JPH05283743A - Semiconductor light-emitting element - Google Patents

Semiconductor light-emitting element

Info

Publication number
JPH05283743A
JPH05283743A JP11091292A JP11091292A JPH05283743A JP H05283743 A JPH05283743 A JP H05283743A JP 11091292 A JP11091292 A JP 11091292A JP 11091292 A JP11091292 A JP 11091292A JP H05283743 A JPH05283743 A JP H05283743A
Authority
JP
Japan
Prior art keywords
semiconductor
doped
semiconductor light
laminated
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11091292A
Other languages
Japanese (ja)
Inventor
Takayoshi Anami
隆由 阿南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11091292A priority Critical patent/JPH05283743A/en
Publication of JPH05283743A publication Critical patent/JPH05283743A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To obtain a rare earth-doped semiconductor light-emitting element having a high quantum efficiency by a method wherein rare earth ions are doped to a first semiconductor. CONSTITUTION:An Si-doped In0.52Al0.48As clad layer 12 is laminated on an Sn-doped InP substrate 11 and a semiconductor superlattice structure formed by laminating alternately Er-doped InP layers 13 and In0.52Al0.48As layers 14 six periods is laminated thereon. Moreover, a Be-doped In0.52Al0.48As layer 15 is laminated thereon and if a Be-doped In0.53Ga0.47As cap layer 16 is laminated, a stacked band structure is formed according to an anion rule because the group V elements of the InP layers and the InAlAs layers are different from each other. Accordingly, electrons 22 are easily captured by Er<3+> traps 25 in the forbidden bands of the InP layers and when the electrons recombine with holes 24 in an InAlAs layer 23, Er 4f electrons are transmitted at a high efficiency to an excited state and a rare earth-doped semiconductor light- emitting element having a high luminous efficiency is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高性能で高均一な半導
体発光素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high performance and highly uniform semiconductor light emitting device.

【0002】[0002]

【従来の技術】従来、半導体発光素子は主に半導体のバ
ンド帯や量子井戸構造の量子準位間の光学的遷移を利用
していた。この種の半導体発光素子では発光層の純度、
組成、層厚等の制御性が素子の特性を大きく左右してい
た。これに対し、希土類イオンを半導体中に添加し、電
子−正孔対がもつエネルギーで希土類イオンを励起し各
イオンに特有な、波長の狭い発光スペクトルを用いた半
導体発光素子が報告されている(例えば、アプライド・
フィジクス・レター W.T.Tsang eta
l.,Appl. Phys. Lett. 49巻、
(1986) 1686ページ)。この発光素子では4
f殻電子系の励起状態と基底状態間の遷移を利用してお
り、4f電子系は固体の結合に直接関与していないた
め、発光波長は母体の種類には大きく左右されない。こ
のため、例えばGaInAsP母体にEr 3+をドープし
た半導体レーザでは発光波長のウエハ面内均一性は半導
体母体材料に依らない為、極めて高い均一性を有し、そ
の発振波長の温度変化も摂氏一度当り1オングストロー
ム程度と小さい。
2. Description of the Related Art Conventionally, semiconductor light emitting devices have been mainly used for semiconductor devices.
Utilizing optical transitions between quantum levels in the band and quantum well structures
Was. In this type of semiconductor light emitting device, the purity of the light emitting layer,
The controllability of composition and layer thickness greatly influences the characteristics of the device.
It was On the other hand, by adding rare earth ions to the semiconductor,
The rare-earth ion is excited by the energy of the child-hole pair and
Semi-narrowed emission spectrum characteristic of ions
Conductive light emitting devices have been reported (eg, applied
Physics Letter W. T. Tsang eta
l. , Appl. Phys. Lett. Volume 49,
(1986) page 1686). 4 in this light emitting device
Utilizing the transition between the excited and ground states of the f-shell electron system
The 4f electron system was not directly involved in solid state binding
Therefore, the emission wavelength is not significantly affected by the type of matrix. This
Therefore, for example, Er in GaInAsP matrix 3+Dope
In semiconductor lasers, the uniformity of the emission wavelength within the wafer is semi-conducting.
Since it does not depend on the base material, it has extremely high uniformity.
The temperature change of the oscillation wavelength is 1 angstrom per degree Celsius
Small and small.

