the side wall of the reaction chamber 14, and is grounded. Reference numeral 30 denotes a lower side shield plate which is provided so as to maintain a gap of about 1 to 2 mm from the substrate table 22 so as to prevent discharge between the substrate table 22 and the side wall of the reaction chamber 14, and is grounded.

【0015】以上のように構成されたプラズマCVD装
置によりSiN膜を堆積する動作を次に説明する。
The operation of depositing the SiN film by the plasma CVD apparatus configured as described above will be described below.

【0016】基板23をヒーターブロック24にて約3
00°Cに加熱し、反応室14にガス流出孔19からS
iH4 (モノシラン)ガスを20sccm、N2 (窒
素)ガスを100sccm、NH3 (アンモニア)ガス
を60sccm流した状態で、反応室14内を約2to
rrに真空保持する。電極16には13.56MHzの
高周波電力を高周波電力供給部17を通して400W印
加し、電極16と基板台22間でプラズマ放電を起こ
す。また基板台22には400KHzの低周波電力を2
00W印加する。反応室14中の反応ガスとしてのSi
4 ガス、N2 ガス、NH3 ガスはプラズマ中の電子に
よって励起・解離され、基板23上にSiN(シリコン
ナイトライド)膜を堆積する。
The substrate 23 is heated to about 3 by the heater block 24.
After heating to 00 ° C, the reaction chamber 14 is supplied with S from the gas outlet hole 19
In the reaction chamber 14, an iH 4 (monosilane) gas of 20 sccm, an N 2 (nitrogen) gas of 100 sccm, and an NH 3 (ammonia) gas of 60 sccm were flowed to about 2 tons.
Hold vacuum at rr. A high frequency power of 13.56 MHz is applied to the electrode 16 through the high frequency power supply unit 400 at 400 W to cause plasma discharge between the electrode 16 and the substrate table 22. In addition, a low frequency power of 400 KHz is applied to the substrate table 22.
Apply 00W. Si as a reaction gas in the reaction chamber 14
The H 4 gas, N 2 gas, and NH 3 gas are excited and dissociated by the electrons in the plasma, and deposit a SiN (silicon nitride) film on the substrate 23.

【0017】この成膜時に電極16と基板23間の距離
を3〜15mmに連続的に変化してそれぞれの距離で膜堆
積を行った結果、11mm以上ではプラズマ自体電極1
6、基板23間だけでなく、それらを包み込むように広
がったプラズマとなった。また、10mm以下では、電極
16と基板23間にプラズマが閉じ込められたように放
電し、3mm以下では放電しなかった。
During the film formation, the distance between the electrode 16 and the substrate 23 was continuously changed to 3 to 15 mm, and the film was deposited at each distance.
6 and the plasma spread not only between the substrates 23 but also around them. Further, when the thickness was 10 mm or less, the discharge occurred as if plasma was confined between the electrode 16 and the substrate 23, and when the thickness was 3 mm or less, the discharge did not occur.

【0018】また、低周波電力を0Wとして実際の膜堆
積速度を測定すると、10mm以下では6000オングス
トローム/分の膜堆積速度であるのに対し、11mm以上
では約4000オングストローム/分以下の膜堆積速度
となった。このときの距離を変えて堆積した膜の応力を
測定すると、引張応力となり、電極16、基板23間距
離が11mm以上では約1.5×109 dynes/cm2 である
のに対し、10mm以下では約2倍の3×109 dynes/cm
2 となった。
When the actual film deposition rate is measured with low frequency power of 0 W, the film deposition rate is 6000 Å / min when the thickness is 10 mm or less, whereas the film deposition rate is approximately 4000 Å / min or less when the thickness is 11 mm or more. Became. When the stress of the deposited film is measured while changing the distance at this time, it becomes a tensile stress, which is about 1.5 × 10 9 dynes / cm 2 when the distance between the electrode 16 and the substrate 23 is 11 mm or more, whereas it is 10 mm or less. Then doubled 3 × 10 9 dynes / cm
Became 2 .

