JPH05296922A - Carbon isotope analyzing instrument - Google Patents

Carbon isotope analyzing instrument

Info

Publication number
JPH05296922A
JPH05296922A JP9625192A JP9625192A JPH05296922A JP H05296922 A JPH05296922 A JP H05296922A JP 9625192 A JP9625192 A JP 9625192A JP 9625192 A JP9625192 A JP 9625192A JP H05296922 A JPH05296922 A JP H05296922A
Authority
JP
Japan
Prior art keywords
absorption spectrum
emission wavelength
light absorption
intensity ratio
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9625192A
Other languages
Japanese (ja)
Inventor
Yoji Azuma
陽二 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP9625192A priority Critical patent/JPH05296922A/en
Publication of JPH05296922A publication Critical patent/JPH05296922A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a carbon isotope analyzing instrument which has high sensitivity and accuracy and, at the same time, can trace the carbon isotope ratio without receiving any influence from the spectrum of water, etc. CONSTITUTION:Objects to be analyzed, namely, <12>CO2 and <13>CO2 are put in a sample cell 2, and parts of the objects are absorbed by resonance by irradiating the objects with semiconductor laser light in a near infrared region. At the same time, residual light rays having different intensities from the objects are introduced to a lock-in amplifier 6 after detecting the light rays with a photodetector 5. The amplifier 6 detects the intensity ratio between the absorption spectrum of the light from the <12>CO2 when the emission wavelength of a semiconductor laser 1 is 6253.73+ or -0.2 [cm<-1>] and the light of the <13>CO2 when the emission wavelength is 6253.90 [cm<-1>].

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数の炭素同位体が混
在する試料物質に光を照射し、その光吸収スペクトル強
度比に基づいて同位体の比率を求める炭素同位体分析装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon isotope analyzer which irradiates a sample substance containing a plurality of carbon isotopes with light and obtains the ratio of the isotopes based on the intensity ratio of the light absorption spectra.

【0002】[0002]

【従来の技術】自然界には同位体が僅かに存在し、この
同位体の変化をトレースすることにより、医学分野では
病気の診断、農業分野では光合成の研究・植物の代謝作
用の研究、地球科学分野では生態系のトレースに利用で
きる。
BACKGROUND OF THE INVENTION There are few isotopes in nature, and by tracing changes in these isotopes, diagnosis of diseases in the medical field, research of photosynthesis in the agricultural field, research on metabolism of plants, earth science. It can be used to trace ecosystems in the field.

【0003】このような用途に使われる同位体として
は、窒素、炭素がある。特に、炭素では、質量数12の
炭素(以下12Cと略記する)と質量数13の炭素(以下
13Cと略記する)の安定同位体がある。これら安定同位
体は、放射性同位体のように放射線被爆が無く、取り扱
いが容易なため、医療分野での利用が積極的に研究され
ている。
Isotopes used for such applications include nitrogen and carbon. Particularly, in terms of carbon, carbon having a mass number of 12 (hereinafter abbreviated as 12 C) and carbon having a mass number of 13 (hereinafter
Abbreviated as 13 C). Unlike the radioactive isotopes, these stable isotopes are free from radiation exposure and are easy to handle, so their use in the medical field is being actively studied.

【0004】上記安定同位体の分析装置として、従来よ
り使用されている装置の一例が図4に示されている。図
中、10は赤外域の発光波長範囲の広いランプ、11は
試料セル、12は試料ガス導入口、13は試料ガス排出
口、14は分散型分光器、15はミラー、16は回折格
子、17はスリット、18は光検出器である。
FIG. 4 shows an example of an apparatus conventionally used as the above stable isotope analysis apparatus. In the figure, 10 is a lamp having a wide emission wavelength range in the infrared region, 11 is a sample cell, 12 is a sample gas inlet, 13 is a sample gas outlet, 14 is a dispersive spectrometer, 15 is a mirror, 16 is a diffraction grating, Reference numeral 17 is a slit, and 18 is a photodetector.

【0005】この装置で、試料ガスは、試料ガス導入口
12から試料セル11内に導入され、試料ガス排出口1
3より排出される。ランプ10から出た光は試料セル1
1に入射し、試料セル11内の試料ガスと相互作用して
一部が共鳴吸収される。残余の光が試料セル11を通過
して分散型分光器14に入り、ミラー15でビーム方向
が変えられ、回折格子16に照射される。そして、回折
格子16で波長分散がなされ、スリット17で波長選択
された波長の光強度が光検出器18で検出される。ここ
で回折格子16の角度をθ方向に連続的に回転すること
により選択波長が変えられ、試料ガスの光吸収スペクト
ルが測定される。
In this apparatus, the sample gas is introduced into the sample cell 11 through the sample gas inlet 12 and the sample gas outlet 1
Emitted from 3. The light emitted from the lamp 10 is the sample cell 1
1, and interacts with the sample gas in the sample cell 11 to partially absorb the resonance. The remaining light passes through the sample cell 11 and enters the dispersive spectroscope 14, the beam direction is changed by the mirror 15, and the diffraction grating 16 is irradiated with the changed beam direction. Then, the diffraction grating 16 performs wavelength dispersion, and the light intensity of the wavelength selected by the slit 17 is detected by the photodetector 18. Here, the selective wavelength is changed by continuously rotating the angle of the diffraction grating 16 in the θ direction, and the light absorption spectrum of the sample gas is measured.

【0006】なお、測定にあたって、炭素は赤外域の光
と直接共鳴しないので、予め二酸化炭素(CO2 )にし
た後に試料セル11へ導入され、そのスペクトルが測定
されることになる。また、二酸化炭素12CO2 13CO
2 には質量差があるので、ごく僅かに光吸収周波数が異
なる。従って、回折格子16を回転して角度θを変えて
12CO2 13CO2 との光吸収スペクトルをほぼ同時に
測定し、両者の吸収強度の比を求めることにより炭素同
位体比の変化がトレースできる。
In the measurement, carbon does not directly resonate with light in the infrared region, so carbon dioxide (CO 2 ) is introduced into the sample cell 11 in advance and its spectrum is measured. Also, carbon dioxide 12 CO 2 and 13 CO
Since 2 has a mass difference, the light absorption frequency is slightly different. Therefore, rotate the diffraction grating 16 to change the angle θ.
The changes in the carbon isotope ratio can be traced by measuring the optical absorption spectra of 12 CO 2 and 13 CO 2 almost at the same time and determining the ratio of their absorption intensities.