【0003】[0003]

【発明が解決しようとする課題】このように、希土類ド
ープ半導体発光素子は種々の優れた特性を有するが、そ
の最大の問題点は発光効率が一般に低い点にある。例え
ば、MBE法で成長したErドープGaAsの室温に於
ける量子効率は10-6程度と極めて低い。これは、この
発光素子では電子−正孔対と希土類イオン間のエネルギ
ー伝達過程が必要となるためこの過程の大小が量子効率
に影響を与えるからである。
As described above, the rare earth-doped semiconductor light emitting device has various excellent characteristics, but the biggest problem is that the luminous efficiency is generally low. For example, the quantum efficiency of Er-doped GaAs grown by the MBE method at room temperature is as low as about 10 -6 . This is because this light emitting device requires an energy transfer process between the electron-hole pair and the rare earth ion, and the magnitude of this process affects the quantum efficiency.

【0004】本発明の目的は、高い量子効率を有する希
土類ドープ半導体発光素子を提供することにある。
An object of the present invention is to provide a rare earth-doped semiconductor light emitting device having high quantum efficiency.

【0005】[0005]

【課題を解決するための手段】本発明の半導体発光素子
は、異なる導電型を有する半導体層に挟まれた半導体発
光層を有し、該半導体発光層は電子の平均自由行程程度
以下の膜厚を有する第1及び第2の半導体を交互に少な
くとも1周期積層した半導体超格子でなり、該第1の半
導体の伝導帯下端のエネルギー値が該第2の半導体の伝
導帯下端と価電子帯上端のエネルギー値の間にあり、か
つ該第2の半導体の価電子帯上端のエネルギー値が該第
1の半導体の伝導帯下端と価電子帯上端のエネルギー値
の間にあり、該第1の半導体に希土類イオンがドーピン
グされている。
A semiconductor light emitting device of the present invention has a semiconductor light emitting layer sandwiched between semiconductor layers having different conductivity types, and the semiconductor light emitting layer has a film thickness equal to or less than an average free path of electrons. A semiconductor superlattice in which the first and second semiconductors having the following are alternately laminated at least one period, and the energy value of the conduction band lower end of the first semiconductor is lower than the conduction band lower end and the valence band upper end of the second semiconductor. And the energy value at the top of the valence band of the second semiconductor is between the bottom of the conduction band and the top of the valence band of the first semiconductor, the first semiconductor Is doped with rare earth ions.

【0006】[0006]

