JPH0528943Y2 - - Google Patents

Info

Publication number
JPH0528943Y2
JPH0528943Y2 JP1986169569U JP16956986U JPH0528943Y2 JP H0528943 Y2 JPH0528943 Y2 JP H0528943Y2 JP 1986169569 U JP1986169569 U JP 1986169569U JP 16956986 U JP16956986 U JP 16956986U JP H0528943 Y2 JPH0528943 Y2 JP H0528943Y2
Authority
JP
Japan
Prior art keywords
phase
winding
windings
magnetomotive force
linear motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986169569U
Other languages
Japanese (ja)
Other versions
JPS6377472U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986169569U priority Critical patent/JPH0528943Y2/ja
Publication of JPS6377472U publication Critical patent/JPS6377472U/ja
Application granted granted Critical
Publication of JPH0528943Y2 publication Critical patent/JPH0528943Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Linear Motors (AREA)

Description

【考案の詳細な説明】 [考案の目的] (産業上の利用分野) 本考案は直進運動により物品の搬送等に用いら
れるリニアモータに係り、特にその巻線に関す
る。
[Detailed Description of the Invention] [Purpose of the Invention] (Field of Industrial Application) The present invention relates to a linear motor used for transporting articles through linear motion, and particularly to its winding.

(従来の技術) 従来のリニアモータの巻線を第9図を参照して
説明する。同図においてAは鉄心のスロツト内に
収納される巻線の配置を示したもので、U,V,
Wは各巻線の属する相を、そして、その右上の
+,−は巻線の極性を、右下の数字は巻線数をそ
れぞれ示している。ここで巻線はたとえば+から
−へと巻回されている為、これらが一対となつて
一組の巻線を形成している。Bはこの様に巻線を
配置したときの各相の瞬時の電流(U相電流=
1,W相電流=−1/2,V相電流=−1/2の場合)
における起磁力分布及びこれらを合成した起磁力
分布である。
(Prior Art) The windings of a conventional linear motor will be explained with reference to FIG. 9. In the same figure, A shows the arrangement of the windings housed in the slots of the iron core; U, V,
W indicates the phase to which each winding belongs, + and - at the upper right indicate the polarity of the winding, and the number at the lower right indicates the number of windings. Here, since the windings are wound, for example, from + to -, they form a pair of windings. B is the instantaneous current of each phase when the windings are arranged like this (U phase current =
1. When W phase current = -1/2, V phase current = -1/2)
These are the magnetomotive force distribution at , and the magnetomotive force distribution obtained by combining these.

この様に配置される巻線の巻線数(巻回数)は
全て同じであつた。
The number of turns (number of turns) of the windings arranged in this way was all the same.

(考案が解決しようとする問題点) しかしながら上述した配置ではBに合成起磁力
として3極現われているが、N極成分がS極成分
のほぼ2倍となつておりバランスしていないの
で、余つた分が漏えい磁束になり、推力には寄与
しなくなる。また一相当りの直列導体数が各相で
等しくない為、インピーダンスがアンバランスと
なり、ひいては電流がアンバランスになる。さら
にリニアモータの場合には、Bの合成起磁力分布
に見られる様に両端部における磁束に急峻な変化
がある場合にはこれにより大きな制動力が発声す
るという問題がある。
(Problem that the invention attempts to solve) However, in the above arrangement, three poles appear as a composite magnetomotive force at B, but the N pole component is almost twice the S pole component and is not balanced, so there is no balance. The leakage becomes leakage magnetic flux and no longer contributes to thrust. Furthermore, since the number of series conductors per phase is not equal for each phase, the impedance becomes unbalanced, and the current becomes unbalanced. Furthermore, in the case of a linear motor, there is a problem in that when there is a sharp change in the magnetic flux at both ends, as seen in the composite magnetomotive force distribution B, a large braking force is generated due to this.

これより本考案は上記問題点を解決し、効率の
良いリニアモータを提供することを目的とする。
Therefore, the present invention aims to solve the above-mentioned problems and provide an efficient linear motor.

[考案の構成] (問題点を解決するための手段) 上記目的を達成するために、本考案のリニアモ
ータは、2次導体のほぼ等しく接近した歯をその
両端まで有する櫛形の鉄心と、この鉄心のスロツ
トに収納され、その両端部に同相の単層巻の巻線
を配置し、各両端部の各1相分の巻線の巻回数
が、これらの各巻線と隣接する他相の巻線の巻回
数の略半分である巻線と、を有することを特徴と
するものである。
[Structure of the invention] (Means for solving the problem) In order to achieve the above object, the linear motor of the invention includes a comb-shaped iron core having teeth of a secondary conductor that are approximately equally close to each other to both ends thereof; It is housed in the slot of the iron core, and single-layer windings of the same phase are arranged at both ends of the core, and the number of turns of the winding for each one phase at each end is equal to that of each of these windings and the winding of the other phase adjacent to it. The wire winding is approximately half the number of windings of the wire.

