JPH05292109A - Connection system for call acommodated in logical path distributingly in cell asynchronous transfer network - Google Patents

Connection system for call acommodated in logical path distributingly in cell asynchronous transfer network

Info

Publication number
JPH05292109A
JPH05292109A JP4134096A JP13409692A JPH05292109A JP H05292109 A JPH05292109 A JP H05292109A JP 4134096 A JP4134096 A JP 4134096A JP 13409692 A JP13409692 A JP 13409692A JP H05292109 A JPH05292109 A JP H05292109A
Authority
JP
Japan
Prior art keywords
call
communication
cell
switching node
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4134096A
Other languages
Japanese (ja)
Inventor
Jiyuurou Takase
柔郎 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4134096A priority Critical patent/JPH05292109A/en
Publication of JPH05292109A publication Critical patent/JPH05292109A/en
Pending legal-status Critical Current

Links

Landscapes

  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

PURPOSE:To uniformize the cell communication density by sequentially estimating and comparing a percentage delay of each communication path between outgoing and incoming exchange nodes for each call according to a traffic changing time to time in various ways and selecting a communication path with a minimum estimated value so as to connect the call. CONSTITUTION:A path information reader 2 references a path table 3 based on identification information of a called exchange node from an input terminal 1 to read a coordinate of a relay exchange node forming plural communication paths to reach the called exchange node. Based on the coordinate, a load factor reader 4 references a load factor table 5 to read the load factor of a relay node of each communication path. Based on the load factor, a P delay calculation device 6 calculates a delay percentage reaching the called exchange node from its own node for each communication path. A P delay comparison minimum path discrimination device 7 compares delays based on the result of calculation and informs a minimum communication path to a cell exchange use connection table 8. Thus, the cell communication density in an in-network transmission line is uniformized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非同期転送モード通信
網におけるセルの統計多重によって伝送路へ論理パスを
収容し、呼を接続する通信に対するセル非同期転送網内
論理パス分散収容呼接続方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a call connection system for accommodating logical paths in a cell asynchronous transfer network for communication in which logical paths are accommodated in a transmission line by statistical multiplexing of cells in an asynchronous transfer mode communication network and calls are connected. ..

【0002】[0002]

【従来の技術】従来のサービス毎に構築された通信網に
対して、次世代のBISDN(高速広帯域サービス総合
ディジタル網)においては、ATM(非同期転送モー
ド)方式によるデータ転送が実現される動向にある。
2. Description of the Related Art In the next-generation BISDN (high-speed broadband integrated service digital network), data transfer by the ATM (asynchronous transfer mode) system is being realized in the next-generation BISDN (high-speed broadband service integrated digital network), in contrast to conventional communication networks constructed for each service. is there.

【0003】このATM方式においては、半固定的に予
め複数設定しておく仮想論理パスを呼毎に選択するバー
チャルパス方式を用いた呼接続方式が採用される動向に
ある(例えば、佐藤健一,太田聡,鴇沢郁男:”バーチ
ャルパスの概念を用いた広帯域統合伝達網の構成”,信
学論,J72−B−I,11,pp.904−916,
1989−11参照)。
In this ATM system, a call connection system using a virtual path system in which a plurality of semi-fixed virtual logical paths are selected for each call tends to be adopted (for example, Kenichi Sato, Satoshi Ohta, Ikuo Toisawa: "Construction of Broadband Integrated Transmission Network Using the Concept of Virtual Path", Theological Theory, J72-BI, 11, pp.904-916,
1989-11).

【0004】バーチャルパス方式では、バーチャルパス
の選択権をアクセスノードと呼ばれる交換ノードだけに
持たせ、網内のトラヒック監視と通信経路選択表(ルー
ティングテーブル)の制御等の集中的な網管理を行うの
で、閉塞・障害・輻輳の発生時に、即時に適応的な通信
経路を探索し、適切な論理パスを選択もしくは設定しな
ければならない。
In the virtual path system, only the switching node called an access node is given the right to select a virtual path to perform centralized network management such as traffic monitoring in the network and control of a communication route selection table (routing table). Therefore, it is necessary to immediately search for an adaptive communication path and select or set an appropriate logical path when blockage, failure, or congestion occurs.

【0005】[0005]

【発明が解決しようとする課題】上述のBISDNにお
けるトラヒックは、サービス総合がもたらす多元トラヒ
ック(多呼種)の混在に起因して、時々刻々多様で且つ
動的な様相を呈する。特に、広帯域バースト信号の集中
あるいは障害発生等によって、網内で局所的にトラヒッ
ク急上昇が生じた場合に、バッファ溢れ等による呼の廃
棄を防ぐと共に、発着交換ノード間のセル非同期転送に
要するパーセント遅延(遅延のパーセント値のことであ
り、例えば、佐藤陽一,佐藤健一:”多ノード待合せ系
の遅延解析”,信学論,J71−B,6,pp.669
−677,1988−06参照)を抑制する等の、極め
て高い信頼性を保つことが要求される。
The traffic in the above-mentioned BISDN has various and dynamic appearances due to the mixture of multiple traffics (multi-call types) brought about by the integrated services. In particular, when the traffic bursts locally in the network due to the concentration of broadband burst signals or the occurrence of failures, call discard due to buffer overflow is prevented, and the percent delay required for cell asynchronous transfer between the originating and terminating switching nodes. (It is a percentage value of delay, and is, for example, Yoichi Sato, Kenichi Sato: "Delay analysis of multi-node queuing system", IEICE, J71-B, 6, pp.669.
-677, 1988-06)), it is required to maintain extremely high reliability.

