JPH05312761A - Biosensor and its manufacture - Google Patents

Biosensor and its manufacture

Info

Publication number
JPH05312761A
JPH05312761A JP4146336A JP14633692A JPH05312761A JP H05312761 A JPH05312761 A JP H05312761A JP 4146336 A JP4146336 A JP 4146336A JP 14633692 A JP14633692 A JP 14633692A JP H05312761 A JPH05312761 A JP H05312761A
Authority
JP
Japan
Prior art keywords
measured
working electrode
layer
substance
biosensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4146336A
Other languages
Japanese (ja)
Other versions
JP3063393B2 (en
Inventor
Yukihiro Fukuda
幸弘 福田
Hiroyuki Tsuboi
宏之 坪井
Toshio Oguro
利雄 小黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP4146336A priority Critical patent/JP3063393B2/en
Publication of JPH05312761A publication Critical patent/JPH05312761A/en
Application granted granted Critical
Publication of JP3063393B2 publication Critical patent/JP3063393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To obtain a biosensor wherein the responsiveness of a measuring operation in a solution under test can be measured in a short time and to obtain its manufacturing method. CONSTITUTION:A discrimination layer 7 which has carried and held a biological substance is formed in such a way that it is deposited on a partitioned space at the bottom part of a measuring chamber 21. As a result, it can be formed in a prescribed thickness having a small irregularity and in a wide surface area. Since the irregularity in the thickness of the discrimination layer 7 can be reduced, an action pole 5 and a counter pole 15 can be formed at a narrow interval without bringing the discrimination layer 7 into contact with the counter pole 15 when an insulating layer 11 is interposed between the action pole 5 and the counter pole 15 so as to ensure a prescribed distance. Thereby, the line of electric force of an electric double layer which is formed between the action pole 5 and the counter pole 15 can be made short. As a result, a noise current which flows at the early stage of a measuring operation can be converged in a short time, and the measuring time of a substance under test can be shortened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被測定溶液中の被測定
物質と生体物質との生物化学反応による電気変化量を測
定することにより被測定物質を測定するバイオセンサ及
びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biosensor for measuring a substance to be measured by measuring an amount of electrical change due to a biochemical reaction between the substance to be measured in a solution to be measured and a biological substance, and a method for producing the biosensor. Is.

【0002】[0002]

【従来の技術】従来、この種のバイオセンサとして、例
えば、特開昭61−50262号公報に示す平板型のバ
イオセンサが知られている。すなわち、図4に示すよう
に、平板型のバイオセンサ100は、セラミックス基板
101と、このセラミックス基板101上に形成された
作用極103及び対極105と、上記作用極103と対
極105との間を絶縁する絶縁層108と、上記作用極
103上に、酵素などの生体物質を担持したゲル状物質
を塗布形成した識別層107と、上記作用極103及び
対極105の端子部109,111にそれぞれ接続さ
れ、その間の電流値を測定する電気測定部(図示省略)
とを備えており、上記識別層107側が感応部113と
なっている。
2. Description of the Related Art Conventionally, as this type of biosensor, for example, a flat plate type biosensor disclosed in JP-A-61-50262 is known. That is, as shown in FIG. 4, the flat plate type biosensor 100 includes a ceramic substrate 101, a working electrode 103 and a counter electrode 105 formed on the ceramic substrate 101, and a space between the working electrode 103 and the counter electrode 105. An insulating layer 108 for insulation, an identification layer 107 formed by coating a gel-like substance carrying a biological substance such as an enzyme on the working electrode 103, and the terminal portions 109 and 111 of the working electrode 103 and the counter electrode 105, respectively. An electric measuring unit (not shown) that measures the current value between them
And the identification layer 107 side is the sensitive portion 113.

【0003】このバイオセンサ100を用いて被測定溶
液を測定するには、感応部113を被測定溶液に浸漬さ
せる。これにより、識別層107に担持した生体物質が
被測定溶液に含まれている被測定物質と生物化学反応
し、酸素または過酸化水素を発生する。この酸素等の発
生による酸化還元に伴う電流を電気測定部で測定するこ
とにより、被測定物質が測定される。
To measure a solution to be measured using this biosensor 100, the sensitive part 113 is immersed in the solution to be measured. As a result, the biological substance carried on the discrimination layer 107 undergoes a biochemical reaction with the substance to be measured contained in the solution to be measured to generate oxygen or hydrogen peroxide. The substance to be measured is measured by measuring the electric current associated with the redox caused by the generation of oxygen and the like in the electrical measuring section.

【0004】[0004]

【発明が解決しようとする課題】こうしたバイオセンサ
100では、使用上、被測定溶液をできるだけ短時間で
測定できることが要請されている。しかし、従来のバイ
オセンサ100では、以下の理由により短時間での測定
が困難である。すなわち、上記バイオセンサ100で測
定した際の電流値と時間との関係を図5に示す。図5に
おいて、破線は初期電流値Aを示し、1点鎖線は実測電
流値Bを示し、実線は測定電流値Cを示す。
In use of such a biosensor 100, it is required that the solution to be measured can be measured in the shortest possible time. However, the conventional biosensor 100 is difficult to measure in a short time because of the following reasons. That is, FIG. 5 shows the relationship between the current value and time when measured by the biosensor 100. In FIG. 5, the broken line indicates the initial current value A, the alternate long and short dash line indicates the measured current value B, and the solid line indicates the measured current value C.