(作用) 上述した構成により、合成起磁力のN極成分と
S極成分とをバランスさせることができ、また一
相当りの直列導体数が各相ともほぼ等しくなり、
さらに両端部における起磁力を低下させて磁束の
変化を緩和し制動力を低下させることができるの
で、推進力が増すなど効率を向上させることがで
きる。
(Function) With the above-described configuration, the N-pole component and the S-pole component of the composite magnetomotive force can be balanced, and the number of series conductors per phase is approximately equal for each phase.
Furthermore, since the magnetomotive force at both ends can be reduced to alleviate changes in magnetic flux and reduce the braking force, it is possible to improve efficiency by increasing propulsive force.

(実施例) 以下本考案の実施例を第1図乃至第8図を参照
して説明する。第1図は本考案の一実施例を説明
する為の図で、A,Bは各巻線の配置、Cは各相
の起磁力及びそれらの合成起磁力を示している。
巻線のピツチはAに示される通り、たとえばスロ
ツト番号#1〜#4である。また、それぞれの巻
線数はBに示される通り、両端の相となるU相の
うち、両端1相分の巻線が収納されるスロツト、
すなわち、スロツト番号#1から#4に収納され
る巻線とスロツト番号#7から#10に収納される
巻線が巻線数5(巻回数5)で、他のU相並びに
W相、V相は巻線数10(巻回数10)である。従つ
て一相当りの直列導体数が各相等しくなる。さら
に巻線の極性は隣り合う相ごとに変わる様になつ
ている。この様に配置した巻線における瞬時(U
相電流=1,W相電流=−1/2,V相電流=−1/
2)の各相の起磁力分布及びこれらの合成起磁力
分布を示したものがCである。この合成起磁力分
布は第9図に示した従来例と同様に3極であるが
両端の起磁力が低下しており、またN極成分の総
和とS極成分の総和とがバランスしている。
(Example) Examples of the present invention will be described below with reference to FIGS. 1 to 8. FIG. 1 is a diagram for explaining one embodiment of the present invention, where A and B indicate the arrangement of each winding, and C indicates the magnetomotive force of each phase and their combined magnetomotive force.
The pitches of the windings are, for example, slot numbers #1 to #4 as shown in A. In addition, as shown in B, the number of windings for each of the U phases, which are the phases at both ends, is a slot in which the windings for one phase at both ends are stored,
That is, the windings stored in slot numbers #1 to #4 and the windings stored in slot numbers #7 to #10 have a winding number of 5 (number of turns 5), and the windings stored in slot numbers #1 to #4 and the windings stored in slot numbers #7 to #10 have a winding number of 5 (number of turns 5), and the other U-phase, W-phase, and V The phase has 10 turns (10 turns). Therefore, the number of series conductors per phase is equal for each phase. Furthermore, the polarity of the windings changes for each adjacent phase. The instant (U) in the winding arranged in this way
Phase current = 1, W phase current = -1/2, V phase current = -1/
2) shows the magnetomotive force distribution of each phase and their composite magnetomotive force distribution. This composite magnetomotive force distribution has three poles like the conventional example shown in Fig. 9, but the magnetomotive force at both ends has decreased, and the sum of the N-pole components and the sum of the S-pole components are balanced. .

以上説明した通り、上述した実施例の構成で
は、両端一相分の巻線の巻線数をほぼ半分にして
一相当りの直列導体数を各相とも等しくしたの
で、インピーダンス及び電流も等しくなり、ま
た、両端部の巻線数を減少して起磁力を低下させ
ているので、磁束の変化が緩和され、推進時にお
ける制動力の発声を低減できる。さらに、合成起
磁力のN極成分の総和とS極成分の総和とがバラ
ンスしているので、漏れ磁束がなくなり効率を向
上できる。
As explained above, in the configuration of the above embodiment, the number of windings of the windings for one phase at both ends is approximately halved, and the number of series conductors per phase is made equal for each phase, so the impedance and current are also equal. In addition, since the number of windings at both ends is reduced to lower the magnetomotive force, changes in magnetic flux are alleviated, and the generation of braking force during propulsion can be reduced. Furthermore, since the sum of the north-pole components and the sum of the south-pole components of the composite magnetomotive force are balanced, there is no leakage magnetic flux and efficiency can be improved.