【0006】それには、分散網(例えば、尾佐竹徇,田
中英彦:”分散形交換網”,信学論,51−A,6,p
p.230−237,1968−06;尾佐竹徇:”高
度情報化時代の通信網について”,信学誌,65,3,
pp.230−233,1982−03;高瀬柔郎:”
基本分散形交換網の経路特性”,信学論,J74−B−
I,9,pp.655−665,1991−09参照)
等のように,発着交換ノードの間に通信経路を多く有す
る通信網を構築することが有効である。
A distributed network (for example, Ryo Osatake, Hidehiko Tanaka: "Distributed Switching Network", Theological Theory, 51-A, 6, p.
p. 230-237, 1968-06; Ryo Osatake: "On the communication network in the advanced information age", SIJ, 65, 3,
pp. 230-233, 1982-03; Jiro Takase: ”
Path Characteristics of Basic Distributed Switching Networks ", Theological Theory, J74-B-
I, 9, pp. (See 655-665, 1991-09)
It is effective to construct a communication network that has many communication routes between the originating and terminating switching nodes.

【0007】本発明は、セル非同期転送通信網内におけ
る広帯域バースト信号の集中あるいは障害発生等によっ
て局所的にトラヒック急上昇が生じた場合に、そのトラ
ヒック急上昇領域を避けてセル非同期転送を行わせるこ
とによって中継交換ノードでのバッファ溢れによるセル
廃棄およびセル遅延の増大を抑制するために、常時、呼
毎に発着交換ノード間の複数の通信経路(伝送路)に論
理パスを分散させて収容し、網内の各伝送路のセル流量
密度を均等化に向かわせるように呼を接続することを目
的とするセル非同期転送網内論理パス分散収容呼接続方
式。
According to the present invention, when a rapid traffic increase locally occurs due to the concentration of broadband burst signals in the cell asynchronous transfer communication network or the occurrence of a failure, the cell asynchronous transfer is performed by avoiding the sudden traffic increase region. In order to suppress cell discard and increase in cell delay due to buffer overflow at the relay switching node, the logical paths are always distributed and accommodated in a plurality of communication routes (transmission paths) between the source and destination switching nodes for each call. A call connection method for distributed logical paths in a cell asynchronous transfer network for the purpose of connecting calls so that the cell flow densities of transmission lines in the network are equalized.

【0008】[0008]

【課題を解決するための手段】本発明の上記目的は、以
下に述べる手段によって達成される。
The above objects of the present invention can be achieved by the means described below.

【0009】発着交換ノードの間に複数の通信経路を有
する代表的なセル非同期転送網の一実施例の平面略図を
図2に記す。図2は格子状通信網の例であり、格子状に
配置したリンクが交叉する点に交換ノードを配置する。
各交換ノードにおける発呼に対して、その交換ノード
は、その呼が申告する所要伝送路容量を受付け可能な場
合に、呼毎に着側交換ノードに向かう論理パスを分散さ
せて通信経路に収容し、その呼を接続する。
A plan schematic diagram of one embodiment of a typical cell asynchronous transfer network having a plurality of communication paths between originating and terminating switching nodes is shown in FIG. FIG. 2 is an example of a grid communication network, in which switching nodes are arranged at points where links arranged in a grid intersect.
For a call made at each switching node, if the required transmission line capacity declared by the call can be accepted, the switching node distributes the logical path to the destination switching node for each call and accommodates it in the communication path. And connect the call.

【0010】各交換ノードにおける一出方路に注目した
場合の、入方路との関係を図3に記す。図3は出力バッ
ファ形式を採用したセル交換機の略図の一例であり、図
中の丸記号はサーバーとも称される。発着交換ノードの
間の複数の各通信経路内の各中継交換ノード毎に、バッ
ファ入力に到着するセル信号による負荷率(伝送路使用
効率とも称される)を計測する。
FIG. 3 shows the relationship with the incoming route when paying attention to the one outgoing route in each switching node. FIG. 3 is an example of a schematic diagram of a cell exchange adopting an output buffer format, and a circle symbol in the figure is also called a server. The load factor (also called transmission line utilization efficiency) due to the cell signal arriving at the buffer input is measured for each relay switching node in each of the plurality of communication paths between the originating and terminating switching nodes.