【作用】希土類イオンは3価になるもののが多く、II
I−V族化合物半導体のIII族原子と置換すると、等
電子トラップとして作用し、それ自身は電子を放出しな
いが、伝導帯中の電子を捕獲する。等電子トラップに捕
獲された電子は、価電子帯中の正孔と再結合する際に、
希土類イオンのf殻電子系を励起状態に遷移させる。従
って半導体中の電子−正孔系の有するエネルギーをf殻
電子系の励起状態に移送する確率は、半導体母体中にお
ける電子−正孔の発光再結合を抑制し、伝導帯中の電子
を一且、希土類イオンにトラップさせ、オージエ過程を
通じて、再結合させれば、大きくすることが出来る。一
般に、2つの半導体超格子において伝導帯の下端と価電
子帯の上端がそれぞれ互い違いに構成される、いわゆる
タイプII半導体超格子では、電子と正孔が空間的に分
離されている為に、この電子−正孔系の発光再結合は抑
制され、電子は比較的長い再結合寿命を有する。ゆえ
に、電子が局在する一つの半導体層中に、希土類をドー
ピングされていると、電子が希土類にトラップされる確
率が増大し、希土類の4f殻励起確率も増大する。従っ
て本発明の半導体発光素子により、高効率な、電子−正
孔対と希土類イオン間のエネルギー伝達過程が実現さ
れ、高い量子効率が実現される。
[Function] Most rare earth ions are trivalent, II
When it is replaced with a group III atom of a group IV compound semiconductor, it acts as an isoelectron trap and does not itself emit an electron but traps an electron in the conduction band. The electrons trapped in the isoelectron trap are recombined with holes in the valence band,
The f-shell electron system of rare earth ions is transited to the excited state. Therefore, the probability of transferring the energy of the electron-hole system in the semiconductor to the excited state of the f-shell electron system is such that the electron-hole radiative recombination in the semiconductor matrix is suppressed, and the electrons in the conduction band are all absorbed. It can be enlarged by trapping it in rare earth ions and recombining it through the Auger process. Generally, in a so-called type II semiconductor superlattice in which the lower end of the conduction band and the upper end of the valence band are alternately arranged in two semiconductor superlattices, electrons and holes are spatially separated. The radiative recombination of the electron-hole system is suppressed and the electrons have a relatively long recombination lifetime. Therefore, if one semiconductor layer in which electrons are localized is doped with rare earths, the probability of electrons being trapped in rare earths increases, and the probability of 4f shell excitation of rare earths also increases. Therefore, the semiconductor light emitting device of the present invention realizes a highly efficient energy transfer process between an electron-hole pair and a rare earth ion, and realizes a high quantum efficiency.

【0007】[0007]

【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の一実施例の半導体発光素子の構造図
である。これは分子線エピタキシー法により製作する。
製作手順は、SnドープInP基板11上に、Siドー
プ(5×1017cm-3)In0.52Al0.48Asクラッド
層12を1μm積層し、その上に100オングストロー
ムのErドープ(1×1018cm-3)InP層13と1
00オングストロームのIn0.52Al0.48As層14と
を交互に6周期積層した半導体超格子構造を積層し、そ
の上にBeドープ(5×1017cm-3)In0.52Al
0.48As層15を1.5μm積層し、最後にBeドープ
(1×1019)In0.53Ga0.47Asキャップ層16を
0.1μm積層する。InPとInAlAsはV族元素
が異なる為、アニオン則に従って、スタッカード型バン
ド構造を形成する。図2は、上記積層構造のバンド図で
ある。ErドープInP層21には、電流注入時に電子
22が、またInAlAs層23中には正孔24がそれ
ぞれ蓄積される。作用の項で説明したように、本構造で
は、電子はInPの禁制帯中のEr3+トラップ25に捕
獲されやすく、InAlAs層中の正孔と再結合する際
にErの4f電子系は励起状態に高効率で遷移する。
The present invention will be described below with reference to the drawings. FIG. 1 is a structural diagram of a semiconductor light emitting device according to an embodiment of the present invention. This is manufactured by the molecular beam epitaxy method.
The manufacturing procedure is as follows: Si-doped (5 × 10 17 cm −3 ) In 0.52 Al 0.48 As clad layer 12 is laminated on the Sn-doped InP substrate 11 by 1 μm, and 100 Å Er-doped (1 × 10 18 cm 2 -3 ) InP layers 13 and 1
A semiconductor superlattice structure in which six layers of In 0.52 Al 0.48 As layers 14 of 00 angstroms are alternately laminated is laminated, and Be-doped (5 × 10 17 cm −3 ) In 0.52 Al is laminated thereon.
The 0.48 As layer 15 is laminated in a thickness of 1.5 μm, and finally the Be-doped (1 × 10 19 ) In 0.53 Ga 0.47 As cap layer 16 is laminated in a thickness of 0.1 μm. Since InP and InAlAs have different V group elements, they form a stacker type band structure according to the anion rule. FIG. 2 is a band diagram of the above laminated structure. Electrons 22 are accumulated in the Er-doped InP layer 21 during current injection, and holes 24 are accumulated in the InAlAs layer 23. As described in the action section, in this structure, electrons are easily trapped by the Er 3+ trap 25 in the forbidden band of InP, and the 4f electron system of Er is excited when recombining with holes in the InAlAs layer. Transition to a state with high efficiency.