【0019】これに対し、10mm以下の場合でも基板台
22に低周波電力400KHzを0〜300Wに変化さ
せてそれぞれ膜堆積すると、低周波電力が0〜150W
までは引張応力であるのに対して150Wを越えると圧
縮応力に変化した。これは、低周波ではプラズマ中のイ
オンと電子ともに電場に追従できるため、イオンの基板
22中へのイオン衝撃が加わり緻密な膜が形成されるた
めである。このように低周波電力を印加することによ
り、応力のコントロールをすることができる。すなわ
ち、電極16と基板23間の距離を10mm以下と狭く
し、膜堆積速度を増加しても、低周波電力を印加するこ
とにより応力の小さな膜を得ることができる。
On the other hand, even when the thickness is 10 mm or less, when low frequency power 400 KHz is changed to 0 to 300 W and films are deposited on the substrate table 22, the low frequency power is 0 to 150 W.
Up to 150 W, it changed to compressive stress. This is because both ions and electrons in the plasma can follow the electric field at a low frequency, so that ions are bombarded into the substrate 22 to form a dense film. By applying the low frequency power in this way, the stress can be controlled. That is, even if the distance between the electrode 16 and the substrate 23 is narrowed to 10 mm or less and the film deposition rate is increased, a low stress film can be obtained by applying low frequency power.

【0020】また、低周波電力の周波数を50KHz〜
1000KHzで変化させて応力を測定した場合、80
0KHz以下で顕著な効果が見られた。
Further, the frequency of the low frequency power is from 50 KHz to
When changing the stress at 1000 KHz and measuring the stress, 80
A remarkable effect was observed at 0 KHz or less.

【0021】以上のように、本実施例によれば電極16
と基板台22にそれぞれ1〜2mmの間隙を設けて接地さ
れたシールド板29、30を設け、電極16に高周波電
力(13.56MHz)、基板台22に低周波電力(4
00KHz)を印加し、電極16と基板台22間の距離
を4〜10mmとすることにより、プラズマが電極16と
基板台22の間で閉じ込められて膜堆積速度が増加し、
さらに膜堆積速度が増加してもストレスの小さな良質の
SiN膜を堆積することができる。また、電極16と基
板23間の距離が11mm以上の場合に比べて10mm以下
の場合、反応室14の側壁への膜堆積量が減少する。そ
のため、反応室14の膜堆積物を除去する回数を減らす
ことができ、生産性を向上することができる。
As described above, according to this embodiment, the electrode 16
The shield plates 29 and 30 are provided on the substrate base 22 and the substrate base 22 with a gap of 1 to 2 mm, respectively, and high-frequency power (13.56 MHz) is applied to the electrode 16 and low-frequency power (4.
(00 KHz) and the distance between the electrode 16 and the substrate table 22 is set to 4 to 10 mm, plasma is confined between the electrode 16 and the substrate table 22, and the film deposition rate increases,
Further, it is possible to deposit a good quality SiN film with a small stress even if the film deposition rate is increased. Further, when the distance between the electrode 16 and the substrate 23 is 10 mm or less as compared with the case where the distance is 11 mm or more, the film deposition amount on the side wall of the reaction chamber 14 decreases. Therefore, the number of times the film deposit in the reaction chamber 14 is removed can be reduced, and the productivity can be improved.

【0022】なお、上記実施例においてSiN膜を堆積
する場合について説明したが、本発明は他のプラズマC
VD膜、例えばSiO2 膜等の形成にも応用できる。
Although the case where the SiN film is deposited has been described in the above embodiment, the present invention is not limited to the plasma C.
It can also be applied to the formation of a VD film such as a SiO 2 film.

【0023】また上記実施例において高周波電力は1
3.56MHzとしたが、高周波であれば特にこの周波
数に限定されるものではない。
In the above embodiment, the high frequency power is 1
The frequency is 3.56 MHz, but the frequency is not particularly limited as long as it is a high frequency.

【0024】また上記実施例において、低周波電力は4
00KHzとしたが100KHz〜2MHzの範囲で同
様の効果があり、特に400KHz〜800KHzの範
囲では膜応力低減の効果が大きい。
In the above embodiment, the low frequency power is 4
Although the frequency is set to 00 KHz, the same effect is obtained in the range of 100 KHz to 2 MHz, and particularly the effect of reducing the film stress is large in the range of 400 KHz to 800 KHz.

【0025】[0025]