【0011】この負荷率は、適切に定めた観測時間長の
間に到着するセル個数をその観測時間長で割算して得た
値に、サービス時間(通常、1セルの時間長)を掛算し
た数値を用い、通常、0よりも大、1よりも小なる値を
呈する。なお、負荷率が1以上の値を呈する場合は、通
常、重負荷と称し、通信網の能力を超えた輻輳状態を意
味するので、本発明が解決しようとする課題の範囲を超
える。
This load factor is obtained by dividing the number of cells arriving during an appropriately determined observation time length by the observation time length and multiplying the service time (usually the time length of one cell). A value larger than 0 and smaller than 1 is usually used. When the load factor takes a value of 1 or more, it is usually referred to as a heavy load and means a congestion state that exceeds the capacity of the communication network, which exceeds the range of the problem to be solved by the present invention.

【0012】図2中の発着交換ノードの間に設定しうる
M本の通信経路の一実施例の各平面略図を図4に記し、
そのM本の各通信経路に対応する通信経路表の一実施例
を表1に記す。
FIG. 4 is a schematic plan view showing one embodiment of M communication paths that can be set up between the originating and terminating switching nodes in FIG.
Table 1 shows an example of a communication path table corresponding to each of the M communication paths.

【0013】表1は、M本の各通信経路毎に、発側交換
ノードを第1番ノードと数え、以下着側交換ノードに向
かって順次中継交換ノードに番号を付し、最大N段の中
継段数を有する場合の、各中継交換ノードの座標(X,
Y)を、図2中に併記した座標を用いて表示した例であ
る。
In Table 1, for each of the M communication paths, the originating switching node is counted as the first node, and the relay switching nodes are sequentially numbered toward the terminating switching node. When the number of relay stages is included, the coordinates (X,
Y) is displayed using the coordinates shown in FIG.

【0014】セル非同期転送通信網内の各交換ノード
は、自ノードに到着するセルに対する負荷率を計測し、
トラヒック情報通知用の論理パスによって互いに通報し
合う。各交換ノードは、その通報を受ける毎に、その負
荷率を負荷率表に随時更新記憶する。
Each switching node in the cell asynchronous transfer communication network measures the load factor for the cell arriving at its own node,
The traffic information notification logical paths notify each other. Each exchange node updates and stores the load factor in the load factor table whenever it receives the notification.

【0015】セル非同期転送通信網内の各交換ノード
は、到着したセルからその着側交換ノードの識別情報を
読み出し、通信経路表を参照することによって、自ノー
ドからその着側交換ノードに至りうる複数の通信経路
と、各通信経路を形成する中継交換ノードを知る。
Each switching node in the cell asynchronous transfer communication network can reach the destination switching node from its own node by reading the identification information of the destination switching node from the arrived cell and referring to the communication route table. Know a plurality of communication paths and relay switching nodes forming each communication path.

【0016】その各通信経路を形成する中継交換ノード
における各負荷率を前記負荷率表から読み出し、その負
荷率に基づく計算によって、発着交換ノード間のパーセ
ント遅延を推定する。
Each load factor in the relay switching node forming each communication path is read from the load factor table, and the percent delay between the originating and destination switching nodes is estimated by calculation based on the load factor.

【0017】その各通信経路毎のパーセント遅延の推定
結果を比較することによって、最小の推定パーセント遅
延を呈する通信経路を判定する。
The communication path exhibiting the minimum estimated percent delay is determined by comparing the estimated results of the percent delay for each communication path.

【0018】その判定結果によるパーセント遅延が最小
な通信経路の一つに、前記到着セルを接続し、そのセル
の着側交換ノードへ向けて送出する。
The arriving cell is connected to one of the communication paths having the smallest percent delay according to the determination result, and the cell is sent to the destination switching node of the cell.

【0019】この接続処理を、前記論理パスを収容する
任務を担うセルに対して着側交換ノードに至る迄の発側
交換ノードを含む各中継交換ノードにおいて行う前記請
求項1記載のセル非同期転送網内論理パス分散収容呼接
続方式、または各中継交換ノードの複数の出方路側の負
荷率だけに基づいて行う前記請求項2記載のセル非同期
転送網内論理パス分散収容呼接続方式、または前記仮想
論理パスの選択もしくは設定の際に発側交換ノードだけ
で行う前記請求項3記載のセル非同期転送網内論理パス
分散収容呼接続方式によって、本発明の上記目的が達成
される。
The cell asynchronous transfer according to claim 1, wherein the connection processing is performed in each relay switching node including the originating switching node up to the destination switching node with respect to the cell having the task of accommodating the logical path. 3. The call connection method for accommodating logical path distribution in a network or the call connection method for accommodating logical path distribution in a cell asynchronous transfer network according to claim 2, which is performed based only on load factors on a plurality of outgoing routes of each relay switching node. The above object of the present invention is achieved by the logical path distributed accommodating call connection system in the cell asynchronous transfer network according to claim 3, which is performed only by the switching node on the originating side when selecting or setting the virtual logical path.

【0020】[0020]

【作用】前記通信網内の交換ノードから着側交換ノード
に至る複数の通信経路毎に、各通信経路内の中継交換ノ
ードにおける各負荷率に基づき、その各通信経路による
セル非同期転送に要するパーセント遅延の推定を行うた
めに、予め次の如くの準備を行っておく。
For each of a plurality of communication paths from the switching node in the communication network to the destination switching node, the percentage required for cell asynchronous transfer by each communication path based on each load factor in the relay switching node in each communication path. In order to estimate the delay, the following preparations are made in advance.