【0008】この励起状態は、固有の波長の光(1.5
μm光)を放出しながら基底状態へと遷移する。本実施
例による半導体発光素子は、半導体発光層にErドープ
InGaAs層を用いたものに比べて、同一の電流注入
量に対し、Erからの発光強度は、10倍程度強い。
This excited state is a light of a specific wavelength (1.5
It transits to the ground state while emitting (μm light). In the semiconductor light emitting device according to the present embodiment, the emission intensity from Er is about ten times stronger than that of the semiconductor light emitting device using the Er-doped InGaAs layer for the same current injection amount.

【0009】以上ここでは一つの実施例についてのみ述
べたが、本発明は何らこれによって限定されるものでは
ない。半導体成長方法も、液相成長法、有機金属気相成
長法等いずれでもよい。またドープする希土類イオンも
Erに限定されず、Yb、Nd等であってもよい。また
積層する材料系も、InPとAlAsSb、GaInP
とAlAs、等であってもよい。
Although only one embodiment has been described above, the present invention is not limited thereto. The semiconductor growth method may be a liquid phase growth method, a metal organic vapor phase growth method, or the like. The rare earth ions to be doped are not limited to Er and may be Yb, Nd or the like. The material system to be laminated is also InP, AlAsSb, GaInP.
And AlAs, etc. may be used.

【0010】[0010]

【発明の効果】以上説明したように本発明によれば、高
い発光効率を有する希土類ドープ半導体発光素子が得ら
れる。
As described above, according to the present invention, a rare earth-doped semiconductor light emitting device having high luminous efficiency can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構造図。FIG. 1 is a structural diagram of an embodiment of the present invention.

【図2】図1に示した半導体発光素子の半導体発光層の
バンド図。
FIG. 2 is a band diagram of a semiconductor light emitting layer of the semiconductor light emitting element shown in FIG.

【符号の説明】[Explanation of symbols]

13 ErドープInP層 14 In0.52Al0.48As層 21 ErドープInP層 23 InAlAs層 24 Er3+トラップ13 Er-doped InP layer 14 In 0.52 Al 0.48 As layer 21 Er-doped InP layer 23 InAlAs layer 24 Er 3+ trap

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 異なる導電型を有する半導体層に挟まれ
た半導体発光層を有し、 該半導体発光層は電子の平均自由行程程度以下の膜厚を
有する第1及び第2の半導体を交互に少なくとも1周期
積層した半導体超格子でなり、 該第1の半導体の伝導帯下端のエネルギー値が該第2の
半導体の伝導帯下端と価電子帯上端のエネルギー値の間
にあり、かつ該第2の半導体の価電子帯上端のエネルギ
ー値が該第1の半導体の伝導帯下端と価電子帯上端のエ
ネルギー値の間にあり、 該第1の半導体に希土類イオンがドーピングされている
ことを特徴とする半導体発光素子。
1. A semiconductor light-emitting layer sandwiched between semiconductor layers having different conductivity types, wherein the semiconductor light-emitting layer comprises alternating first and second semiconductors having a film thickness equal to or less than the mean free path of electrons. A semiconductor superlattice in which at least one period is stacked, the energy value of the conduction band lower end of the first semiconductor is between the conduction band lower end and the valence band upper end of the second semiconductor, and the second semiconductor The energy value at the top of the valence band of the semiconductor is between the energy value at the bottom of the conduction band and the energy of the top of the valence band of the first semiconductor, and the first semiconductor is doped with rare earth ions. Semiconductor light emitting device.
JP11091292A 1992-04-03 1992-04-03 Semiconductor light-emitting element Withdrawn JPH05283743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11091292A JPH05283743A (en) 1992-04-03 1992-04-03 Semiconductor light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11091292A JPH05283743A (en) 1992-04-03 1992-04-03 Semiconductor light-emitting element