【0005】ここで、初期電流値Aは、作用極103と
対極105に、被測定物質を含まない緩衝液を浸したと
きの電流値である。この初期電流は、乾燥した状態の作
用極103及び対極105に緩衝液を浸すと、作用極1
03と対極105との間に電気二重層が形成され、この
電気二重層を解消するように流れる電流である。この初
期電流が収束するまでに要する時間t1 は、作用極10
3と対極105との間隔に比例して大きくなる。また、
実測電流値Bは、初期電流値Aが収束した状態から、緩
衝液中に被測定物質を添加したときに、被測定物質と生
体物質との生物化学反応に基づいて流れる電流値であ
る。つまり、実測電流値Bは、生物化学反応だけに伴う
電流値であり、反応が飽和すると、所定値に収束する。
さらに、測定電流値Cは、緩衝液に被測定物質を溶解す
ることにより調製した被測定溶液を用いて、この被測定
溶液にバイオセンサの感応部113を浸漬したときの電
流値であり、初期電流値Aと実測電流値Bの合計値であ
る。
Here, the initial current value A is a current value when the working electrode 103 and the counter electrode 105 are immersed in a buffer solution containing no substance to be measured. When the buffer solution is immersed in the dry working electrode 103 and the counter electrode 105, this initial current is applied to the working electrode 1
An electric double layer is formed between the electrode 03 and the counter electrode 105, and the electric current flows so as to cancel the electric double layer. The time t1 required for the initial current to converge is the working electrode 10
3 increases in proportion to the distance between the counter electrode 105 and the counter electrode 105. Also,
The measured current value B is a current value that flows based on the biochemical reaction between the substance to be measured and the biological substance when the substance to be measured is added to the buffer solution from the state where the initial current value A has converged. That is, the actually measured current value B is a current value accompanying only the biochemical reaction, and when the reaction is saturated, it converges to a predetermined value.
Further, the measured current value C is a current value when a sensitive solution 113 of the biosensor is immersed in a solution to be measured prepared by dissolving a material to be measured in a buffer solution, It is the sum of the current value A and the measured current value B.

【0006】ところで、例えば、尿中に含まれているグ
ルコース等を上記バイオセンサ100で測定するには、
上記測定電流値Cを用いる必要がある。この測定電流値
Cは、初期電流値Aを含んでおり、その初期電流値Aが
大きい間(時点t0 〜時点t1 )は、測定不能であり、
初期電流値Aが収束してからしか測定できない。こうし
た初期電流値Aが収束するまでの時間t1 は、作用極1
03と対極105において形成される電気二重層間の電
気力線の長さを短くすることにより減少させることがで
きる。この電気二重層間の電気力線の長さを短くするた
めには、作用極103と対極との間隔を短くすればよ
い。
By the way, for example, in order to measure glucose and the like contained in urine with the biosensor 100,
It is necessary to use the above measured current value C. The measured current value C includes the initial current value A, and the measurement is impossible while the initial current value A is large (time point t0 to time point t1).
It can be measured only after the initial current value A converges. The time t1 until the initial current value A converges is the working electrode 1
This can be reduced by shortening the length of the line of electric force between the electric double layers formed at 03 and the counter electrode 105. In order to shorten the length of the lines of electric force between the electric double layers, the distance between the working electrode 103 and the counter electrode may be shortened.

【0007】しかし、上記平板型のバイオセンサ100
では、作用極103上に生体物質を担持したゾル状物質
を塗布形成により識別層107を形成しているが、作用
極103と対極105との距離を小さくすると、作用極
103だけに識別層107を形成することができず、対
極105にまでゾル状物質が塗布されて測定不能とな
る。このため、作用極103と対極105との間隔は、
20μmより短くすることができず、測定時間は、30
秒以上を要している。
However, the flat plate type biosensor 100 described above is used.
In the above, the identification layer 107 is formed by coating and forming a sol-like substance carrying a biological material on the working electrode 103. However, when the distance between the working electrode 103 and the counter electrode 105 is reduced, the identification layer 107 is formed only on the working electrode 103. Cannot be formed, and the sol-like substance is applied even to the counter electrode 105, making measurement impossible. Therefore, the distance between the working electrode 103 and the counter electrode 105 is
It cannot be shorter than 20 μm and the measurement time is 30
It takes more than a second.

【0008】本発明は、上記従来の技術を解決すること
を課題とし、被測定溶液中の被測定応答性を短時間で測
定することができるバイオセンサ及びその製造方法を提
供することを目的とする。
An object of the present invention is to solve the above-mentioned conventional techniques, and an object thereof is to provide a biosensor capable of measuring the response to be measured in a solution to be measured in a short time, and a manufacturing method thereof. To do.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
になされた請求項1の発明は、被測定溶液中の被測定物
質と生体物質との生物化学反応に伴う電気変化量を測定
することにより被測定物質を測定するバイオセンサにお
いて、絶縁性基板と、絶縁性基板上に積層された作用極
と、上記生体物質を担持し、かつ上記作用極上に積層さ
れた識別層と、この識別層を除く上記絶縁性基板上に積
層された絶縁層と、この絶縁層上に積層され、上記作用
極との間における電気変化量を測定するための対極と、
上記被測定溶液を貯留し、かつ貯留した被測定溶液を上
記識別層及び対極に浸すように上記絶縁層の一部を除去
形成した測定室とを備えたことを特徴とする。
In order to solve the above-mentioned problems, the invention of claim 1 is to measure the amount of electrical change due to the biochemical reaction between the substance to be measured and the biological substance in the solution to be measured. In a biosensor for measuring a substance to be measured by, an insulating substrate, a working electrode laminated on the insulating substrate, an identification layer carrying the biological material, and laminated on the working electrode, and this identification layer An insulating layer laminated on the insulating substrate except for, a counter electrode laminated on the insulating layer, for measuring the amount of electrical change between the working electrode,
A measurement chamber for storing the solution to be measured and for removing a part of the insulating layer so as to immerse the stored solution to be measured in the discrimination layer and the counter electrode.

【0010】また、請求項2の発明は、被測定溶液中の
被測定物質と生体物質との生物化学反応に伴う電気変化
量を測定することにより被測定物質を測定するバイオセ
ンサの製造方法において、絶縁性基板を形成する工程
と、絶縁性基板上に作用極を積層する工程と、絶縁基板
及び作用極上に絶縁層を形成する工程と、絶縁層上に、
上記作用極との間における電気変化量を測定するための
対極を形成する工程と、上記被測定溶液を貯留し、かつ
作用極を露出させるように絶縁層の一部を除去して測定
室を形成する工程と、測定室内にて露出された作用極上
に、生体物質を担持した識別層を堆積する工程と、を備
えたことを特徴とする。
Further, the invention of claim 2 is a method for manufacturing a biosensor for measuring a substance to be measured by measuring an amount of electrical change accompanying a biochemical reaction between the substance to be measured in a solution to be measured and a biological substance. , A step of forming an insulating substrate, a step of laminating a working electrode on the insulating substrate, a step of forming an insulating layer on the insulating substrate and the working electrode, and on the insulating layer,
A step of forming a counter electrode for measuring the amount of electrical change between the working electrode and the measurement chamber for storing the solution to be measured, and removing a part of the insulating layer so as to expose the working electrode. The method is characterized by including a step of forming and a step of depositing an identification layer carrying a biological substance on the working electrode exposed in the measurement chamber.