【0021】先ず、評価すべき100×Pパーセント
を、0<P<1の範囲の中から選定する。この値Pは、
通常、セルの規定損失率に基づいて、バッファ溢れによ
るセルの許容廃棄率等を参考にして定める。
First, 100 × P percent to be evaluated is selected from the range of 0 <P <1. This value P is
Usually, it is determined based on the specified loss rate of the cell with reference to the allowable discard rate of the cell due to buffer overflow.

【0022】次に、各通信経路内の発側交換ノードから
着側交換ノードに向かって数えて第i段中継交換ノード
に対する重み係数α(i,P);i=1,2,
3,...、および初段の重み係数β(1,P)を定め
る。99パーセント遅延(P=0.99)に関する重み
係数の実施例を表2に記す。なお、これらの重み係数の
数値には、前記ATM方式に特有な統計的多重化方式の
特性(例えば、山田博司,斎藤洋,川原崎雅敏:”AT
M網におけるトラヒック特性の解析”,NTT,R&
D,40,12,pp.1571−1580,199
1;佐藤陽一,中川健治,山中直明,佐藤健一:”AT
M網におけるCBRパスの収容設計法”,信学技報,C
S91−4,1991−05参照)に応じて、補正値を
加算または減算して用いる。
Next, the weighting factor α (i, P) for the i-th stage relay switching node counting from the source switching node to the destination switching node in each communication path; i = 1, 2,
3 ,. . . , And the weighting coefficient β (1, P) of the first stage. Examples of weighting factors for 99 percent delay (P = 0.99) are listed in Table 2. It should be noted that the values of these weighting factors include the characteristics of the statistical multiplexing method peculiar to the ATM method (for example, Hiroshi Yamada, Hiroshi Saito, Masatoshi Kawaharazaki: "AT
Analysis of Traffic Characteristics in M Network ", NTT, R &
D, 40, 12, pp. 1571-1580, 199
1; Yoichi Sato, Kenji Nakagawa, Naoaki Yamanaka, Kenichi Sato: "AT
CBR path accommodation design method in M network ", IEICE Technical Report, C
The correction value is added or subtracted according to S91-4, 1991-05).

【0023】以上の準備の下に、各通信経路を形成する
中継交換ノードの段数Nに応じて、発着交換ノード間の
100×Pパーセント遅延の前記サービス時間による正
規化推定値x、を、各i段中継交換ノードにおける負
荷率ρを基に、次の式または式によって計算す
る。但し、その中継段数Nには、発側交換ノードまたは
着側交換ノードの何れか一方を含めて数える。そのどら
らを含めるかは、各中継交換ノードが出力バッファ形式
であるか、入力バッファ形式であるか等による。
Under the above preparation, a normalized estimated value x N of 100 × P percent delay between the originating and terminating switching nodes according to the service time is calculated according to the number N of relay switching nodes forming each communication path. Based on the load factor ρ i at each i-stage relay switching node, calculation is performed by the following formula or formula. However, the relay stage number N includes either the originating exchange node or the terminating exchange node. Which gora is included depends on whether each relay switching node has an output buffer format or an input buffer format.

【0024】N=1の場合には、 x=β(1,P)〔1+{α(1,P)/2}ρ/(1−ρ)〕.... .. N≧2の場合には、 x=β(1,P)〔1+{α(1,P)/2}ρ/(1−ρ)〕 When N = 1, x 1 = β (1, P) [1+ {α (1, P) / 2} ρ i / (1-ρ i )]. . . . . . If N ≧ 2, then x N = β (1, P) [1+ {α (1, P) / 2} ρ i / (1-ρ i )]

【0025】網内の各発呼毎に、発着交換ノード間の複
数の各通信経路毎に、上式またはによって100×
Pパーセント遅延の推定値xを求め、それらを比較
し、最小値を呈する通信経路(伝送路)のうちの一つに
論理パスを収容することによって、網内の伝送路に論理
パスを分散させて収容する呼接続が可能になる。
For each call in the network, for each of the plurality of communication paths between the originating and terminating switching nodes, 100 ×
By obtaining the estimated value x N of P percent delay, comparing them, and accommodating the logical path in one of the communication paths (transmission paths) exhibiting the minimum value, the logical paths are distributed over the transmission paths in the network. A call connection can be accommodated.

【0026】[0026]

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0027】図1は、本発明のセル非同期転送網内論理
パス分散収容呼接続方式におけるセル交換機用接続表作
成器の一実施例の構成略図である。
FIG. 1 is a schematic configuration diagram of an embodiment of a connection table creator for a cell switch in the logical path distributed accommodating call connection system in the cell asynchronous transfer network of the present invention.