【0007】ところで、12CO2 13CO2 の光吸収ス
ペクトルの微細構造(振動・回転スペクトル)は、夫々
図4(a)(b)のように成っており、両者のスペクト
ルのずれは僅かである。また、この微細構造の各スペク
トル幅は試料ガス圧力760Torrでは0.1 [c
m-1]、数Torrでは0.01[cm-1]程度と非常に狭
い。更に、13CO2 12CO2 の天然存在比は約1%で
あるので、12CO2 の光吸収強度は13CO2 よりも10
0倍程度強い。
By the way, the fine structures (vibration / rotation spectra) of the optical absorption spectra of 12 CO 2 and 13 CO 2 are as shown in FIGS. 4 (a) and 4 (b), respectively, and the difference between the spectra of both is small. Is. The spectrum width of this fine structure is 0.1 [c at a sample gas pressure of 760 Torr.
m -1 ], several 0.01 Torr is very narrow at about 0.01 [cm -1 ]. Further, since the natural abundance of 13 CO 2/12 CO 2 is about 1%, the light absorption intensity of 12 CO 2 is than 13 CO 2 10
About 0 times stronger.

【0008】このようなスペクトルを正確に測定するに
は、0.001 [cm-1]以上のスペクトル分解能が必要であ
るが、従来の分析装置のスペクトル分解能は1[cm-1
程度であり、CO2 ガスの光吸収スペクトル幅よりも広
いので、微細構造の各スペクトルを分離して測定できな
い。その結果、炭素同位体相互の光吸収スペクトルの影
響を受け、正確なスペクトルを測定できない。そのた
め、図5に示すような12CO2 13CO2 のスペクトル
が重なったスペクトルを測定していた。
To accurately measure such a spectrum, a spectral resolution of 0.001 [cm -1 ] or more is required, but the conventional analytical apparatus has a spectral resolution of 1 [cm -1 ].
Since it is about the same and wider than the optical absorption spectrum width of CO 2 gas, it is not possible to separate and measure each spectrum of the fine structure. As a result, the optical absorption spectra of carbon isotopes affect each other, and an accurate spectrum cannot be measured. Therefore, a spectrum in which the spectra of 12 CO 2 and 13 CO 2 overlap each other as shown in FIG. 5 was measured.

【0009】[0009]

【発明が解決しようとする課題】このような相互の影響
を受けるスペクトルでは、例えば、12CO2 の濃度がご
く僅か変化しても、13CO2 のスペクトルが影響を受け
て測定誤差が発生する。従来の分析装置では、測定スペ
クトルに基づいて相互の重なり量を計算で求めて補正し
ているが、その補正ではスペクトル相互の重なり量を充
分に取り除けないので、精度良く同位体比の変化をトレ
ースできない。
In such a spectrum influenced by each other, for example, even if the concentration of 12 CO 2 changes slightly, the spectrum of 13 CO 2 is affected and a measurement error occurs. .. In conventional analyzers, the amount of overlap between the spectra is calculated and corrected based on the measured spectrum, but the amount of overlap between the spectra cannot be sufficiently removed by the correction, so changes in the isotope ratio can be traced accurately. Can not.

【0010】また、試料ガス中にはCO2 ガス以外にも
多くの不純物が含まれており、その不純物も光を吸収す
るので、不純物の光吸収スペクトルがCO2 ガスのスペ
クトルの近辺に存在すると影響を受け、測定誤差とな
る。この不純物の影響を極力除去するためにはスペクト
ル分解能を高くする必要があるが、前述のように、従来
の分析装置はスペクトル分解能が低い。
Further, the sample gas contains many impurities other than CO 2 gas, and these impurities also absorb light, so that the optical absorption spectrum of the impurities is present in the vicinity of the spectrum of CO 2 gas. It will be affected and cause a measurement error. It is necessary to increase the spectral resolution in order to remove the influence of the impurities as much as possible, but as described above, the conventional analyzer has a low spectral resolution.

【0011】更に、ごく微量の炭素同位体の変化を検出
するためには、光吸収スペクトルを高感度で検出する必
要がある。上記した従来の分析装置では、スリット17
の幅を広くとると感度を高くできるが、分解能が低くな
るという相反する関係があり、感度と精度とを両立させ
ることは難しい。
Further, in order to detect a trace amount of change in carbon isotope, it is necessary to detect an optical absorption spectrum with high sensitivity. In the conventional analyzer described above, the slit 17
The sensitivity can be increased by widening the range, but the reciprocal relationship that the resolution becomes low is difficult, and it is difficult to achieve both sensitivity and accuracy.

【0012】本発明の課題は、炭素同位体相互の光吸収
の影響や不純物のスペクトル、外乱の影響を受けること
なく、高感度で精度良く炭素の同位体比をトレース可能
な炭素同位体分析装置を提供することにある。
An object of the present invention is to provide a carbon isotope analyzer capable of tracing the carbon isotope ratio with high sensitivity and accuracy without being affected by the optical absorption of carbon isotopes, the spectrum of impurities, and the influence of disturbance. To provide.

【0013】[0013]

【課題を解決するための手段】本発明は、発光スペクト
ル幅の非常に狭い近赤外域の半導体レーザを波長可変光
源とし、これを試料ガスに照射して、12CO2 13CO
2 との光吸収スペクトルの強度比を検出するようにした
ものである。
According to the present invention, a semiconductor laser in the near-infrared region having a very narrow emission spectrum width is used as a wavelength tunable light source, and this is irradiated onto a sample gas to produce 12 CO 2 and 13 CO 2.
The intensity ratio of the light absorption spectrum with 2 is detected.

【0014】具体的に説明すると、AlGaAs系又はInGaAs
P 系材料を用いた近赤外域の半導体レーザは、光通信、
光情報処理用として精力的に研究・開発され、小型、高
効率、高信頼性になっている。鉛塩系材料の赤外域半導
体レーザは、常温で発振しないので、液体ヘリウムや液
体窒素等による大型の冷却機が必要となるが、近赤外域
の半導体レーザは常温で発振し、ペルチェ素子を用いて
半導体レーザの温度を制御すれば波長可変光源となる。
More specifically, AlGaAs or InGaAs
Near-infrared semiconductor lasers using P-based materials are used for optical communication,
It has been energetically researched and developed for optical information processing, and it is compact, highly efficient, and highly reliable. Infrared semiconductor lasers made of lead-salt-based materials do not oscillate at room temperature, so a large cooling machine using liquid helium or liquid nitrogen is required. If the temperature of the semiconductor laser is controlled by the above, it becomes a wavelength tunable light source.

【0015】このような実用上優れた特徴を持つ近赤外
域の半導体レーザを用いれば、装置全体が非常に小型化
でき、取扱が容易で且つ信頼性の高い装置が実現でき
る。この種の近赤外域の半導体レーザの発振スペクトル
幅は、0.0003〜0.002 [cm-1]と非常に狭いので、この
半導体レーザの発振波長を掃引することで、CO2 の振
動、回転の各スペクトルが容易に測定可能となる。
By using the near-infrared region semiconductor laser having such practically excellent characteristics, the entire apparatus can be made extremely small, easy to handle, and highly reliable. Since the oscillation spectrum width of this kind of semiconductor laser in the near infrared region is very narrow, from 0.0003 to 0.002 [cm -1 ], by sweeping the oscillation wavelength of this semiconductor laser, each spectrum of CO 2 vibration and rotation can be obtained. Can be easily measured.