【0011】[0011]

【作用】請求項1の発明では、測定室に被測定溶液を満
たすと、測定室の底部の識別層が被測定溶液に浸され
る。被測定溶液中の被測定物質は、識別層に担持された
生体物質と反応して、酸素または過酸化水素等を発生す
る。酸素等の発生により作用極上で酸化還元反応が生じ
て、作用極と対極との間に電流が流れる。この電流に基
づいて被測定溶液中の被測定物質が測定される。
In the invention of claim 1, when the measurement chamber is filled with the solution to be measured, the discrimination layer at the bottom of the measurement chamber is immersed in the solution to be measured. The substance to be measured in the solution to be measured reacts with the biological substance carried on the discrimination layer to generate oxygen or hydrogen peroxide. The generation of oxygen or the like causes an oxidation-reduction reaction on the working electrode, and a current flows between the working electrode and the counter electrode. The substance to be measured in the solution to be measured is measured based on this current.

【0012】また、本発明では、測定室の底部に設けら
れた作用極上に識別層が積層されている。この識別層
は、測定室の底部の区画されたスペースに堆積されるよ
うに形成されているので、変動の少ない所定厚さで、か
つ広い表面積で形成することができる。このように識別
層の厚さの変動を少なくできるので、作用極と対極と間
に絶縁層を介在させて所定距離確保しておけば、識別層
を対極に接触させることなく、作用極と対極とを狭い間
隔で形成することができる。したがって、作用極と対極
との距離を短くできるから、両極において形成される電
気二重層間の電気力線の長さを短くすることができる。
その結果、初期電流を短時間に収束させることができ、
被測定物質の測定時間を短縮することができる。さら
に、本発明では、測定室内に被測定溶液を満たして測定
しているので、測定室内から被測定溶液が流出すること
がなく、少ない被測定溶液の量で正確に測定することが
できる。
Further, in the present invention, the identification layer is laminated on the working electrode provided at the bottom of the measurement chamber. Since the identification layer is formed so as to be deposited in the partitioned space at the bottom of the measurement chamber, it can be formed to have a predetermined thickness with little fluctuation and a large surface area. In this way, it is possible to reduce the variation in the thickness of the identification layer.Therefore, if an insulating layer is interposed between the working electrode and the counter electrode and a certain distance is secured, the working layer and the counter electrode do not come into contact with the identification layer. And can be formed at narrow intervals. Therefore, since the distance between the working electrode and the counter electrode can be shortened, the length of the electric force line between the electric double layers formed in both electrodes can be shortened.
As a result, the initial current can be converged in a short time,
The measurement time of the substance to be measured can be shortened. Further, in the present invention, since the measurement chamber is filled with the measurement target solution for measurement, the measurement target solution does not flow out from the measurement chamber, and the measurement can be accurately performed with a small amount of the measurement target solution.

【0013】また、請求項2の本発明によれば、絶縁性
基板及び絶縁層を積層し、作用極を露出させるように絶
縁層の一部を削除することにより測定室を形成してお
り、こうした簡単な工程にて好適に請求項1の構成を実
現することができる。
According to the second aspect of the present invention, the measuring chamber is formed by laminating the insulating substrate and the insulating layer and removing a part of the insulating layer so as to expose the working electrode. The configuration of claim 1 can be preferably realized by such simple steps.

【0014】[0014]

【実施例】以上説明した本発明の構成・作用を一層明ら
かにするために、以下本発明の好適な実施例について説
明する。
Preferred embodiments of the present invention will be described below in order to further clarify the constitution and operation of the present invention described above.

【0015】図1はバイオセンサの感応部の平面図を示
し、図2は図1のII−II線に沿った断面図である。
バイオセンサの感応部1は、絶縁性基板3と、上記絶縁
性基板3上に形成された作用極5と、上記生体物質を担
持し、上記作用極5上に積層された識別層7と、絶縁性
基板3上に形成され、かつ窓部9を有する絶縁層11
と、絶縁層11に形成され、開口13を有する対極15
とを備えている。
FIG. 1 is a plan view of the sensitive portion of the biosensor, and FIG. 2 is a sectional view taken along line II-II of FIG.
The sensitive portion 1 of the biosensor includes an insulating substrate 3, a working electrode 5 formed on the insulating substrate 3, an identification layer 7 supporting the biological material and laminated on the working electrode 5. Insulating layer 11 formed on insulating substrate 3 and having window 9
And a counter electrode 15 formed in the insulating layer 11 and having an opening 13.
It has and.

【0016】上記窓部9の側壁9a及び識別層7の上面
にて形成されるスペースは、被測定溶液を貯留して上記
識別層7に浸すための測定室21となっている。
The space formed on the side wall 9a of the window 9 and the upper surface of the discrimination layer 7 is a measurement chamber 21 for storing the solution to be measured and immersing it in the discrimination layer 7.

【0017】上記識別層7は、被測定溶液中の被測定物
質と生物化学反応する生体物質をゲル状物質で担持して
形成した層であり、例えば、グルコースオキシターゼを
セルロースでゾル化した物質を乾燥固化した層である。
また、上記作用極5及び対極15は、測定室21の上下
方向にて設置した検出部5a,15aと、結線用の端子
部5b,15bと、検出部5a,15aと端子部5b,
15bとをそれぞれ接続する配線部5c,15cとから
形成されている。上記作用極5及び上記対極15の端子
部5b,15bには、電気測定部(図示省略)がぞれぞ
れ接続されており、この電気測定部にて端子部5b,1
5bの間に流れる電流値を求めて被測定物質の測定結果
を求める。
The discriminating layer 7 is a layer formed by supporting a gel-like substance on a biological substance that biochemically reacts with the substance to be measured in the solution to be measured. For example, a substance obtained by sol- zing glucose oxidase with cellulose is used. It is a dried and solidified layer.
Further, the working electrode 5 and the counter electrode 15 are the detection units 5a and 15a installed in the vertical direction of the measurement chamber 21, the connection terminal units 5b and 15b, the detection units 5a and 15a and the terminal unit 5b, respectively.
It is formed of wiring portions 5c and 15c which respectively connect to 15b. An electric measurement unit (not shown) is connected to the terminal portions 5b and 15b of the working electrode 5 and the counter electrode 15, respectively, and the terminal portions 5b and 1b are connected to the electric measurement unit.
The value of the current flowing between 5b is obtained to obtain the measurement result of the substance to be measured.