【0028】本発明の前記請求項1および請求項2記載
のセル非同期転送網内論理パス分散収容呼接続方式にお
いては、発側交換ノードを含む各中継交換ノードにおい
て、到着した前記論理パスを収容する任務を担うセル信
号が有する申告所要伝送路容量の識別情報を参照し、自
ノードで受付け不可能である場合にはそのセル信号を廃
棄し、受付け可能である場合には、そのセル信号の着側
交換ノードの識別情報信号を入力端子1に加える。
According to the first aspect and the second aspect of the present invention, in the logical path distributed accommodating call connection method within the cell asynchronous transfer network, each relay switching node including the originating switching node accommodates the arrived logical path. Refer to the identification information of the required transmission line capacity of the cell signal that is responsible for the task, discard the cell signal if the node cannot accept it, and discard the cell signal if the node can accept it. The identification information signal of the destination switching node is applied to the input terminal 1.

【0029】本発明の前記請求項3記載のセル非同期転
送網内論理パス分散収容呼接続方式においては、発側交
換ノードにおいて、呼の申告所要伝送路容量を受付け不
可能である場合にはその呼を拒絶し、受付け可能である
場合には着側交換ノードの識別情報信号を入力端子1に
加える。
In the call connection system for accommodating logical paths in a cell asynchronous transfer network according to the third aspect of the present invention, when the originating switching node cannot accept the required transmission line capacity of the call, If the call is rejected and the call can be accepted, the identification information signal of the destination switching node is added to the input terminal 1.

【0030】経路情報読出器2は、この着側交換ノード
の識別情報を基に、経路表3を参照し、着側交換ノード
に到達しうる複数の各通信経路を形成する中継交換ノー
ドの座標情報を読出し、負荷率読出器4へ伝達する。
The route information reader 2 refers to the route table 3 on the basis of the identification information of the destination switching node, and coordinates of the relay switching node forming a plurality of communication routes that can reach the destination switching node. The information is read and transmitted to the load factor reader 4.

【0031】負荷率読出器4は、この各通信経路の中継
交換ノードの座標情報を基に、負荷率表5を参照し、各
通信経路の中継交換ノードにおける負荷率を読出し、P
遅延計算器6へ伝達する。
The load factor reader 4 refers to the load factor table 5 on the basis of the coordinate information of the relay switching node of each communication route, reads the load factor at the relay switching node of each communication route, and P
It is transmitted to the delay calculator 6.

【0032】P遅延計算器6は、この各通信経路の中継
交換ノードにおける負荷率を基に、各通信経路毎に自ノ
ードから着側交換ノードへ到達する迄の100×Pパー
セント遅延を計算し、計算結果をP遅延比較・最小経路
判定器7へ伝達する。
The P delay calculator 6 calculates the 100 × P percent delay from the own node to the destination switching node for each communication path based on the load factor of the relay switching node of each communication path. , And transmits the calculation result to the P delay comparison / minimum path determiner 7.

【0033】P遅延比較・最小経路判定器7は、この各
通信経路の100×Pパーセント遅延を比較し、最小値
を呈する通信経路を判定し、そのうちの一つの通信経路
をセル交換機用接続表8に通知する。
The P delay comparison / minimum path judging unit 7 compares 100 × P percent delays of the respective communication paths, judges the communication path having the minimum value, and selects one communication path among the communication paths for the cell switching system. Notify 8.

【0034】前記請求項1および請求項2記載のセル非
同期転送網内論理パス分散収容呼接続方式においてはセ
ル交換機用接続表8に、この最小遅延を呈する通信経路
の出方路(伝送路)へ呼を接続するための出方路番号情
報、この呼を識別するための発側交換ノードの識別情報
と着側交換ノードの識別情報、および申告所要伝送路容
量に関する情報をそれぞれ登録する。この申告所要伝送
路容量に関する情報は、後続呼の受付判定に供する。
In the logical path distribution accommodating call connection system in the cell asynchronous transfer network according to the above-mentioned claim 1 and claim 2, the connection table 8 for the cell exchange shows the outgoing path (transmission path) of the communication path exhibiting this minimum delay. Outgoing route number information for connecting the call to, the identification information of the originating switching node and the identification information of the terminating switching node for identifying this call, and the information regarding the required transmission line capacity are registered. The information on the required transmission line capacity for declaration is provided for the acceptance judgment of the subsequent call.

【0035】前記請求項3記載のセル非同期転送網内論
理パス分散収容呼接続方式においてはセル交換機用接続
表8に、この最小遅延を呈する通信経路の仮想論理パス
へ呼を接続するための仮想論理パス識別情報と、申告所
要伝送路容量に関する情報とを登録する。この申告所要
伝送路容量に関する情報は、後続呼の受付判定に供す
る。
In the call connection method for accommodating logical paths in the cell asynchronous transfer network according to the third aspect of the present invention, the connection table 8 for the cell exchange is provided with a virtual connection for connecting the call to the virtual logical path of the communication path exhibiting the minimum delay. The logical path identification information and the information about the required transmission line capacity are registered. The information on the required transmission line capacity for declaration is provided for the acceptance judgment of the subsequent call.