【0016】但し、測定可能な振動、回転の各スペクト
ルには、同位体比測定に適したスペクトルと適さないス
ペクトルがある。そのため、同位体比の測定に際して
は、以下の条件を満たす最適なスペクトルを選択する必
要がある。
However, each of the measurable vibration and rotation spectra includes a spectrum suitable for isotope ratio measurement and a spectrum not suitable for isotope ratio measurement. Therefore, when measuring the isotope ratio, it is necessary to select an optimum spectrum that satisfies the following conditions.

【0017】(1) 13CO2 の光吸収スペクトルの吸収強
度は、12CO2 の吸収強度より2桁程度弱いため、13
2 の光吸収強度が強く、且つ、12CO2 のスペクトル
の影響を受けないスペクトルを選択する。
(1) Since the absorption intensity of the optical absorption spectrum of 13 CO 2 is weaker by about two orders of magnitude than the absorption intensity of 12 CO 2 , 13 C
A spectrum having a high optical absorption intensity of O 2 and not affected by the spectrum of 12 CO 2 is selected.

【0018】(2) 近赤外域で測定されるCO2 の光吸収
スペクトルは、CO2 分子の振動、回転スペクトルを測
定するが、目的とする振動、回転スペクトル以外にも微
弱な他の振動、回転スペクトルが多く存在しているた
め、他の振動、回転スペクトルの影響を受けないスペク
トルを選択する。
(2) The light absorption spectrum of CO 2 measured in the near infrared region is the vibration and rotation spectrum of the CO 2 molecule, and other weak vibrations other than the desired vibration and rotation spectrum, Since there are many rotation spectra, select a spectrum that is not affected by other vibration and rotation spectra.

【0019】(3) 12CO2 13CO2 の光スペクトルを
ほぼ同時に測定し、その吸収強度比より同位体比を求め
るので、13CO2 の吸収スペクトルと12CO2 の吸収ス
ペクトルとが適当な間隔で近接していること。
(3) Since the optical spectra of 12 CO 2 and 13 CO 2 are measured almost at the same time and the isotope ratio is determined from the absorption intensity ratio, the absorption spectra of 13 CO 2 and 12 CO 2 are suitable. Be close to each other at regular intervals.

【0020】(4) 試料ガス中には同位体ガス以外に多く
の不純物、特に水分が含まれているため、この水分の光
吸収スペクトルの影響を受けないスペクトルを選択す
る。
(4) Since the sample gas contains many impurities, especially water, in addition to the isotope gas, a spectrum that is not affected by the optical absorption spectrum of this water is selected.

【0021】上記条件を具備するスペクトルを近赤外域
で探した結果、非常に僅かしかないことが判明した。
As a result of searching the spectrum satisfying the above conditions in the near infrared region, it was found that the spectrum was very small.

【0022】そこで、本発明では、光吸収スペクトル強
度比に基づいて複数の炭素同位体12CO2 13CO2
が混在する被検物の同位体比を検出する同位体分析装置
において、近赤外線の半導体レーザと、この半導体レー
ザの発振波長を掃引する手段と、この半導体レーザに周
波数変調をかける周波数変調手段と、この半導体レーザ
より発せられ前記複数の炭素同位体が混在する被検物を
通過したレーザ光を検出する光検出器と、前記周波数変
調手段にて得られた変調周波数と前記光検出器で検出し
た前記レーザ光の信号周波数との整合を検出するロック
イン増幅器とを有し、その半導体レーザの発光波長が、
波数6253.73 ±0.2 [cm-1]のときの12CO2 の光吸収
スペクトルと、同じく発光波長が波数6253.90 [cm-1
のときの13CO2 の光吸収スペクトルとの強度比を検出
するようにした。
Therefore, according to the present invention, in the isotope analyzer for detecting the isotope ratio of the test substance in which a plurality of carbon isotopes 12 CO 2 and 13 CO 2 are mixed based on the light absorption spectrum intensity ratio, An infrared semiconductor laser, a means for sweeping the oscillation wavelength of this semiconductor laser, a frequency modulation means for frequency-modulating this semiconductor laser, and a test object emitted from this semiconductor laser in which the plurality of carbon isotopes are mixed. It has a photodetector for detecting the passing laser beam, and a lock-in amplifier for detecting the matching between the modulation frequency obtained by the frequency modulating means and the signal frequency of the laser beam detected by the photodetector. , The emission wavelength of the semiconductor laser is
The optical absorption spectrum of 12 CO 2 when the wave number is 6253.73 ± 0.2 [cm -1 ] and the emission wavelength is 6253.90 [cm -1 ]
The intensity ratio with the light absorption spectrum of 13 CO 2 at that time was detected.

【0023】なお、光吸収スペクトル強度比の検出に
は、上記半導体レーザの発光波長の組合せの外、表1の
各左欄と右欄との組合せを用いることができる。
In addition to the combination of the emission wavelengths of the semiconductor lasers, the combination of each left column and right column of Table 1 can be used to detect the light absorption spectrum intensity ratio.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【作用】本発明の炭素同位体分析装置は、近赤外域の半
導体レーザの12CO2 13CO2 との相互影響、水分の
影響を受けない発振波長を掃引し、周波数変調手段で変
調されたレーザ光を炭素同位体が混在する被検物に入射
する。入射されたレーザ光は炭素同位体と相互作用して
一部が共鳴吸収される。そして残余の光が光検出器で検
出され、ロックイン増幅器にて12CO2 13CO2 の光
吸収スペクトルが測定される。
The carbon isotope analysis device of the present invention sweeps the oscillation wavelength which is not influenced by the mutual influence of 12 CO 2 and 13 CO 2 of the semiconductor laser in the near infrared region and moisture, and is modulated by the frequency modulation means. The laser light is made incident on the test object in which the carbon isotope is mixed. The incident laser light interacts with the carbon isotope and a part thereof is resonantly absorbed. Then, the residual light is detected by the photodetector, and the light absorption spectra of 12 CO 2 and 13 CO 2 are measured by the lock-in amplifier.

【0026】12CO2 13CO2 には質量差があるの
で、ごく僅かに光吸収周波数が異なる。従って、各光吸
収スペクトルをほぼ同時に測定し、両者の吸収強度の比
を求めることにより炭素同位体比の変化がトレースされ
る。
Since there is a mass difference between 12 CO 2 and 13 CO 2 , the light absorption frequencies are slightly different. Therefore, the changes in the carbon isotope ratio can be traced by measuring the respective light absorption spectra almost at the same time and determining the ratio of the absorption intensities of the two.