第2図はスロツト数が13で三相のときの巻線の
配置図A及びこのときのある瞬時(U相電流=
1,W相電流=−1/2,V相電流=−1/2)の合成
起磁力分布を示したものである。同図においては
第1実施例と同様、巻線ピツチはスロツト番号#
1〜#4、巻線数は両端一相分のスロツトに収納
される巻線、すなわち、スロツト番号#1から#
4に収納される巻線とスロツト番号#10から#13
に収納される巻線が巻線数5で、その他は巻線数
10になつている。また、合成起磁力分布も両端は
低く、かつ、N極成分の総和とS極成分の総和と
がバランスしている。従つて上述した実施例と同
様の効果が得られる。
Figure 2 shows the winding layout diagram A when the number of slots is 13 and three-phase, and a certain moment at this time (U phase current =
1, W phase current = -1/2, V phase current = -1/2). In the same figure, as in the first embodiment, the winding pitch is indicated by the slot number #.
1 to #4, the number of windings is the windings stored in the slots for one phase at both ends, that is, slot numbers #1 to #
Windings stored in 4 and slot numbers #10 to #13
The number of windings stored in is 5, and the number of other windings is 5.
It's turning 10. Further, the composite magnetomotive force distribution is also low at both ends, and the sum of N-pole components and the sum of S-pole components are balanced. Therefore, the same effects as in the above embodiment can be obtained.

第3図並びに第4図はそれぞれスロツト数が16
並びに7のときの巻線配置例であり、上述した実
施例と同様の効果が得られる。
Figures 3 and 4 each have 16 slots.
This is an example of the winding arrangement in the case of 7 and 7, and the same effect as the above-mentioned embodiment can be obtained.

また、第5図は一極一相当りのスロツト数が2
のときの巻線配置例で、このときには同図に示す
ように両端の相に属するスロツト数が2になる
が、同様の効果が得られる。
Also, Figure 5 shows that the number of slots per pole is 2.
In this example of the winding arrangement, the number of slots belonging to the phases at both ends becomes two as shown in the figure, but the same effect can be obtained.

また第6図はスロツト数9、二相の場合の配置
図であり、各相に流れる電流が等しく、また推進
時に両端に発生する制動力を低減できる。
Further, FIG. 6 is a layout diagram for a case where the number of slots is 9 and two phases are used, so that the current flowing through each phase is equal, and the braking force generated at both ends during propulsion can be reduced.

第7図及び第8図は上述した巻線が適用される
一般的なリニアモータの構造例を説明する為の図
であり、第7図は板状の二次導体4上を櫛形の鉄
心2及びこれに収納される巻線3からなるリニア
モータ本体1が移動する形式のもので、第8図は
棒状の二次導体4を周方向に包囲して円筒状の鉄
心2及びこれに収納される巻線3からなるリニア
モータ本体5が移動する形式のものである。
7 and 8 are diagrams for explaining an example of the structure of a general linear motor to which the above-mentioned winding is applied. In FIG. 7, a comb-shaped iron core 2 A linear motor main body 1 consisting of a winding 3 and a winding 3 housed in the main body 1 moves, and FIG. This is a type in which a linear motor main body 5 consisting of a winding 3 moves.

上述した各実施例においては巻線ピツチをスロ
ツト番号#1〜#4としたが他の巻線ピツチでも
同様に可能であり、各スロツトへ収納される導体
数は両端と中央部を5本:10本(1:2)とした
が、これと略同じ比率であれば良い。
In each of the above-mentioned embodiments, the winding pitches are slot numbers #1 to #4, but other winding pitches can be used as well, and the number of conductors stored in each slot is 5 at both ends and in the center: Although the ratio was set to 10 (1:2), it is sufficient if the ratio is approximately the same as this.