【0036】前記請求項1および請求項3記載のセル非
同期転送網内論理パス分散収容呼接続方式においては、
網内全交換ノードから通報されてくる、各交換ノードに
おける負荷率に関する情報信号が入力端子9に加えら
れ、負荷率表5に随時更新記憶される。
In the call connection method for accommodating the logical paths in the cell asynchronous transfer network according to the first and third aspects,
An information signal concerning the load factor in each switching node, which is notified from all the switching nodes in the network, is added to the input terminal 9 and updated and stored in the load factor table 5 at any time.

【0037】前記請求項2記載のセル非同期転送網内論
理パス分散収容呼接続方式においては、出方路(伝送
路)側のバッファに対する負荷率に関する情報信号が入
力端子9に加えられ、負荷率表5に随時更新記憶され
る。この出方路側バッファは、各交換ノードが出力バッ
ファ形式を採用していれば自ノードに存在し、各交換ノ
ードが入力バッファ形式を採用していれば次段中継交換
ノードに存在する。
In the call connection method for accommodating the logical paths in the cell asynchronous transfer network according to the second aspect, an information signal relating to the load factor for the buffer on the outgoing route (transmission route) side is added to the input terminal 9 to load the load factor. It is updated and stored in Table 5 as needed. This output side buffer exists in the own node if each switching node adopts the output buffer format, and exists in the next stage relay switching node if each switching node adopts the input buffer format.

【0038】前記請求項1および請求項3記載のセル非
同期転送網内論理パス分散収容呼接続方式においては、
経路表3に、自ノードから他の各交換ノードに到達しう
る複数の各通信経路を形成する中継交換ノードの座標情
報を格納しておく。
[0038] In the call connection system for accommodating the logical paths in the cell asynchronous transfer network according to the first and third aspects,
The route table 3 stores the coordinate information of the relay switching nodes forming the plurality of communication routes from the own node to the other switching nodes.

【0039】前記請求項2記載のセル非同期転送網内論
理パス分散収容呼接続方式においては、経路表3に、自
ノードから他の各交換ノードに到達しうる複数の各通信
経路の出方路(伝送路)番号情報を、座標情報の代用と
して格納しておく。
In the call connection method for accommodating logical paths in a cell asynchronous transfer network according to the second aspect of the present invention, the route table 3 shows that the outgoing routes of a plurality of communication routes from the own node to each of the other switching nodes. (Transmission path) number information is stored as a substitute for the coordinate information.

【0040】[0040]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、発着交換ノードの間に複数の通信経路を有する
セル非同期転送通信網において、呼毎に発着交換ノード
の間の各通信経路のパーセント遅延を、時々刻々多様に
変化するトラヒックに対して逐次、推定・比較し、その
推定値が最小の通信経路を選択して呼を接続するので、
論理パスが通信経路(伝送路)に分散されて収容され、
網内の各伝送路のセル流量密度が均等化されると共に、
選択された通信経路によって発着交換ノード間のセル非
同期転送に要するパーセント遅延が最小に近づき、且つ
各中継交換ノードのバッファ容量を大きく等しく設定し
てFIFO(First in first out)
のサービス規律を採用する場合等にはバッファ溢れによ
るセル廃棄をも抑制しうるという効果を奏する。
As described above in detail, according to the present invention, in the cell asynchronous transfer communication network having a plurality of communication paths between the originating and terminating switching nodes, each communication between the originating and terminating switching nodes for each call. Since the percent delay of the route is sequentially estimated and compared with respect to the traffic which changes variously from moment to moment, and the communication route with the smallest estimated value is selected to connect the call,
Logical paths are distributed and accommodated in communication paths (transmission paths),
While the cell flow density of each transmission line in the network is equalized,
Depending on the selected communication path, the percent delay required for cell asynchronous transfer between the originating and terminating switching nodes approaches the minimum, and the buffer capacity of each relay switching node is set to be substantially equal to FIFO (First in first out).
When adopting the service discipline described in (1), cell discard due to buffer overflow can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における、セル交換機用接続表作成器の
一実施例を示した構成略図である。
FIG. 1 is a schematic diagram showing an embodiment of a connection table creator for a cell exchange according to the present invention.

【図2】本発明における、発着交換ノードの間に複数の
通信経路を有するセル非同期転送網の一実施例を示した
平面略図である。
FIG. 2 is a schematic plan view showing an embodiment of a cell asynchronous transfer network having a plurality of communication paths between originating and terminating switching nodes according to the present invention.

【図3】本発明における、交換ノードの一出方路に着目
した場合の交換ノードの一実施例を示した構成略図であ
る。
FIG. 3 is a schematic diagram showing an embodiment of a switching node when paying attention to one outgoing route of the switching node in the present invention.

【図4】本発明における、発着交換ノードの間に設定し
うるM本の通信経路の一実施例を示した各平面略図であ
る。
FIG. 4 is a schematic plan view showing one embodiment of M communication paths that can be set between the originating and terminating switching nodes in the present invention.