【0027】なお、半導体レーザの発光波長が6253.73
±0.2 [cm-1]のときの12CO2 の光吸収スペクトル
と、同じく発光波長が6253.90 [cm-1]のときの13CO
2 の光吸収スペクトルとの組合せ、及び、表1の各左欄
と右欄との組合せは、適当な間隔で近接しており、13
2 の光吸収スペクトルが12CO2 のスペクトルの影響
を受けることがない。
The emission wavelength of the semiconductor laser is 6253.73.
Optical absorption spectrum of 12 CO 2 at ± 0.2 [cm -1 ] and 13 CO at the same emission wavelength of 6253.90 [cm -1 ]
Combination of the second light absorption spectrum, and a combination of the left column and the right column of Table 1, are close at appropriate intervals, 13 C
The optical absorption spectrum of O 2 is not affected by the spectrum of 12 CO 2 .

【0028】[0028]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0029】図1は本発明を適用する炭素同位体分析装
置の実施例のブロック図であり、1は近赤外域の半導体
レーザ、2は12CO2 及び13CO2 が混在する試料ガス
を収納する試料セル、3は試料ガス導入口、4は試料ガ
ス排出口、5は光検出器、6はロックイン増幅器、7は
半導体レーザ1の波数を掃引するための温度制御部、8
は半導体レーザ1の光出力を制御するための電流制御
部、9は電流制御部8に変調周波数を与える発振器であ
る。
FIG. 1 is a block diagram of an embodiment of a carbon isotope analyzer to which the present invention is applied. 1 is a semiconductor laser in the near infrared region, 2 is a sample gas containing 12 CO 2 and 13 CO 2 mixed therein. A sample cell, 3 is a sample gas inlet, 4 is a sample gas outlet, 5 is a photodetector, 6 is a lock-in amplifier, 7 is a temperature control unit for sweeping the wave number of the semiconductor laser 1, 8
Is a current control unit for controlling the optical output of the semiconductor laser 1, and 9 is an oscillator for giving a modulation frequency to the current control unit 8.

【0030】上記構成の装置で、近赤外域の半導体レー
ザ1は、常温で連続発振し、半導体レーザ1の温度又は
駆動電流を掃引することにより波長可変光源となる。半
導体レーザ1の発光波数は、温度制御部7により温度を
掃引されて、波数6253.90 [cm-1]と波数6253.73 [cm
-1]近辺が連続掃引される。また、電流制御部8により
適当な光出力となるように、半導体レーザ1の駆動電流
が制御されている。更に、発振器9の信号により電流変
調され、僅かに周波数変調がかけられている。
In the apparatus having the above structure, the semiconductor laser 1 in the near infrared region continuously oscillates at room temperature, and becomes a wavelength tunable light source by sweeping the temperature or driving current of the semiconductor laser 1. The emission wave number of the semiconductor laser 1 is swept through the temperature by the temperature control unit 7, and the wave number is 6253.90 [cm −1 ] and the wave number 6253.73 [cm
-1 ] The vicinity is continuously swept. Further, the drive current of the semiconductor laser 1 is controlled by the current controller 8 so as to obtain an appropriate light output. Further, it is current-modulated by the signal of the oscillator 9 and slightly frequency-modulated.

【0031】このように、波数掃引・周波数変調された
半導体レーザ1からのレーザ光は、試料セル2に入射さ
れ、ここで、セル内の12CO2 ガス及び13CO2 ガスと
相互作用して一部が吸収される。試料セル2からの出射
レーザ光は、光検出器5で検出される。検出された光信
号は、ロックイン増幅器6で発振器9と同期のとれた信
号のみが検出される。その結果、半導体レーザ1の光強
度のドリフトが除去でき、S/N比の良い信号が検出で
きる。
The laser light from the semiconductor laser 1 thus wavenumber-swept and frequency-modulated is incident on the sample cell 2, where it interacts with the 12 CO 2 gas and 13 CO 2 gas in the cell. Partly absorbed. The laser light emitted from the sample cell 2 is detected by the photodetector 5. Of the detected optical signals, only the signal synchronized with the oscillator 9 is detected by the lock-in amplifier 6. As a result, the drift of the light intensity of the semiconductor laser 1 can be removed, and a signal with a good S / N ratio can be detected.

【0032】このようにして検出された光信号は、光吸
収強度の1次微分となっている。従って、本実施例によ
り形成された図2の赤外吸収スペクトル図において、波
数6253.90 [cm-1]と波数6253.73 [cm-1]での両検出
信号のピーク値、又は、吸収の面積を求めて吸収量の比
を求めれば、試料セル2内に混在する12CO2 ガスと13
CO2 ガスとの比、即ち、同位体比が容易に求められ
る。
The optical signal thus detected is the first derivative of the light absorption intensity. Therefore, in the infrared absorption spectrum diagram of FIG. 2 formed by this example, the peak value of both detection signals at the wave number of 6253.90 [cm −1 ] and the wave number of 6253.73 [cm −1 ] or the area of absorption was obtained. be determined the ratio of the absorption Te, mixed in the sample cell 2 12 CO 2 gas and 13
The ratio with CO 2 gas, that is, the isotope ratio, can be easily obtained.

【0033】更に、発振器9で発振した信号の2倍の周
波数成分のみをロックイン増幅器6で検出すれば、光吸
収強度の2次微分形状が測定できる。前記と同様、波数
6253.90 [cm-1]と波数6253.73 [cm-1]での両検出信
号のピーク値の比を求めれば、同位体比が容易に求ま
る。しかもこの方式では、光吸収強度の2次微分形状を
測定しているので、半導体レーザ1から出射された1次
変化、2次変化がキャンセルされ、より高精度で同位体
比が測定できる。
Further, if only the frequency component twice the signal oscillated by the oscillator 9 is detected by the lock-in amplifier 6, the second-order differential shape of the light absorption intensity can be measured. Same as above
If the ratio of the peak values of both detection signals at 6253.90 [cm -1 ] and wave number 6253.73 [cm -1 ] is calculated, the isotope ratio can be easily calculated. Moreover, in this method, since the second-order differential shape of the light absorption intensity is measured, the first-order change and second-order change emitted from the semiconductor laser 1 are canceled, and the isotope ratio can be measured with higher accuracy.