【発明の効果】本発明によれば、以上のように電極と基
板台共に側面にシールド板を設けたことにより反応室側
壁との放電が起こらず、かつ電極と基板台の間隔を通常
の20mmに対して4〜10mmと狭く設定したことによ
り、プラズマが電極と基板台間で閉じ込められてプラズ
マ密度が増加して基板上への膜堆積速度が増加し、しか
も一般に膜堆積速度が増加すると膜密度が低くなって膜
応力(引張応力)が増大するが、本発明では基板に低周
波電力を供給することによって高周波では追従できなか
ったイオンも追従できて膜へのイオン衝撃が起こり、こ
のイオン衝撃を受けながら膜が堆積することにより膜密
度が増加するとともに膜の応力が引張応力から圧縮応力
へと変化する。従って、膜堆積速度を速くできるととも
に反応室側壁への堆積が少なくなってその除去作業を少
なくできて生産性が向上し、しかも膜密度を増大させて
クラックの原因となる膜応力をコントロールすることが
でき、クラックを生じる恐れのない良質の膜を得ること
ができる。
As described above, according to the present invention, since the shield plates are provided on the side surfaces of both the electrode and the substrate stand, no discharge is generated between the side wall of the reaction chamber and the distance between the electrode and the substrate stand is usually 20 mm. By setting the width as narrow as 4 to 10 mm, the plasma is confined between the electrode and the substrate table, the plasma density is increased, and the film deposition rate on the substrate is increased. Although the density becomes low and the film stress (tensile stress) increases, in the present invention, by supplying low frequency power to the substrate, ions that could not follow at high frequency can also follow up and ion bombardment to the film occurs, and this ion As the film is deposited while receiving an impact, the film density increases and the film stress changes from tensile stress to compressive stress. Therefore, the film deposition rate can be increased and the deposition on the side wall of the reaction chamber can be reduced to reduce the removal work to improve the productivity, and also to increase the film density to control the film stress that causes cracks. It is possible to obtain a high-quality film that is free from cracks.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるプラズマCVD装置
の断面図である。
FIG. 1 is a sectional view of a plasma CVD apparatus according to an embodiment of the present invention.

【図2】従来例のプラズマCVD装置の断面図である。FIG. 2 is a cross-sectional view of a conventional plasma CVD apparatus.

【符号の説明】[Explanation of symbols]

14 反応室 15 真空排気口 16 電極 17 高周波電力供給部 18 反応ガス導入管 22 基板台 23 基板 24 ヒータブロック 26 低周波電力供給部 29 上部側面シールド板 30 下部側面シールド板 14 Reaction Chamber 15 Vacuum Evacuation Port 16 Electrode 17 High Frequency Power Supply Section 18 Reactive Gas Introducing Tube 22 Substrate Stand 23 Substrate 24 Heater Block 26 Low Frequency Power Supply Section 29 Upper Side Shield Plate 30 Lower Side Shield Plate

フロントページの続き (72)発明者 山田 雄一郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continuation (72) Inventor Yuichiro Yamada 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 反応ガス導入口と真空排気口を有する反
応室と、反応室内で基板を載置する基板台と、基板台を
加熱するヒーターブロックと、基板台に低周波電力を供
給する手段と、基板台側面に間隙を設けて配設されかつ
接地された下部側面シールド板と、基板台に対して4〜
10mmの間隔を設けて対向配置されかつ高周波電力が供
給される高周波電極と、高周波電極の側面に間隙を設け
て配設されかつ接地された上部側面シールド板とから成
ることを特徴とするプラズマCVD装置。
1. A reaction chamber having a reaction gas introduction port and a vacuum exhaust port, a substrate stage on which a substrate is placed, a heater block for heating the substrate stage, and means for supplying low-frequency power to the substrate stage. And a lower side shield plate which is disposed on the side surface of the substrate table with a gap and is grounded, and 4 to the substrate table.
Plasma CVD characterized by comprising high-frequency electrodes which are opposed to each other with a space of 10 mm and to which high-frequency power is supplied, and an upper side shield plate which is arranged with a gap on the side surface of the high-frequency electrode and is grounded. apparatus.
【請求項2】 基板台と下部側面シールド板の間隙及び
高周波電極と上部側面シールド板の間隙が約1〜2mmで
あることを特徴とする請求項1記載のプラズマCVD装
置。
2. The plasma CVD apparatus according to claim 1, wherein a gap between the substrate table and the lower side shield plate and a gap between the high frequency electrode and the upper side shield plate are about 1 to 2 mm.
JP4120396A 1992-05-13 1992-05-13 Plasma cvd apparatus Pending JPH05315268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4120396A JPH05315268A (en) 1992-05-13 1992-05-13 Plasma cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4120396A JPH05315268A (en) 1992-05-13 1992-05-13 Plasma cvd apparatus

Publications (1)

Publication Number Publication Date
JPH05315268A true JPH05315268A (en) 1993-11-26

Family

ID=14785176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4120396A Pending JPH05315268A (en) 1992-05-13 1992-05-13 Plasma cvd apparatus

Country Status (1)