【符号の説明】[Explanation of symbols]

1 識別情報信号の入力端子 2 経路情報読出器 3 経路表 4 負荷率読出器 5 負荷率表 6 P遅延計算器 7 P遅延比較・最小経路判定器 8 セル交換機用接続表 9 負荷率に関する情報信号の入力端子 1 Identification information signal input terminal 2 Path information reader 3 Path table 4 Load factor reader 5 Load factor table 6 P delay calculator 7 P delay comparison / minimum route determiner 8 Cell switch connection table 9 Load factor information signal Input terminal

【表1】 [Table 1]

【表2】 [Table 2]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】少なくとも着側交換ノードの識別情報を有
するセル(ヘッダ付固定長ブロック)信号を用いてデー
タを非同期転送する通信網における発呼に対して、該呼
の着側交換ノードへ至りうる複数の通信経路のうちの一
つに該呼接続用の論理パスを収容する任務を担う、少な
くとも該呼の発側交換ノードの識別情報と着側交換ノー
ドの識別情報および該呼が申告する所要伝送路容量に関
する識別情報とを有するセル信号を該呼の着側交換ノー
ドへ向けて非同期転送する方式において、該セル信号が
経由する発側交換ノードを含む各中継交換ノードで、該
セル信号が該各中継交換ノードから着側交換ノードへ至
りうる複数の通信経路のうちで前記申告所要伝送路容量
を受付け可能な複数の該通信経路について、該通信経路
が経由する各中継交換ノードにおけるセルに関する負荷
率に基づいて該通信経路毎に遅延(系内時間)を推定
し、該各推定値を比較し、該推定値が最小な通信経路の
うちの一つに、前記識別情報を登録すると共に該通信経
路に前記セル信号を接続する手順を、該セル信号が着側
交換ノードに到達するまで漸次繰り返すことによって前
記論理パスを収容した後に、前記呼を接続することを特
徴とするセル非同期転送網内論理パス分散収容呼接続方
式。
1. A call originating in a communication network in which data is asynchronously transferred by using a cell (fixed length block with header) signal having at least identification information of the terminating exchange node, reaches the terminating exchange node of the call. One of a plurality of possible communication paths, which is responsible for accommodating the logical path for the call connection, at least the identification information of the originating switching node of the call and the identification information of the destination switching node, and the call is declared. In the method of asynchronously transferring a cell signal having identification information about the required transmission line capacity toward the destination switching node of the call, at each relay switching node including the originating switching node through which the cell signal passes, the cell signal Among the plurality of communication paths that can reach the destination switching node from each relay switching node, the relays through which the communication paths can pass for the plurality of communication paths that can receive the declared required transmission path capacity The delay (in-system time) is estimated for each communication path based on the load factor related to the cell in the exchange node, the estimated values are compared, and the identification is made to one of the communication paths having the smallest estimated value. The call is connected after accommodating the logical path by gradually repeating the procedure of registering information and connecting the cell signal to the communication path until the cell signal reaches the destination switching node. A call connection method that accommodates distributed logical paths in a cell asynchronous transfer network.
【請求項2】前記通信網内の発呼に対して、前記呼接続
用の論理パスを収容する任務を担うセル信号を該呼の着
側交換ノードへ向けて非同期転送する方式において、該
セル信号が経由する発側交換ノードを含む各中継交換ノ
ードで、該セル信号が該各中継交換ノードから着側交換
ノードへ至りうる複数の通信経路のうち、前記申告所要
伝送路容量を受付け可能な複数の該通信経路について、
前記各中継交換ノードの各出方路(伝送路)側バッファ
のセルに関する負荷率をそれぞれ比較し、該負荷率が最
小な通信経路のうちの一つに、前記識別情報を登録する
と共に前記セル信号を接続する手順を、該セル信号が着
側交換ノードに到達するまで漸次繰り返すことによって
前記論理パスを収容した後に、前記呼を接続することを
特徴とする請求項1記載のセル非同期転送網内論理パス
分散収容呼接続方式。
2. A method of asynchronously transferring a cell signal, which is responsible for accommodating a logical path for call connection, to a destination switching node of the call in response to a call in the communication network. The relay switching node including the originating switching node through which the signal passes can accept the declaration required transmission path capacity among a plurality of communication paths through which the cell signal can reach from the relay switching node to the destination switching node. For the plurality of communication paths,
The load factors relating to the cells of the respective egress route (transmission route) side buffers of the respective relay switching nodes are respectively compared, and the identification information is registered in one of the communication routes having the smallest load factor and the cells are 2. The cell asynchronous transfer network according to claim 1, wherein the call is connected after accommodating the logical path by gradually repeating a procedure for connecting a signal until the cell signal reaches the destination switching node. Internal logical path distributed accommodation call connection method.
【請求項3】前記通信網内の発呼に対して、該呼の発側
交換ノードと着側交換ノードとの間の複数の通信経路の
それぞれに予め設定しておく仮想論理パスのうちから一
つを選択する方式において、該複数の通信経路のうちで
該呼が申告する所要伝送路容量を受付け可能な複数の該
通信経路について、該通信経路が経由する各中継交換ノ
ードにおけるセルに関する負荷率に基づいて該通信経路
毎に遅延を推定し、該各推定値を比較し、該推定値が最
小な該通信経路のうちの一つに、前記呼の前記識別情報
と、前記申告所要伝送路容量に関する識別情報とを登録
することによって前記仮想論理パスを該呼接続用の論理
パスとして収容した後に、前記呼を接続することを特徴
とする請求項1記載のセル非同期転送網内論理パス分散
収容呼接続方式。
3. For a call originating in the communication network, a virtual logical path is preset in each of a plurality of communication paths between a call-originating exchange node and a call-originating exchange node of the call. In the method of selecting one, regarding a plurality of the communication paths capable of accepting the required transmission path capacity declared by the call among the plurality of communication paths, the load on the cell in each relay switching node through which the communication path passes A delay is estimated for each of the communication routes based on a rate, the estimated values are compared, and the identification information of the call and the required transmission are transmitted to one of the communication routes having the smallest estimated value. 2. The logical path in the cell asynchronous transfer network according to claim 1, wherein the call is connected after accommodating the virtual logical path as a logical path for the call connection by registering identification information regarding the path capacity. Distributed accommodation call connection method.
JP4134096A 1992-04-10 1992-04-10 Connection system for call acommodated in logical path distributingly in cell asynchronous transfer network Pending JPH05292109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4134096A JPH05292109A (en) 1992-04-10 1992-04-10 Connection system for call acommodated in logical path distributingly in cell asynchronous transfer network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4134096A JPH05292109A (en) 1992-04-10 1992-04-10 Connection system for call acommodated in logical path distributingly in cell asynchronous transfer network