【0018】次に上記バイオセンサを用いた測定法を説
明する。バイオセンサの感応部1を被測定溶液中に浸漬
し、この状態で作用極5と対極15との間に一定電圧を
印加する。被測定溶液中の被測定物質は、識別層7の生
体物質の作用により生物化学反応を行なう。この反応に
伴って電流が流れ、この電流に基づいて被測定物質を測
定することができる。
Next, a measuring method using the above biosensor will be described. The sensitive part 1 of the biosensor is immersed in the solution to be measured, and a constant voltage is applied between the working electrode 5 and the counter electrode 15 in this state. The substance to be measured in the solution to be measured undergoes a biochemical reaction by the action of the biological substance of the discrimination layer 7. A current flows along with this reaction, and the substance to be measured can be measured based on this current.

【0019】次に上記バイオセンサの製造工程について
説明する。 (1) 絶縁性基板3の製造工程(図3(A)) まず、絶縁性基板3を形成する。この絶縁性基板3の形
成工程として、ガラスや樹脂またはそれらの複合材料か
らなる板材を切り出すか、あるいはセラミックスのグリ
ーンシートを焼成する方法を採用することができる。
Next, the manufacturing process of the biosensor will be described. (1) Manufacturing process of insulating substrate 3 (FIG. 3A) First, the insulating substrate 3 is formed. As the step of forming the insulating substrate 3, a method of cutting out a plate material made of glass, resin, or a composite material thereof, or firing a ceramic green sheet can be adopted.

【0020】(2) 作用極5の形成工程(図3
(B)) 絶縁性基板3上に作用極5を形成する。作用極5の形成
工程として、周知の厚膜印刷法、蒸着法、スパッタリン
グ法等を採用することができる。作用極5の材料として
は、金、白金、パラジウム、銀、チタン等及びそれらの
合金を用いることができる。
(2) Step of forming working electrode 5 (see FIG. 3)
(B)) The working electrode 5 is formed on the insulating substrate 3. As a process of forming the working electrode 5, a known thick film printing method, vapor deposition method, sputtering method or the like can be adopted. As the material of the working electrode 5, gold, platinum, palladium, silver, titanium and the like and alloys thereof can be used.

【0021】(3) 絶縁層11の形成工程(図3
(C)) 絶縁性基板3及び作用極5上に絶縁層11を積層する。
絶縁層11の形成工程として、絶縁材料からなる板材を
形成し、これを接着することにより形成する方法、溶融
樹脂を所定厚さだけ塗布して層を形成する方法、蒸着法
にて絶縁材料を所定厚さ堆積させて形成する方法等を採
用することができる。絶縁層11の材料としては、例え
ばガラス、セラミックスまたは樹脂、あるいはこれらの
複合材料を用いることができる。
(3) Step of forming insulating layer 11 (FIG. 3)
(C)) An insulating layer 11 is laminated on the insulating substrate 3 and the working electrode 5.
As the step of forming the insulating layer 11, a method of forming a plate material made of an insulating material and adhering it, a method of applying a molten resin to a predetermined thickness to form a layer, and an insulating material by an evaporation method are used. It is possible to employ a method of depositing a predetermined thickness and forming the same. As the material of the insulating layer 11, for example, glass, ceramics, resin, or a composite material thereof can be used.

【0022】(4) 対極15の形成工程(図3
(D)) 絶縁層11上に対極15を形成する。対極15の形成工
程として、作用極5と同様な方法、つまり、厚膜印刷
法、スパッタリング、蒸着法等を採用することができ
る。対極15の開口13は、図1のように正方形のほか
に、円形、多角形、スリット状、または格子状に形成し
てもよい。対極15の材料としては、金、白金、パラジ
ウム、銅、鉄、銀、チタン、アルミニウム、亜鉛、ニッ
ケル、スズ、及びそれらの合金を用いることができる。
(4) Step of forming the counter electrode 15 (FIG. 3)
(D)) The counter electrode 15 is formed on the insulating layer 11. As the step of forming the counter electrode 15, the same method as the working electrode 5, that is, the thick film printing method, the sputtering method, the vapor deposition method, or the like can be adopted. The opening 13 of the counter electrode 15 may be formed in a circular shape, a polygonal shape, a slit shape, or a lattice shape other than the square shape as shown in FIG. As the material of the counter electrode 15, gold, platinum, palladium, copper, iron, silver, titanium, aluminum, zinc, nickel, tin, and alloys thereof can be used.

【0023】(5) 測定室21の形成工程(図3
(E)) 対極15の開口13を通じて、作用極5を露出させるよ
うに絶縁層11の一部を除去することにより測定室21
を形成する。測定室21の形成工程として、例えば、フ
ォトレジスト法によりマスクを形成し、エッチング等に
より形成する方法を採用することができる。なお、測定
室21の形成工程として、窓部9を有する絶縁層11を
形成し、これを絶縁性基板3に積層することにより、上
記窓部9が測定室21となる方法を採用してもよい。
(5) Step of forming the measuring chamber 21 (see FIG. 3)
(E)) A part of the insulating layer 11 is removed through the opening 13 of the counter electrode 15 so as to expose the working electrode 5, and thus the measurement chamber 21
To form. As a process of forming the measurement chamber 21, for example, a method of forming a mask by a photoresist method and forming it by etching or the like can be adopted. Note that, as a process of forming the measurement chamber 21, a method may be adopted in which the window 9 becomes the measurement chamber 21 by forming the insulating layer 11 having the window 9 and stacking the insulating layer 11 on the insulating substrate 3. Good.