[考案の効果] 以上説明した通り本考案によれば、各相に流れ
る電流が等しく、また推進時における制動力を低
減でき、さらに漏れ磁束を低減できるので、効率
の良いリニアモータが可能となる。
[Effects of the invention] As explained above, according to the invention, the current flowing through each phase is equal, the braking force during propulsion can be reduced, and leakage magnetic flux can also be reduced, making it possible to create a highly efficient linear motor. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第8図は本考案に係り、第1図はス
ロツト数10,3相の場合の巻線配置及び起磁力分
布を説明する図、第2図はスロツト数13,3相の
場合の巻線配置及び起磁力分布を説明する図、第
3図はスロツト数16,3相の場合の巻線配置図、
第4図はスロツト数7,3相の場合の巻線配置
図、第5図はスロツト数20,3相の場合の巻線配
置図及び起磁力分布を説明する図、第6図はスロ
ツト数9,2相の場合の巻線配置図、第7図はリ
ニアモータの構造を説明する断面図、第8図は円
筒形リニアモータの構成を説明する一部破断図で
あり、第9図は従来例の巻線配置及び起磁力分布
を説明する図である。 1,1a……リニアモータ本体、2,2a……
鉄心、3,3a……巻線、4,4a……二次導
体。
Figures 1 to 8 relate to the present invention; Figure 1 is a diagram explaining the winding arrangement and magnetomotive force distribution in the case of 10 slots and 3 phases, and Figure 2 is a diagram for explaining the winding arrangement and magnetomotive force distribution in the case of 13 slots and 3 phases. Figure 3 is a diagram illustrating the winding arrangement and magnetomotive force distribution in the case of 16 slots and 3 phases.
Figure 4 is a winding arrangement diagram with 7 slots and 3 phases. Figure 5 is a diagram explaining the winding arrangement and magnetomotive force distribution with 20 slots and 3 phases. Figure 6 is a diagram explaining the magnetomotive force distribution with 20 slots and 3 phases. 9, a winding arrangement diagram for two-phase, FIG. 7 is a sectional view explaining the structure of a linear motor, FIG. 8 is a partially cutaway diagram explaining the structure of a cylindrical linear motor, and FIG. It is a figure explaining the winding arrangement and magnetomotive force distribution of a conventional example. 1, 1a... linear motor body, 2, 2a...
Iron core, 3, 3a... winding, 4, 4a... secondary conductor.

Claims (1)

【実用新案登録請求の範囲】 2次導体にほぼ等しく接近した歯をその両端ま
で有する櫛形の鉄心と、 この鉄心のスロツトに収納され、その両端部に
同相の単層巻の巻線を配置し、各両端部の各1相
分の巻線の巻回数が、これらの各巻線と隣接する
他相の巻線の巻回数の略半分である巻線と、を有
することを特徴とするリニアモータ。
[Claims for Utility Model Registration] A comb-shaped iron core having teeth that are almost equally close to the secondary conductor up to both ends thereof, and a single-layer winding of the same phase placed in the slot of this iron core at both ends thereof. , a linear motor characterized in that the number of turns of the winding for each one phase at each end portion is approximately half the number of turns of the winding of the other phase adjacent to each of these windings. .
JP1986169569U 1986-11-06 1986-11-06 Expired - Lifetime JPH0528943Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986169569U JPH0528943Y2 (en) 1986-11-06 1986-11-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986169569U JPH0528943Y2 (en) 1986-11-06 1986-11-06

Publications (2)

Publication Number Publication Date
JPS6377472U JPS6377472U (en) 1988-05-23
JPH0528943Y2 true JPH0528943Y2 (en) 1993-07-26

Family

ID=31103500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986169569U Expired - Lifetime JPH0528943Y2 (en) 1986-11-06 1986-11-06

Country Status (1)

Country Link
JP (1) JPH0528943Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60160364A (en) * 1984-01-26 1985-08-21 Mitsubishi Electric Corp Linear motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62159174U (en) * 1986-03-31 1987-10-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60160364A (en) * 1984-01-26 1985-08-21 Mitsubishi Electric Corp Linear motor

Also Published As

Publication number Publication date
JPS6377472U (en) 1988-05-23

Similar Documents

Publication Publication Date Title
US3634707A (en) Motor
US4954740A (en) Stator winding for two-speed electrodynamic machines having fractional speed ratios
JPH0528943Y2 (en)
JPH04347566A (en) Brushless synchronous machine
JPS6046633B2 (en) Electric motor
JPH07106046B2 (en) Permanent magnet synchronous machine type motor
Chalmers AC machine windings with reduced harmonic content
WO2002082622A1 (en) Permanent magnet type synchronous motor
JPH0340064Y2 (en)
US3450971A (en) Pole-changing synchronous rotary electric machines
US3049653A (en) Rotary electric machines
JPH0670524A (en) Brushless motor
JP2518206B2 (en) Winding method of brushless DC linear motor
JP2637103B2 (en) Armature winding
JPH0756617Y2 (en) Pole change type rotating electric machine
JPH0644301Y2 (en) Pole conversion induction motor
JP3515144B2 (en) Brushless motor
RU2159982C1 (en) Six/four pole-changing winding
RU2140698C1 (en) Winding with pole reversal
JPH0732559B2 (en) Multi-phase armature winding
SU1019550A1 (en) Combined-type winding of electric machine stator
JPH0556586A (en) Winding structure for ac servo motor
JPS63310357A (en) A.c. three-phase synchronous motor
RU2285994C1 (en) Three-phase pole-change winding
JPS59226652A (en) Linear motor