Publications (1)

Publication Number Publication Date
JPH05292109A true JPH05292109A (en) 1993-11-05

Family

ID=15120348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4134096A Pending JPH05292109A (en) 1992-04-10 1992-04-10 Connection system for call acommodated in logical path distributingly in cell asynchronous transfer network

Country Status (1)

Country Link
JP (1) JPH05292109A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07154397A (en) * 1993-11-26 1995-06-16 Nec Corp Method and device for reducing cell abandonment
US6011797A (en) * 1996-07-17 2000-01-04 Nec Corporation ATM communication device using interface signal of HIPPI
DE19943790A1 (en) * 1999-09-13 2001-03-22 Ericsson Telefon Ab L M Method and device for determining a synchronization error in a network node
US6836464B2 (en) 2000-03-13 2004-12-28 Nec Corporation PNNI routing computation system in ATM exchange
WO2006072986A1 (en) * 2005-01-06 2006-07-13 Fujitsu Limited Associative memory device and routing device using it

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07154397A (en) * 1993-11-26 1995-06-16 Nec Corp Method and device for reducing cell abandonment
US6011797A (en) * 1996-07-17 2000-01-04 Nec Corporation ATM communication device using interface signal of HIPPI
DE19943790A1 (en) * 1999-09-13 2001-03-22 Ericsson Telefon Ab L M Method and device for determining a synchronization error in a network node
DE19943790C2 (en) * 1999-09-13 2001-11-15 Ericsson Telefon Ab L M Method and device for determining a synchronization error in a network node
US6636987B1 (en) 1999-09-13 2003-10-21 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for determining a synchronization fault in a network node
US6836464B2 (en) 2000-03-13 2004-12-28 Nec Corporation PNNI routing computation system in ATM exchange
WO2006072986A1 (en) * 2005-01-06 2006-07-13 Fujitsu Limited Associative memory device and routing device using it

Similar Documents

Publication Publication Date Title
EP0512495B1 (en) Switching node in a network with label multiplexed information
JP3159927B2 (en) Network operation method, request path method, and routing and admission control method
JP3347926B2 (en) Packet communication system and method with improved memory allocation
JP3652759B2 (en) Packet flow monitoring and control method
JP3622312B2 (en) Packet switch and cell transfer control method
US8009565B2 (en) Switch with function for assigning queue based on a declared transfer rate
EP1152574A2 (en) Packet switching system and method
Shim et al. Modeling and call admission control algorithm of variable bit rate video in ATM networks
JPH05292109A (en) Connection system for call acommodated in logical path distributingly in cell asynchronous transfer network
JP2929993B2 (en) Routing method
JP2864049B2 (en) Call admission control method in ATM exchange
JP3070907B2 (en) ATM communication network and route change method
JPH1065687A (en) Atm network congestion control system
Kawamura et al. Fast VP-bandwidth management with distributed control in ATM networks
JP2741913B2 (en) Routing control method in ATM communication
JP2580556B2 (en) Bandwidth operation method and call admission control method
KR970005603B1 (en) Method for controlling adaptive allowance in asynchronous transfer mode
KR100209352B1 (en) Connection admission control method by limiting maximum cell loss rate
JP3090308B2 (en) ATM switch
JP3429647B2 (en) Buffer memory management system
JP2005218144A (en) Packet switch and cell transfer control method
KR960009476B1 (en) Congestion control according to the congestion generated position in the fully distributed atm switch
JP3849635B2 (en) Packet transfer device
JP2003069622A (en) Transmission unit exchange
JP3006349B2 (en) Frame relay exchange

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A02 Decision of refusal

Effective date: 20041019

Free format text: JAPANESE INTERMEDIATE CODE: A02