【0024】また、図2に示すように、測定室21の側
壁9aは、開口部13より奥側へ向かって広がる形状、
つまり、対極15の開口部13の周縁部がオーバーハン
グするように絶縁層11をエッチングすることが望まし
い。この場合において、開口部13の周縁部から側壁9
aまでの距離Lは、絶縁層11によって対極15を支持
でき、かつ対極15が測定室21を介して作用極5と対
向できる範囲内であればできるだけ長いほうがよい。こ
れは、対極15と作用極5とが平行に対向する測定室2
1の領域が広くなり、しかも、対極15と作用極5にお
いて形成される電気二重層間の電気力線が対極15及び
作用極5各々の面に垂直で、かつ短く形成することがで
き、よって、初期電流値Aが収束するまでの時間t1
(図5参照)を短くすることができるからである。
Further, as shown in FIG. 2, the side wall 9a of the measuring chamber 21 has a shape that widens from the opening 13 toward the inner side.
That is, it is desirable to etch the insulating layer 11 so that the peripheral edge of the opening 13 of the counter electrode 15 overhangs. In this case, from the peripheral edge of the opening 13 to the side wall 9
The distance L to a is preferably as long as possible within a range in which the counter electrode 15 can be supported by the insulating layer 11 and the counter electrode 15 can face the working electrode 5 via the measurement chamber 21. This is the measurement chamber 2 in which the counter electrode 15 and the working electrode 5 face each other in parallel.
The region of 1 is widened, and the lines of electric force between the electric double layers formed in the counter electrode 15 and the working electrode 5 can be formed perpendicularly to the respective surfaces of the counter electrode 15 and the working electrode 5 and can be made short. , Time t1 until the initial current value A converges
This is because (see FIG. 5) can be shortened.

【0025】(6) 識別層7の形成工程 測定室21を形成した後に、作用極5上に識別層7を形
成する。識別層7には、被測定物質と生物化学反応し
て、酸素または過酸化水素等を発生する生体物質を担持
させる。識別層7に生体物質を担持させる工程として、
周知の方法を適用することができ、例えば、生体物質を
高分子マトリックス中に包括させる包括法、生物物質と
共有結合する物質を用いて固定化する共有結合法、不溶
性の膜に生体物質を吸着させる吸着法等を採用すること
ができる。ここでは、識別層7は、測定室21の底に形
成されるので、生体物質を担持したゾル状高分子体を形
成し、このゾル状高分子体を作用極5の検出部5aに摘
下することにより好適に形成できる。生体物質として
は、各種の酵素のほかに、微生物等を用いることがで
き、これに対応した被測定物質を測定することができ
る。
(6) Step of forming discrimination layer 7 After the measurement chamber 21 is formed, the discrimination layer 7 is formed on the working electrode 5. The identification layer 7 is loaded with a biological substance that biochemically reacts with the substance to be measured to generate oxygen or hydrogen peroxide. As a step of supporting the biological material on the identification layer 7,
Well-known methods can be applied, for example, encapsulation method of encapsulating a biological substance in a polymer matrix, covalent binding method of immobilizing a biological substance by using a substance that covalently binds, adsorption of the biological substance on an insoluble membrane. An adsorption method or the like can be adopted. Here, since the identification layer 7 is formed on the bottom of the measurement chamber 21, a sol-like polymer body carrying a biological substance is formed, and the sol-like polymer body is cut down on the detection part 5a of the working electrode 5. By doing so, it can be suitably formed. As the biological substance, in addition to various enzymes, microorganisms and the like can be used, and the substance to be measured corresponding thereto can be measured.

【0026】上記実施例において、測定室21の底部に
設けられた作用極5上に識別層7が積層されている。こ
の識別層7は、測定室21の底部の区画されたスペース
に堆積されるように形成されているので、変動の少ない
所定厚さで、かつ広い表面積で形成することができる。
このように識別層7の厚さの変動を少なくできるので、
作用極5と対極15と間に絶縁層11を介在させて所定
距離確保しておけば、識別層7を対極15に接触させる
ことなく、作用極5と対極15を狭い間隔で形成するこ
とができる。したがって、作用極5と対極15との距離
を狭くすることができるから、両極間の電気抵抗を小さ
くすることができ、しかも、作用極5の面積に対する両
極間の距離の比が小さくすることができるから、等電位
面が作用極に平行に形成され、両極間に形成される電気
二重層間の電気力線を短くすることができる。その結
果、初期電流を短時間に収束させることができ、被測定
物質の測定時間を短縮することができる。
In the above embodiment, the identification layer 7 is laminated on the working electrode 5 provided at the bottom of the measuring chamber 21. Since the identification layer 7 is formed so as to be deposited in the partitioned space at the bottom of the measurement chamber 21, it can be formed to have a predetermined thickness with little fluctuation and a large surface area.
In this way, since the variation in the thickness of the identification layer 7 can be reduced,
If the insulating layer 11 is interposed between the working electrode 5 and the counter electrode 15 and a predetermined distance is secured, the working electrode 5 and the counter electrode 15 can be formed at a narrow interval without bringing the identification layer 7 into contact with the counter electrode 15. it can. Therefore, since the distance between the working electrode 5 and the counter electrode 15 can be narrowed, the electric resistance between the two electrodes can be reduced, and the ratio of the distance between the two electrodes to the area of the working electrode 5 can be reduced. Therefore, the equipotential surface is formed parallel to the working electrode, and the lines of electric force between the electric double layers formed between the two electrodes can be shortened. As a result, the initial current can be converged in a short time, and the measurement time of the substance to be measured can be shortened.

【0027】また、上述したように初期電流が収束する
までの時間が短くなると、一定時間後の初期電流値が小
さくなり、実際の反応に伴う電流値に対するS/N比が
向上するので、正確な測定ができるという効果もある。
さらに、実施例では、測定室21内に被測定溶液を満た
して測定しているので、測定室21内に満たされた少な
い被測定溶液だけで正確に測定することができる。
Further, as described above, when the time until the initial current converges is shortened, the initial current value after a fixed time becomes small, and the S / N ratio to the current value associated with the actual reaction is improved. There is also an effect that various measurements can be performed.
Further, in the embodiment, since the measurement chamber 21 is filled with the solution to be measured for measurement, it is possible to accurately perform measurement with only a small amount of the measurement solution filled in the measurement chamber 21.