【0034】なお、本実施例では、光吸収スペクトル強
度比の検出に、半導体レーザ1の発光波長が波数6253.7
3 ±0.2 [cm-1]のときの12CO2 の光吸収スペクトル
と、同じく発光波長が波数6253.90 [cm-1]のときの13
CO2 の光吸収スペクトルとを用いたが、この組合せ以
外にも、発光波長が波数6254.67 ±0.2 [cm-1]のとき
12CO2 の光吸収スペクトルと、発光波長が波数625
5.14 ±0.2 [cm-1]のときの13CO2 の光吸収スペク
トル、発光波長が波数6255.58 ±0.2 [cm-1]のときの
12CO2 の光吸収スペクトルと、発光波長が波数6255.1
4 ±0.2 [cm-1]のときの13CO2 の光吸収スペクト
ル、発光波長が波数6257.29 ±0.2 [cm-1]のときの12
CO2 の光吸収スペクトルと、発光波長が波数6257.51
±0.2 [cm-1]のときの13CO2 の光吸収スペクトル、
発光波長が波数6258.88 ±0.2 [cm-1]のときの12CO
2 の光吸収スペクトルと、発光波長が波数6258.64 ±0.
2 [cm-1]のときの13CO2 の光吸収スペクトル、発光
波長が波数6261.01 ±0.2 [cm-1]のときの12CO2
光吸収スペクトルと、発光波長が波数6260.80 ±0.2
[cm-1]のときの13CO2 の光吸収スペクトル、発光波
長が波数6261.65 ±0.2 [cm-1]のときの12CO2 の光
吸収スペクトルと、発光波長が波数6261.83 ±0.2 [cm
-1]のときの13CO2 の光吸収スペクトル、発光波長が
波数6252.77 ±0.2 [cm-1]のときの12CO2 の光吸収
スペクトルと、発光波長が波数6252.63 ±0.2 [cm-1
のときの13CO2 の光吸収スペクトル、発光波長が波数
6251.77 ±0.2 [cm-1]のときの12CO2 の光吸収スペ
クトルと、発光波長が波数6251.32 ±0.2 [cm-1]のと
きの13CO2 の光吸収スペクトル、発光波長が波数624
9.67 ±0.2 [cm-1]のときの12CO2 の光吸収スペク
トルと、発光波長が波数6249.98 ±0.2 [cm-1]のとき
13CO2 の光吸収スペクトル、発光波長が波数6228.6
9 ±0.2 [cm-1]のときの12CO2 の光吸収スペクトル
と、発光波長が波数6228.44 ±0.2 [cm-1]のときの13
CO2 の光吸収スペクトル、発光波長が波数6231.72 ±
0.2 [cm-1]のときの12CO2 の光吸収スペクトルと、
発光波長が波数6232.03 ±0.2 [cm-1]のときの13CO
2 の光吸収スペクトル、発光波長が波数6233.19 ±0.2
[cm-1]のときの12CO2 の光吸収スペクトルと、発光
波長が波数6233.77 ±0.2 [cm-1]のときの13CO2
光吸収スペクトル、発光波長が波数6226.35 ±0.2 [cm
-1]のときの12CO2 の光吸収スペクトルと、発光波長
が波数6226.59 ±0.2 [cm-1]のときの13CO2 の光吸
収スペクトル、発光波長が波数6223.13 ±0.2 [cm-1
のときの12CO2 の光吸収スペクトルと、発光波長が波
数6222.79 ±0.2 [cm-1]のときの13CO2 の光吸収ス
ペクトルを用いても良く、上記同様、好適な結果が得ら
れる。
In the present embodiment, the light emission wavelength of the semiconductor laser 1 is 6253.7 for detecting the light absorption spectrum intensity ratio.
The absorption spectrum of 12 CO 2 at 3 ± 0.2 [cm -1 ] and 13 at the same emission wavelength of wave number 6253.90 [cm -1 ]
The light absorption spectrum of CO 2 was used, but in addition to this combination, the light absorption spectrum of 12 CO 2 when the emission wavelength is 6254.67 ± 0.2 [cm −1 ] and the emission wavelength is 625
The absorption spectrum of 13 CO 2 at 5.14 ± 0.2 [cm -1 ], when the emission wavelength is 6255.58 ± 0.2 [cm -1 ]
12 CO 2 optical absorption spectrum and emission wavelength 6255.1
4 ± 0.2 [cm -1] 13 CO 2 of the light absorption spectrum when the light emission wavelength when the wavenumber 6257.29 ± 0.2 [cm -1] 12
The light absorption spectrum of CO 2 and the emission wavelength of wave number 6257.51
Optical absorption spectrum of 13 CO 2 at ± 0.2 [cm −1 ],
12 CO when emission wavelength is 6258.88 ± 0.2 [cm -1 ]
2 light absorption spectrum and the emission wavelength is wave number 6258.64 ± 0.
2 [cm -1] optical absorption spectrum, and the light absorption spectrum of the 12 CO 2 when the emission wavelength wavenumber 6261.01 ± 0.2 [cm -1], emission wavelength wavenumber 6,260.80 ± 0.2 of 13 CO 2 in the case of
[Cm -1] 13 CO 2 of the light absorption spectrum when the, the light absorption spectrum of the 12 CO 2 when the emission wavelength wavenumber 6261.65 ± 0.2 [cm -1], emission wavelength wavenumber 6261.83 ± 0.2 [cm
-1 ], the optical absorption spectrum of 13 CO 2 at an emission wavelength of 6252.77 ± 0.2 [cm -1 ] and the optical absorption spectrum of 12 CO 2 at an emission wavelength of 6252.77 ± 0.2 [cm -1 ]
Absorption spectrum of 13 CO 2 and emission wavelength
6251.77 ± 0.2 [cm -1] and the light absorption spectrum of the 12 CO 2 in the case of, 13 CO 2 in the optical absorption spectrum when the emission wavelength wavenumber 6251.32 ± 0.2 [cm -1], emission wavelength wavenumber 624
The optical absorption spectrum of 12 CO 2 at 9.67 ± 0.2 [cm -1 ] and the optical absorption spectrum of 13 CO 2 at the emission wavelength of 6249.98 ± 0.2 [cm -1 ], the emission wavelength of 6228.6
The absorption spectrum of 12 CO 2 at 9 ± 0.2 [cm -1 ] and 13 at the emission wavelength of wave number 6228.44 ± 0.2 [cm -1 ]
CO 2 light absorption spectrum, emission wavelength is wavenumber 6231.72 ±
The optical absorption spectrum of 12 CO 2 at 0.2 [cm −1 ],
13 CO when the emission wavelength is 6232.03 ± 0.2 [cm -1 ]
2 light absorption spectrum, emission wavelength wave number 6233.19 ± 0.2
[Cm -1] and 12 CO 2 of the light absorption spectrum when the, 13 CO 2 in the optical absorption spectrum when the emission wavelength wavenumber 6233.77 ± 0.2 [cm -1], emission wavelength wavenumber 6226.35 ± 0.2 [cm
-1] and 12 CO 2 of the light absorption spectrum when the, 13 CO 2 in the optical absorption spectrum when the emission wavelength wavenumber 6226.59 ± 0.2 [cm -1], emission wavelength wavenumber 6223.13 ± 0.2 [cm -1]
The light absorption spectrum of 12 CO 2 at that time and the light absorption spectrum of 13 CO 2 at an emission wavelength of wave number 6222.79 ± 0.2 [cm −1 ] may be used, and the same preferable results are obtained as described above.