Country Link
JP (1) JPH05315268A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06291044A (en) * 1993-01-28 1994-10-18 Applied Materials Inc Piling of amorphous silicon thin film at high piling speed on glass substrate of large area by cvd
JPH06333849A (en) * 1993-05-19 1994-12-02 Tokyo Electron Ltd Plasma processing device
JPH0897199A (en) * 1994-09-22 1996-04-12 Toshiba Corp Forming method for insulating film
JPH08148486A (en) * 1994-11-24 1996-06-07 Tokyo Electron Ltd Plasma treatment device
JPH0955376A (en) * 1995-08-15 1997-02-25 Sony Corp Plasma cvd method
JPH09199495A (en) * 1995-12-29 1997-07-31 Hyundai Electron Ind Co Ltd Sog film forming method of semiconductor device
JP2001035845A (en) * 1999-07-21 2001-02-09 Nec Corp Manufacturing method of semiconductor device and plasma insulating film forming device which is used for that
JP2004285388A (en) * 2003-03-20 2004-10-14 Konica Minolta Holdings Inc Thin film deposition apparatus
JP2006517343A (en) * 2003-01-17 2006-07-20 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド MOSFET device having tensile strained substrate and method of making the same
JP2013538284A (en) * 2010-07-02 2013-10-10 アプライド マテリアルズ インコーポレイテッド Deposition apparatus and method for reducing deposition asymmetry
JP2015012021A (en) * 2013-06-26 2015-01-19 東京エレクトロン株式会社 Deposition method, storage medium and deposition device
JP2017197789A (en) * 2016-04-25 2017-11-02 Sppテクノロジーズ株式会社 Method for manufacturing silicon oxide film and silicon oxide film

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06291044A (en) * 1993-01-28 1994-10-18 Applied Materials Inc Piling of amorphous silicon thin film at high piling speed on glass substrate of large area by cvd
JPH06333849A (en) * 1993-05-19 1994-12-02 Tokyo Electron Ltd Plasma processing device
JPH0897199A (en) * 1994-09-22 1996-04-12 Toshiba Corp Forming method for insulating film
JPH08148486A (en) * 1994-11-24 1996-06-07 Tokyo Electron Ltd Plasma treatment device
JPH0955376A (en) * 1995-08-15 1997-02-25 Sony Corp Plasma cvd method
JPH09199495A (en) * 1995-12-29 1997-07-31 Hyundai Electron Ind Co Ltd Sog film forming method of semiconductor device
JP2001035845A (en) * 1999-07-21 2001-02-09 Nec Corp Manufacturing method of semiconductor device and plasma insulating film forming device which is used for that
JP2006517343A (en) * 2003-01-17 2006-07-20 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド MOSFET device having tensile strained substrate and method of making the same
JP2004285388A (en) * 2003-03-20 2004-10-14 Konica Minolta Holdings Inc Thin film deposition apparatus
JP2013538284A (en) * 2010-07-02 2013-10-10 アプライド マテリアルズ インコーポレイテッド Deposition apparatus and method for reducing deposition asymmetry
US9580796B2 (en) 2010-07-02 2017-02-28 Applied Materials, Inc. Deposition apparatus and methods to reduce deposition asymmetry
JP2015012021A (en) * 2013-06-26 2015-01-19 東京エレクトロン株式会社 Deposition method, storage medium and deposition device
JP2017197789A (en) * 2016-04-25 2017-11-02 Sppテクノロジーズ株式会社 Method for manufacturing silicon oxide film and silicon oxide film

Similar Documents

Publication Publication Date Title
US6024044A (en) Dual frequency excitation of plasma for film deposition
JPH05315268A (en) Plasma cvd apparatus
JP3174438B2 (en) Plasma CVD method
US6767829B2 (en) Plasma deposition method and system
JPH02281734A (en) Treating method of surface by plasma
JPH0766186A (en) Anisotropic depositing method of dielectric
JP3286951B2 (en) Plasma CVD film forming method and apparatus
JPH0456770A (en) Method for cleaning plasma cvd device
JPH0570957A (en) Plasma vapor phase growth device
JP3400909B2 (en) Plasma processing method and apparatus
JPH0776781A (en) Plasma vapor growth device
JP2848755B2 (en) Plasma CVD equipment
JP3224469B2 (en) Thin film formation method and apparatus
JPH0639709B2 (en) Plasma CVD equipment
JP3259453B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JP3259452B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JPH07106197A (en) Manufacture of capacitor for thin-film circuit
JPH0892746A (en) Plasma chemical vapor deposition and device therefor
JPH02281730A (en) Plasma etching method
JPH0250969A (en) Thin film forming device
JP2630089B2 (en) Microwave plasma processing equipment
JPH03224222A (en) Film formation
JPH10256243A (en) Thin film, formation and apparatus therefor
JP2000082699A (en) Etching processing apparatus
JP2002208583A (en) Plasma treating method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040510

A131 Notification of reasons for refusal

Effective date: 20050118

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050517