【0028】<実験例>次に、上記実施例にかかるバイ
オセンサをグルコースを測定するグルコースセンサに適
用し、その評価試験を行なった。バイオセンサの感応部
1は、以下の工程により作成した。まず、絶縁性基板3
としてガラス板(コーニング社製:商品名7059)
を、縦50mm×横50mm×厚さ0.5mmの大きさ
に加工した。次に、フォトレジストによりマスクを形成
し、マスクがされていない絶縁性基板3上に蒸着法を用
いてPtを厚さ0.3μmに蒸着させて作用極5を形成
した。作用極5の検出部5aの大きさは、縦2mm×横
2mmである。次に、ポリイミド樹脂(東レ社製:商品
名フォートニス)を絶縁性基板3上に厚さ3μmに塗布
することにより絶縁層11を形成した。続いて、蒸着法
により絶縁層11上に開口13を有するように対極15
を厚さ0.5μmに形成した。その後、対極15及び絶
縁層11上にフォトレジスト法によりマスクを形成し、
マスクされていない対極15の開口13を通じて絶縁層
11の一部をエッチングして測定室21を形成した。次
に、グルコースオキシターゼをアルブミンに溶かしてゾ
ル化し、このゾル化した物質を摘下して乾燥させること
により、識別層7を形成した。
<Experimental example> Next, the biosensor according to the above-mentioned example was applied to a glucose sensor for measuring glucose, and its evaluation test was conducted. The sensitive section 1 of the biosensor was created by the following steps. First, the insulating substrate 3
Glass plate (made by Corning: product name 7059)
Was processed into a size of 50 mm length × 50 mm width × 0.5 mm thickness. Next, a mask was formed with a photoresist, and Pt was vapor-deposited to a thickness of 0.3 μm on the unmasked insulating substrate 3 by an evaporation method to form a working electrode 5. The size of the detection unit 5a of the working electrode 5 is 2 mm in length × 2 mm in width. Next, the insulating layer 11 was formed by applying a polyimide resin (manufactured by Toray Industries, Inc .: trade name Fortnis) on the insulating substrate 3 to a thickness of 3 μm. Then, the counter electrode 15 is formed by the vapor deposition method so that the opening 13 is formed on the insulating layer 11.
Was formed to a thickness of 0.5 μm. After that, a mask is formed on the counter electrode 15 and the insulating layer 11 by a photoresist method,
A part of the insulating layer 11 was etched through the opening 13 of the unmasked counter electrode 15 to form a measurement chamber 21. Next, glucose oxidase was dissolved in albumin to form a sol, and the solified substance was cut down and dried to form the discrimination layer 7.

【0029】この一連の工程により作成したバイオセン
サの感応部1を電気測定部に接続してグルコースを測定
した。すなわち、緩衝液(0.1Mリン酸バッファ、2
7℃)中にグルコース50mg添加して試料溶液を調製
した。バイオセンサの感応部1の作用極5と対極15と
の間に一定電圧0.9Vを印加した。この状態にて感応
部1を試料溶液に浸漬した。
Glucose was measured by connecting the sensitive part 1 of the biosensor produced by the series of steps to the electrical measuring part. That is, the buffer solution (0.1 M phosphate buffer, 2
A sample solution was prepared by adding 50 mg of glucose to (7 ° C). A constant voltage of 0.9 V was applied between the working electrode 5 and the counter electrode 15 of the sensitive part 1 of the biosensor. In this state, the sensitive part 1 was immersed in the sample solution.

【0030】その結果、初期電流が収束して、その影響
がなくなるまでの時間が5秒であり、従来の平板型バイ
オセンサの30秒と比べて短時間であった。したがっ
て、測定時間は、15秒であり、従来と比べて15秒間
短縮することができた。
As a result, the time until the initial current converges and the influence disappears was 5 seconds, which was shorter than 30 seconds of the conventional flat plate type biosensor. Therefore, the measurement time was 15 seconds, which could be shortened by 15 seconds as compared with the conventional case.

【0031】なお、この発明は上記実施例に限られるも
のではなく、その要旨を逸脱しない範囲において種々の
態様において実施することが可能であり、例えば次のよ
うな変形も可能である。
The present invention is not limited to the above-described embodiments, but can be carried out in various modes without departing from the scope of the invention, and the following modifications can be made.

【0032】上記実施例において、対極15の開口13
が狭い場合には、被測定溶液が測定室21内に満たされ
難い場合がある。これを解決する手段として、開口13
の周辺部に親水性ポリマー(例えば、ポリ酢酸ビニル)
を装着する。これにより、濡れ性が改善されて、被測定
溶液を測定室21内に確実に満たすことができる。
In the above embodiment, the opening 13 of the counter electrode 15
When is narrow, it may be difficult for the solution to be measured to fill the measurement chamber 21. As a means for solving this, the opening 13
Hydrophilic polymer (eg, polyvinyl acetate) around the periphery of
Put on. As a result, the wettability is improved, and the solution to be measured can be reliably filled in the measurement chamber 21.

【0033】[0033]

【発明の効果】以上説明したように請求項1の本発明に
よれば、測定室の底部の区画されたスペースに堆積され
るように識別層を形成しているので、変動の少ない所定
厚さにかつ広い表面積で形成することができる。このよ
うに識別層の厚さの変動を少なくできるので、作用極と
対極と間に絶縁層を介在させて所定距離確保しておけ
ば、識別層を対極に接触させることなく、作用極と対極
を狭い間隔で形成することができる。したがって、作用
極と対極との距離を狭くすることができるから、両極間
に形成される電気二重層間の電気力線を短くすることが
できる。その結果、初期電流を短時間に収束させること
ができ、被測定物質の測定時間を短縮することができ
る。
As described above, according to the present invention of claim 1, since the discrimination layer is formed so as to be deposited in the partitioned space at the bottom of the measuring chamber, the predetermined thickness with little fluctuation is obtained. And can be formed with a large surface area. In this way, it is possible to reduce the variation in the thickness of the identification layer.Therefore, if an insulating layer is interposed between the working electrode and the counter electrode and a certain distance is secured, the working layer and the counter electrode do not come into contact with the identification layer. Can be formed at narrow intervals. Therefore, the distance between the working electrode and the counter electrode can be narrowed, so that the lines of electric force between the electric double layers formed between the two electrodes can be shortened. As a result, the initial current can be converged in a short time, and the measurement time of the substance to be measured can be shortened.

【0034】また、本発明では、測定室内に被測定溶液
を満たして測定しているので、測定室内に満たされた少
ない被測定溶液だけで正確に測定することができる。
Further, in the present invention, since the measurement chamber is filled with the solution to be measured, the measurement chamber can be accurately measured with only a small amount of the solution to be measured.

【0035】さらに、請求項2の本発明によれば、絶縁
性基板及び絶縁層を積層し、作用極を露出させるように
絶縁層の一部を削除することにより測定室を形成してお
り、こうした簡単な工程にて好適に請求項1の構成を実
現することができる。
Further, according to the present invention of claim 2, the measuring chamber is formed by laminating the insulating substrate and the insulating layer and removing a part of the insulating layer so as to expose the working electrode. The configuration of claim 1 can be preferably realized by such simple steps.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例にかかるバイオセンサの感応
部を示す平面図。
FIG. 1 is a plan view showing a sensitive portion of a biosensor according to an embodiment of the present invention.