【0035】また、本実施例では、一個の半導体レーザ
1を温度制御してその発光波長を掃引したが、半導体レ
ーザ1の駆動電流を制御して夫々の波数近辺を掃引する
構成にしても良く、あるいは、半導体レーザ1を二個用
いて夫々の波数近辺のレーザ光を同時に発振させて、試
料セル2内に交互に入射させても良い。
Further, in the present embodiment, the temperature of one semiconductor laser 1 is controlled to sweep the emission wavelength thereof, but the driving current of the semiconductor laser 1 may be controlled to sweep near the respective wave numbers. Alternatively, two semiconductor lasers 1 may be used to simultaneously oscillate the laser beams in the vicinity of the respective wave numbers, and make the laser beams enter the sample cell 2 alternately.

【0036】更に、半導体レーザ1の周波数変調は電流
変調により行っているが、外部にEO変調器(Electro-
Opyic Modulator )を設けて変調しても良い。
Further, although the frequency modulation of the semiconductor laser 1 is performed by current modulation, an EO modulator (Electro-
Opyic Modulator) may be provided for modulation.

【0037】このように、本実施例では、13CO2 ガス
の光吸収強度が強く、且つ、12CO2 ガスとの相互影響
や水分等の影響を受けない二種類のスペクトル強度をロ
ックイン増幅器6で測定するようにしたので、外乱の影
響を除去することができる。
As described above, in the present embodiment, the lock-in amplifier has two kinds of spectral intensities, which are strong in light absorption intensity of 13 CO 2 gas and which are not affected by mutual influence with 12 CO 2 gas or moisture. Since the measurement is performed in No. 6, the influence of disturbance can be removed.

【0038】また、発光スペクトル幅が非常に狭く、小
型で信頼性の高い近赤外域の半導体レーザ光を波長可変
光源とし、しかもこれをほぼ100%利用してロックイ
ン増幅器6で測定しているため、同位体比を高精度且つ
高感度で測定することができ、信頼性の高い炭素同位体
分析装置を実現することができる。
Further, the semiconductor laser light in the near infrared region, which has a very narrow emission spectrum width, is small and has high reliability, is used as a wavelength tunable light source, and the wavelength is used almost 100% to measure with the lock-in amplifier 6. Therefore, the isotope ratio can be measured with high accuracy and high sensitivity, and a highly reliable carbon isotope analyzer can be realized.

【0039】[0039]

【発明の効果】以上、詳細に説明したように、本発明の
炭素同位体分析装置では、小型で信頼性が高く、近赤外
域のスペクトル幅が非常に狭い半導体レーザを波長可変
光源として用い、且つ、その発光波長を適度に近接した
特定の波数のものにしたので、炭素同位体相互の吸収の
影響や、水分等のスペクトルの影響を受けることなく、
12CO2 13CO2 との同位体比を高精度、高感度に同
位体比をトレースすることができる。
As described above in detail, in the carbon isotope analysis apparatus of the present invention, a semiconductor laser having a small size, high reliability, and a very narrow spectral width in the near infrared region is used as a wavelength tunable light source, Moreover, since the emission wavelength was set to a specific wave number that was reasonably close to each other, the influence of mutual absorption of carbon isotopes and the influence of the spectrum of water and the like,
The isotope ratio of 12 CO 2 and 13 CO 2 can be traced with high accuracy and high sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用する炭素同位体分析装置の一実施
例を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a carbon isotope analyzer to which the present invention is applied.

【図2】本実施例により測定されたCO2 の赤外吸収ス
ペクトル図である。
FIG. 2 is an infrared absorption spectrum diagram of CO 2 measured in this example.

【図3】従来の同位体分析装置の一例を示すブロック図
である。
FIG. 3 is a block diagram showing an example of a conventional isotope analyzer.

【図4】(a)は12CO2 の赤外吸収スペクトル図、
(b)は13CO2 の赤外吸収スペクトル図である。
FIG. 4 (a) is an infrared absorption spectrum of 12 CO 2 .
(B) is an infrared absorption spectrum of 13 CO 2 .

【図5】従来の同位体分析装置により測定されたCO2
の赤外吸収スペクトル図である。
FIG. 5: CO 2 measured by a conventional isotope analyzer
FIG. 3 is an infrared absorption spectrum diagram of

【符号の説明】[Explanation of symbols]