Publications (1)

Publication Number Publication Date
JPH05283743A true JPH05283743A (en) 1993-10-29

Family

ID=14547793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11091292A Withdrawn JPH05283743A (en) 1992-04-03 1992-04-03 Semiconductor light-emitting element

Country Status (1)

Country Link
JP (1) JPH05283743A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013243A3 (en) * 2000-08-08 2003-03-13 Translucent Photonics Inc Devices with optical gain in silicon
US7440180B2 (en) * 2004-02-13 2008-10-21 Tang Yin S Integration of rare-earth doped amplifiers into semiconductor structures and uses of same
CN103560190A (en) * 2013-11-15 2014-02-05 湘能华磊光电股份有限公司 Epitaxial growth method and structure for preventing electronic leakage and defect extension

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013243A3 (en) * 2000-08-08 2003-03-13 Translucent Photonics Inc Devices with optical gain in silicon
US6734453B2 (en) 2000-08-08 2004-05-11 Translucent Photonics, Inc. Devices with optical gain in silicon
US6858864B2 (en) 2000-08-08 2005-02-22 Translucent Photonics, Inc. Devices with optical gain in silicon
US7135699B1 (en) 2000-08-08 2006-11-14 Translucent Photonics, Inc. Method and apparatus for growth of single-crystal rare-earth oxides, nitrides, and phosphides
US7211821B2 (en) 2000-08-08 2007-05-01 Translucent Photonics, Inc. Devices with optical gain in silicon
US7440180B2 (en) * 2004-02-13 2008-10-21 Tang Yin S Integration of rare-earth doped amplifiers into semiconductor structures and uses of same
CN103560190A (en) * 2013-11-15 2014-02-05 湘能华磊光电股份有限公司 Epitaxial growth method and structure for preventing electronic leakage and defect extension

Similar Documents

Publication Publication Date Title
Akahane et al. High Characteristic Temperature of Highly Stacked Quantum-Dot Laser for 1.55-$\mu $ m Band
JPH06112528A (en) Semiconductor light emitting device
JPH06104533A (en) Blue color light emitting element and fabrication thereof
US4365260A (en) Semiconductor light emitting device with quantum well active region of indirect bandgap semiconductor material
JPH09139543A (en) Semiconductor laser element
JP2002134835A (en) Tunnel junction surface emitting laser
JP2007042943A (en) Semiconductor optical element
US5644587A (en) Semiconductor laser device
JPH09298341A (en) Semiconductor laser element
JPH05283743A (en) Semiconductor light-emitting element
JP2937156B2 (en) Manufacturing method of semiconductor laser
Walter et al. Visible spectrum (645 nm) transverse electric field laser operation of InP quantum dots coupled to tensile strained In 0.46 Ga 0.54 P quantum wells
US20100065811A1 (en) SINGLE PHOTON SOURCE WITH AllnN CURRENT INJECTION LAYER
JPH10284800A (en) Semiconductor light-emitting element and manufacture therefor
JP2002368342A (en) Multiplex quantum well semiconductor element
JP2743664B2 (en) Semiconductor light emitting device
JP3146710B2 (en) Light emitting element
US4270094A (en) Semiconductor light emitting device
JPH07321409A (en) Semiconductor laser element
JP3432968B2 (en) Semiconductor light emitting device
Lo et al. Stimulated emission in ultrathin (20 Å) Al x Ga1− x As‐GaAs single quantum well heterostructures
JP3206316B2 (en) Semiconductor laser
JP2002094187A (en) Semiconductor laser and optical communication system using it
JPH08181386A (en) Semiconductor optical element
JP3044604B2 (en) Semiconductor laser

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608