【図2】図1のII−II線に沿った断面図。FIG. 2 is a sectional view taken along line II-II of FIG.

【図3】同実施例にかかるバイオセンサの感応部の製造
工程を説明する説明図。
FIG. 3 is an explanatory view explaining a manufacturing process of a sensitive part of the biosensor according to the embodiment.

【図4】従来のバイオセンサの感応部を示す斜視図。FIG. 4 is a perspective view showing a sensitive part of a conventional biosensor.

【図5】バイオセンサの測定時に流れる電流値と時間と
の関係を示すグラフ。
FIG. 5 is a graph showing a relationship between a current value flowing at the time of measurement by the biosensor and time.

【符号の説明】[Explanation of symbols]

1…感応部 3…絶縁性基板 5…作用極 5a…検出部 5b…端子部 5c…配線部 7…識別層 9…窓部 9a…側壁 11…絶縁層 13…開口 15…対極 21…測定室 DESCRIPTION OF SYMBOLS 1 ... Sensing part 3 ... Insulating substrate 5 ... Working electrode 5a ... Detecting part 5b ... Terminal part 5c ... Wiring part 7 ... Identification layer 9 ... Window part 9a ... Side wall 11 ... Insulating layer 13 ... Opening 15 ... Counter electrode 21 ... Measuring chamber

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被測定溶液中の被測定物質と生体物質と
の生物化学反応に伴う電気変化量を測定することにより
被測定物質を測定するバイオセンサにおいて、 絶縁性基板と、 絶縁性基板上に積層された作用極と、 上記生体物質を担持し、かつ上記作用極上に積層された
識別層と、 この識別層を除く上記絶縁性基板上に積層された絶縁層
と、 この絶縁層上に積層され、上記作用極との間における電
気変化量を測定するための対極と、 上記被測定溶液を貯留し、かつ貯留した被測定溶液を上
記識別層及び対極に浸すように上記絶縁層の一部を除去
形成した測定室とを備えたことを特徴とするバイオセン
サ。
1. A biosensor for measuring a substance to be measured by measuring an amount of electrical change caused by a biochemical reaction between the substance to be measured in a solution to be measured and a biological substance, which comprises an insulating substrate and an insulating substrate. A working electrode laminated on the working electrode, an identification layer supporting the biological substance and laminated on the working electrode, an insulating layer laminated on the insulating substrate excluding the identification layer, and an insulating layer on the insulating layer. A counter electrode that is laminated and that measures the amount of electrical change between the working electrode and one of the insulating layers that stores the solution to be measured and soaks the stored solution to be measured in the identification layer and the counter electrode. A biosensor having a measurement chamber in which a part is removed and formed.
【請求項2】 被測定溶液中の被測定物質と生体物質と
の生物化学反応に伴う電気変化量を測定することにより
被測定物質を測定するバイオセンサの製造方法におい
て、 絶縁性基板を形成する工程と、 絶縁性基板上に作用極を積層する工程と、 絶縁基板及び作用極上に絶縁層を形成する工程と、 絶縁層上に、上記作用極との間における電気変化量を測
定するための対極を形成する工程と、 上記被測定溶液を貯留し、かつ作用極を露出させるよう
に絶縁層の一部を除去して測定室を形成する工程と、 測定室内にて露出された作用極上に、生体物質を担持し
た識別層を堆積する工程と、 を備えたことを特徴とするバイオセンサの製造方法。
2. A method for manufacturing a biosensor for measuring a substance to be measured by measuring an amount of electrical change associated with a biochemical reaction between the substance to be measured in a solution to be measured and a biological substance, wherein an insulating substrate is formed. A step for laminating the working electrode on the insulating substrate, a step for forming an insulating layer on the insulating substrate and the working electrode, and a step for measuring an electrical change between the working layer and the working electrode on the insulating layer. A step of forming a counter electrode, a step of storing a solution to be measured and forming a measurement chamber by removing a part of the insulating layer so as to expose the working electrode, and a step of forming a measurement chamber on the working electrode exposed in the measurement chamber. And a step of depositing an identification layer supporting a biological material, the method for manufacturing a biosensor.
JP4146336A 1992-05-12 1992-05-12 Biosensor and manufacturing method thereof Expired - Fee Related JP3063393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4146336A JP3063393B2 (en) 1992-05-12 1992-05-12 Biosensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4146336A JP3063393B2 (en) 1992-05-12 1992-05-12 Biosensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH05312761A true JPH05312761A (en) 1993-11-22
JP3063393B2 JP3063393B2 (en) 2000-07-12

Family

ID=15405391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4146336A Expired - Fee Related JP3063393B2 (en) 1992-05-12 1992-05-12 Biosensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3063393B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352093A (en) * 1998-06-11 1999-12-24 Matsushita Electric Ind Co Ltd Biosensor
JP2003529062A (en) * 2000-03-28 2003-09-30 ダイアビ−ティ−ズ・ダイアグノスティックス・インコ−ポレイテッド Fast response glucose sensor
JPWO2004061444A1 (en) * 2002-12-20 2006-05-18 アークレイ株式会社 Thin analysis tool
JP2006317470A (en) * 2006-08-31 2006-11-24 Matsushita Electric Ind Co Ltd Biosensor
JP2007232628A (en) * 2006-03-02 2007-09-13 National Institute Of Advanced Industrial & Technology Biosensor
US7276146B2 (en) 2001-11-16 2007-10-02 Roche Diagnostics Operations, Inc. Electrodes, methods, apparatuses comprising micro-electrode arrays
US7276147B2 (en) 2001-11-16 2007-10-02 Roche Diagnostics Operations, Inc. Method for determining the concentration of an analyte in a liquid sample using small volume samples and fast test times
USRE42567E1 (en) 1995-11-16 2011-07-26 Lifescan, Inc. Electrochemical cell
US8075760B2 (en) 1995-06-19 2011-12-13 Lifescan, Inc. Electrochemical cell
US8083993B2 (en) 2003-06-20 2011-12-27 Riche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US8092668B2 (en) 2004-06-18 2012-01-10 Roche Diagnostics Operations, Inc. System and method for quality assurance of a biosensor test strip
JP2012063287A (en) * 2010-09-17 2012-03-29 Hokuto Denko Kk Well unit and electrochemical analysis method
JP2012101092A (en) * 1997-02-06 2012-05-31 Abbott Diabetes Care Inc Small volume in vitro analyte sensor
US8293538B2 (en) 2003-06-20 2012-10-23 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US8298389B2 (en) 2005-09-12 2012-10-30 Abbott Diabetes Care Inc. In vitro analyte sensor, and methods
US8507289B1 (en) 2003-06-20 2013-08-13 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US9017544B2 (en) 2002-10-04 2015-04-28 Roche Diagnostics Operations, Inc. Determining blood glucose in a small volume sample receiving cavity and in a short time period