1 半導体レーザ 2,11 試料セル 3,12 試料ガス導入口 4,13 試料ガス排出口 5,18 光検出器 6 ロックイン増幅器 7 温度制御部 8 電流制御部 9 発振器 10 ランプ 15 ミラー 16 回折格子 17 スリット 1 Semiconductor Laser 2,11 Sample Cell 3,12 Sample Gas Inlet 4,13 Sample Gas Outlet 5,18 Photodetector 6 Lock-in Amplifier 7 Temperature Controller 8 Current Controller 9 Oscillator 10 Lamp 15 Mirror 16 Diffraction Grating 17 slit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光吸収スペクトル強度比に基づいて複数
の炭素同位体12CO213CO2 とが混在する被検物の
同位体比を検出する同位体分析装置において、 近赤外線の半導体レーザと、この半導体レーザの発振波
長を掃引する手段と、この半導体レーザに周波数変調を
かける周波数変調手段と、この半導体レーザより発せら
れ前記複数の炭素同位体が混在する被検物を通過したレ
ーザ光を検出する光検出器と、前記周波数変調手段にて
得られた変調周波数と前記光検出器で検出した前記レー
ザ光の信号周波数との整合を検出するロックイン増幅器
とを有し、前記半導体レーザの発光波長が、波数6253.7
3 ±0.2 cm-1のときの12CO2 の光吸収スペクトルと、
同じく発光波長が波数6253.90 cm-1のときの13CO2
光吸収スペクトルとの強度比を検出するようにしたこと
を特徴とする炭素同位体分析装置。
1. A near-infrared semiconductor laser in an isotope analyzer for detecting an isotope ratio of an analyte in which a plurality of carbon isotopes 12 CO 2 and 13 CO 2 are mixed based on an optical absorption spectrum intensity ratio. A means for sweeping the oscillation wavelength of the semiconductor laser, a frequency modulating means for frequency-modulating the semiconductor laser, and a laser beam emitted from the semiconductor laser and having passed through an object in which the plurality of carbon isotopes are mixed. And a lock-in amplifier for detecting a match between the modulation frequency obtained by the frequency modulation means and the signal frequency of the laser light detected by the photodetector, and the semiconductor laser Emission wavelength is 6253.7
The optical absorption spectrum of 12 CO 2 at 3 ± 0.2 cm -1 ,
Similarly, the carbon isotope analyzer is characterized in that the intensity ratio with the optical absorption spectrum of 13 CO 2 when the emission wavelength is 6253.90 cm −1 is detected.
【請求項2】 前記光吸収スペクトル強度比が、前記半
導体レーザの発光波長が波数6254.67 ±0.2 cm-1のとき
12CO2 の光吸収スペクトルと、発光波長が波数625
5.14 ±0.2 cm-1のときの13CO2 の光吸収スペクトル
との強度比、 発光波長が波数6255.58 ±0.2 cm-1のときの12CO2
光吸収スペクトルと、発光波長が波数6255.14 ±0.2 cm
-1のときの13CO2 の光吸収スペクトルとの強度比、 発光波長が波数6257.29 ±0.2 cm-1のときの12CO2
光吸収スペクトルと、発光波長が波数6257.51 ±0.2 cm
-1のときの13CO2 の光吸収スペクトルとの強度比、 発光波長が波数6258.88 ±0.2 cm-1のときの12CO2
光吸収スペクトルと、発光波長が波数6258.64 ±0.2 cm
-1のときの13CO2 の光吸収スペクトルとの強度比、 発光波長が波数6261.01 ±0.2 cm-1のときの12CO2
光吸収スペクトルと、発光波長が波数6260.80 ±0.2 cm
-1のときの13CO2 の光吸収スペクトルとの強度比、 発光波長が波数6261.65 ±0.2 cm-1のときの12CO2
光吸収スペクトルと、発光波長が波数6261.83 ±0.2 cm
-1のときの13CO2 の光吸収スペクトルとの強度比、 発光波長が波数6252.77 ±0.2 cm-1のときの12CO2
光吸収スペクトルと、発光波長が波数6252.63 ±0.2 cm
-1のときの13CO2 の光吸収スペクトルとの強度比、 発光波長が波数6251.77 ±0.2 cm-1のときの12CO2
光吸収スペクトルと、発光波長が波数6251.32 ±0.2 cm
-1のときの13CO2 の光吸収スペクトルとの強度比、 発光波長が波数6249.67 ±0.2 cm-1のときの12CO2
光吸収スペクトルと、発光波長が波数6249.98 ±0.2 cm
-1のときの13CO2 の光吸収スペクトルとの強度比、 発光波長が波数6228.69 ±0.2 cm-1のときの12CO2
光吸収スペクトルと、発光波長が波数6228.44 ±0.2 cm
-1のときの13CO2 の光吸収スペクトルとの強度比、 発光波長が波数6231.72 ±0.2 cm-1のときの12CO2
光吸収スペクトルと、発光波長が波数6232.03 ±0.2 cm
-1のときの13CO2 の光吸収スペクトルとの強度比、 発光波長が波数6233.19 ±0.2 cm-1のときの12CO2
光吸収スペクトルと、発光波長が波数6233.77 ±0.2 cm
-1のときの13CO2 の光吸収スペクトルとの強度比、 発光波長が波数6226.35 ±0.2 cm-1のときの12CO2
光吸収スペクトルと、発光波長が波数6226.59 ±0.2 cm
-1のときの13CO2 の光吸収スペクトルとの強度比、 発光波長が波数6223.13 ±0.2 cm-1のときの12CO2
光吸収スペクトルと、発光波長が波数6222.79 ±0.2 cm
-1のときの13CO2 の光吸収スペクトルとの強度比であ
ることを特徴とする請求項1記載の炭素同位体分析装
置。
2. The optical absorption spectrum intensity ratio of 12 CO 2 when the emission wavelength of the semiconductor laser is 6254.67 ± 0.2 cm −1 and the emission wavelength is 625
The intensity ratio to the light absorption spectrum of 13 CO 2 at 5.14 ± 0.2 cm −1 , the light absorption spectrum of 12 CO 2 at an emission wavelength of 6255.58 ± 0.2 cm −1 , and the light absorption wavelength of 6255.14 ± 0.2 cm
Intensity ratio with the light absorption spectrum of 13 CO 2 at -1 , the light absorption spectrum of 12 CO 2 when the emission wavelength is 6257.29 ± 0.2 cm -1 , and the emission wavelength is 6257.51 ± 0.2 cm
The intensity ratio with the light absorption spectrum of 13 CO 2 at -1 , the light absorption spectrum of 12 CO 2 at the emission wavelength of 6258.88 ± 0.2 cm -1 , and the emission wavelength of 6258.64 ± 0.2 cm
The intensity ratio with the light absorption spectrum of 13 CO 2 at -1 , the light absorption spectrum of 12 CO 2 when the emission wavelength is 6261.01 ± 0.2 cm -1 , and the emission wavelength is 6260.80 ± 0.2 cm
The intensity ratio with the light absorption spectrum of 13 CO 2 at -1 , the light absorption spectrum of 12 CO 2 at the emission wavelength of 6261.65 ± 0.2 cm -1 , and the emission wavelength of wave number 6261.83 ± 0.2 cm
The intensity ratio with the light absorption spectrum of 13 CO 2 at -1 and the light absorption spectrum of 12 CO 2 when the emission wavelength is 6252.77 ± 0.2 cm -1 and the emission wavelength is 6252.63 ± 0.2 cm
The intensity ratio to the light absorption spectrum of 13 CO 2 at -1 and the light absorption spectrum of 12 CO 2 at the emission wavelength of 6251.77 ± 0.2 cm -1 and the emission wavelength of 6251.32 ± 0.2 cm
The intensity ratio with the light absorption spectrum of 13 CO 2 at -1 and the light absorption spectrum of 12 CO 2 when the emission wavelength is 6249.67 ± 0.2 cm -1 and the emission wavelength is 6249.98 ± 0.2 cm
Intensity ratio between the 13 CO 2 light absorption spectrum when -1, the light absorption spectrum of the 12 CO 2 when the emission wavelength wavenumber 6,228.69 ± 0.2 cm -1, emission wavelength wavenumber 6,228.44 ± 0.2 cm
The intensity ratio with the light absorption spectrum of 13 CO 2 at -1 , the light absorption spectrum of 12 CO 2 when the emission wavelength is 6231.72 ± 0.2 cm -1 , and the light absorption wavelength of 6232.03 ± 0.2 cm
The intensity ratio with the light absorption spectrum of 13 CO 2 at -1 , the light absorption spectrum of 12 CO 2 at the emission wavelength of 6233.19 ± 0.2 cm -1 , and the emission wavelength of 6233.77 ± 0.2 cm
The intensity ratio with the light absorption spectrum of 13 CO 2 at -1 and the light absorption spectrum of 12 CO 2 at the emission wavelength of wave number 6226.35 ± 0.2 cm -1 and the emission wavelength of wave number 6226.59 ± 0.2 cm
The intensity ratio with the light absorption spectrum of 13 CO 2 at -1 , the light absorption spectrum of 12 CO 2 at the emission wavelength of 6223.13 ± 0.2 cm -1 , and the emission wavelength of 6222.79 ± 0.2 cm
2. The carbon isotope analysis device according to claim 1, wherein the intensity ratio is the intensity ratio with respect to the optical absorption spectrum of 13 CO 2 at -1 .
JP9625192A 1992-04-16 1992-04-16 Carbon isotope analyzing instrument Pending JPH05296922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9625192A JPH05296922A (en) 1992-04-16 1992-04-16 Carbon isotope analyzing instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9625192A JPH05296922A (en) 1992-04-16 1992-04-16 Carbon isotope analyzing instrument

Publications (1)

Publication Number Publication Date
JPH05296922A true JPH05296922A (en) 1993-11-12

Family

ID=14159999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9625192A Pending JPH05296922A (en) 1992-04-16 1992-04-16 Carbon isotope analyzing instrument

Country Status (1)

Country Link
JP (1) JPH05296922A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843304A (en) * 1994-07-29 1996-02-16 Ando Electric Co Ltd Detecting device for light absorption frequency of gas
WO1999046580A1 (en) * 1998-03-11 1999-09-16 Nippon Sanso Corporation Gas spectrochemical analyzer, and spectrochemical analyzing method
US6274870B1 (en) 1995-10-09 2001-08-14 Otsuka Pharmaceutical Co.,Ltd. Method for spectrometrically measuring isotopic gas and apparatus thereof
WO2002018918A1 (en) * 2000-08-31 2002-03-07 Japan Science And Technology Corporation Isotopomer absorption spectrochemical analysis method and apparatus therefor
US6444985B1 (en) 1997-01-14 2002-09-03 Otsuka Pharmaceutical Co., Ltd. Stable isotope measurement method and apparatus by spectroscopy
DE4419458C2 (en) * 1994-06-03 2003-11-27 Fisher Rosemount Gmbh & Co Ges Method for measuring the purity of carbon dioxide
JP2010032454A (en) * 2008-07-31 2010-02-12 Fuji Electric Systems Co Ltd Gas analyzer and gas analysis method
US7749436B2 (en) 2003-10-31 2010-07-06 Otsuka Pharmaceutical Co., Ltd. Gas injection amount determining method in isotope gas analysis, and isotope gas analyzing and measuring method and apparatus
JP2011117732A (en) * 2009-11-30 2011-06-16 Toyota Motor Corp Hydrocarbon concentration measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342889A (en) * 1976-09-30 1978-04-18 Nippon Bunko Kogyo Kk Measuring method of methabolism function of organ
JPS5513071A (en) * 1978-07-13 1980-01-29 Yukio Sasaki Largeescale mannmade gatheringgplace for fish
JPH0442041A (en) * 1990-06-08 1992-02-12 Japan Radio Co Ltd Isotope analyzer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342889A (en) * 1976-09-30 1978-04-18 Nippon Bunko Kogyo Kk Measuring method of methabolism function of organ
JPS5513071A (en) * 1978-07-13 1980-01-29 Yukio Sasaki Largeescale mannmade gatheringgplace for fish
JPH0442041A (en) * 1990-06-08 1992-02-12 Japan Radio Co Ltd Isotope analyzer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4419458C2 (en) * 1994-06-03 2003-11-27 Fisher Rosemount Gmbh & Co Ges Method for measuring the purity of carbon dioxide
JPH0843304A (en) * 1994-07-29 1996-02-16 Ando Electric Co Ltd Detecting device for light absorption frequency of gas
US6274870B1 (en) 1995-10-09 2001-08-14 Otsuka Pharmaceutical Co.,Ltd. Method for spectrometrically measuring isotopic gas and apparatus thereof
US6444985B1 (en) 1997-01-14 2002-09-03 Otsuka Pharmaceutical Co., Ltd. Stable isotope measurement method and apparatus by spectroscopy
US6455852B2 (en) 1997-01-14 2002-09-24 Otsuka Pharmaceutical Co., Ltd. Stable isotope measurement method and apparatus by spectroscopy
WO1999046580A1 (en) * 1998-03-11 1999-09-16 Nippon Sanso Corporation Gas spectrochemical analyzer, and spectrochemical analyzing method
US6519039B1 (en) 1998-03-11 2003-02-11 Nippon Sanso Corporation Gas spectrochemical analyzer, and spectrochemical analyzing method
WO2002018918A1 (en) * 2000-08-31 2002-03-07 Japan Science And Technology Corporation Isotopomer absorption spectrochemical analysis method and apparatus therefor
JP2002071557A (en) * 2000-08-31 2002-03-08 Japan Science & Technology Corp Method and apparatus for isotopomer absorption spectral analysis
US7749436B2 (en) 2003-10-31 2010-07-06 Otsuka Pharmaceutical Co., Ltd. Gas injection amount determining method in isotope gas analysis, and isotope gas analyzing and measuring method and apparatus
JP2010032454A (en) * 2008-07-31 2010-02-12 Fuji Electric Systems Co Ltd Gas analyzer and gas analysis method
JP2011117732A (en) * 2009-11-30 2011-06-16 Toyota Motor Corp Hydrocarbon concentration measuring device

Similar Documents

Publication Publication Date Title
Zahniser et al. Measurement of trace gas fluxes using tunable diode laser spectroscopy
US3679899A (en) Nondispersive gas analyzing method and apparatus wherein radiation is serially passed through a reference and unknown gas
US5786893A (en) Raman spectrometer
KR101706640B1 (en) Optical signal processing method and apparatus for analysing time-decay signals
US6639678B1 (en) Apparatus and method for nondestructive monitoring of gases in sealed containers
JP2522865B2 (en) Carbon isotope analyzer
US9110006B1 (en) Frequency-feedback cavity enhanced spectrometer
US5519219A (en) Portable filter infrared spectrometer
JPH05296922A (en) Carbon isotope analyzing instrument
HU226449B1 (en) Method and device for selective determining contaminating components of a gaseous sample on photoacoustic principle using distant exciting wavelengths
Long et al. Comparison of step-scan and rapid-scan approaches to the measurement of mid-infrared Fourier transform vibrational circular dichroism
Hueber et al. Fast scanning synchronous luminescence spectrometer based on acousto-optic tunable filters
JPH0617869B2 (en) Isotope analyzer
Ko et al. Measurement of 14CO2 using off-axis integrated cavity output spectroscopy
JPH0618411A (en) Carbon isotope analyzer
Friedrichs Sensitive absorption methods for quantitative gas phase kinetic measurements. Part 2: Cavity ringdown spectroscopy
RU2319136C1 (en) Method and device for determining relative concentration of isopolymers of carbon dioxide
Werle Analytical applications of infrared semiconductor lasers in atmospheric trace gas monitoring
JPH10142147A (en) Method for measuring concentration of nitrogen oxides
RU2453826C2 (en) Method of comparing abundance of 12co2 and 13co2 isotopomers in samples of gas mixtures and apparatus for comparing abundance of 12co2 and 13co2 isotopomers in samples of gas mixtures
Sadiek et al. Two species–one wavelength detection based on selective optical saturation spectroscopy
JPH05340872A (en) Carbon isotope analyzing instrument
Thiébeau et al. Dual-beam laser heterodyne spectrometer: Ethylene absorption spectrum in the 10 μm range
JP2009058527A (en) Ndir photometer for measuring multiple components
JPS63140941A (en) Infrared gas analyzer

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970527