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE44330E1 (en) 1995-06-19 2013-07-02 Lifescan Inc. Electrochemical cell
US8101056B2 (en) 1995-06-19 2012-01-24 Lifescan, Inc. Electrochemical cell
US8075760B2 (en) 1995-06-19 2011-12-13 Lifescan, Inc. Electrochemical cell
USRE42567E1 (en) 1995-11-16 2011-07-26 Lifescan, Inc. Electrochemical cell
US9075004B2 (en) 1996-06-19 2015-07-07 Lifescan, Inc. Electrochemical cell
JP2012101092A (en) * 1997-02-06 2012-05-31 Abbott Diabetes Care Inc Small volume in vitro analyte sensor
JPH11352093A (en) * 1998-06-11 1999-12-24 Matsushita Electric Ind Co Ltd Biosensor
JP2003529062A (en) * 2000-03-28 2003-09-30 ダイアビ−ティ−ズ・ダイアグノスティックス・インコ−ポレイテッド Fast response glucose sensor
US9658183B2 (en) 2001-11-16 2017-05-23 Roche Diabetes Care, Inc. Method for determining the concentration of an analyte in a liquid sample using small volume samples and fast test times
US7276147B2 (en) 2001-11-16 2007-10-02 Roche Diagnostics Operations, Inc. Method for determining the concentration of an analyte in a liquid sample using small volume samples and fast test times
US9017543B2 (en) 2001-11-16 2015-04-28 Roche Diagnostics Operations, Inc. Method for determining the concentration of an analyte in a liquid sample using small volume samples and fast test times
EP1468282B1 (en) * 2001-11-16 2019-08-28 Roche Diabetes Care GmbH Method of determining the concentration of an analyte in blood
US7276146B2 (en) 2001-11-16 2007-10-02 Roche Diagnostics Operations, Inc. Electrodes, methods, apparatuses comprising micro-electrode arrays
US10386322B2 (en) 2001-11-16 2019-08-20 Roche Diabetes Care, Inc. Method for determining the concentration of an analyte in a liquid sample using small volume samples and fast test times
US9017544B2 (en) 2002-10-04 2015-04-28 Roche Diagnostics Operations, Inc. Determining blood glucose in a small volume sample receiving cavity and in a short time period
US9638658B2 (en) 2002-10-04 2017-05-02 Roche Diabetes Care, Inc. Determining blood glucose in a small volume sample receiving cavity and in a short time period
US10408784B2 (en) 2002-10-04 2019-09-10 Roche Diabetes Care, Inc. Determining blood glucose in a small volume sample receiving cavity and in a short time period
JPWO2004061444A1 (en) * 2002-12-20 2006-05-18 アークレイ株式会社 Thin analysis tool
US8083993B2 (en) 2003-06-20 2011-12-27 Riche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US8507289B1 (en) 2003-06-20 2013-08-13 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US8293538B2 (en) 2003-06-20 2012-10-23 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US8092668B2 (en) 2004-06-18 2012-01-10 Roche Diagnostics Operations, Inc. System and method for quality assurance of a biosensor test strip
US9410915B2 (en) 2004-06-18 2016-08-09 Roche Operations Ltd. System and method for quality assurance of a biosensor test strip
US8557104B2 (en) 2005-09-12 2013-10-15 Abbott Diabates Care Inc. In vitro analyte sensor, and methods
US8298389B2 (en) 2005-09-12 2012-10-30 Abbott Diabetes Care Inc. In vitro analyte sensor, and methods
JP2007232628A (en) * 2006-03-02 2007-09-13 National Institute Of Advanced Industrial & Technology Biosensor
JP2006317470A (en) * 2006-08-31 2006-11-24 Matsushita Electric Ind Co Ltd Biosensor
JP2012063287A (en) * 2010-09-17 2012-03-29 Hokuto Denko Kk Well unit and electrochemical analysis method

Also Published As

Publication number Publication date
JP3063393B2 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
JP3063393B2 (en) Biosensor and manufacturing method thereof
US4062750A (en) Thin film electrochemical electrode and cell
US4874500A (en) Microelectrochemical sensor and sensor array
US20090194415A1 (en) Pair of measuring electrodes, biosensor comprising a pair of measuring electrodes of this type, and production process
JPH09510541A (en) Small circulation measuring chamber with integrated chemosensor and / or biosensor element
JPH03502135A (en) chemical sensitive transducer
KR900000578B1 (en) Enzyme sensor
US6613205B1 (en) Electrochemical sensor
US20070023286A1 (en) Method of fabricating electrode assembly of sensor
US5770439A (en) Thick-film conductivity enzyme electrodes in a vertical stack as biosensor
Knoll et al. Microfibre matrix-supported ion-selective PVC membranes
US7547381B2 (en) Sensor array integrated electrochemical chip, method of forming same, and electrode coating
JP3291838B2 (en) Biosensor and manufacturing method thereof
JP3881731B2 (en) Enzyme reaction sensor and manufacturing method thereof
US9000769B2 (en) Controlled electrochemical activation of carbon-based electrodes
GB2229005A (en) Biosensor device
JPH02129541A (en) Disposable type enzyme electrode
JPH04279854A (en) Platinum coated carbon fiber electrode and enzymatic film sensor using same
EP0271100B1 (en) Sheet type electrode
JPH09243590A (en) Micro comb-shaped electrode and its manufacture and electrode unit for electrochemical measurement of solution system
JPH05312760A (en) Biosensor
JP2940007B2 (en) Enzyme electrode
JPH04132949A (en) Enzyme immobilization electrode
JP2810779B2 (en) Capacitive thin film humidity sensor and method of manufacturing the same
JPH01124755A (en) Humidity sensor made of thin organic high-polymer film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees