JPH05283062A - Negative electrode for lithium secondary battery and lithium secondary battery using same electrode - Google Patents

Negative electrode for lithium secondary battery and lithium secondary battery using same electrode

Info

Publication number
JPH05283062A
JPH05283062A JP4076666A JP7666692A JPH05283062A JP H05283062 A JPH05283062 A JP H05283062A JP 4076666 A JP4076666 A JP 4076666A JP 7666692 A JP7666692 A JP 7666692A JP H05283062 A JPH05283062 A JP H05283062A
Authority
JP
Japan
Prior art keywords
carbon
secondary battery
negative electrode
lithium secondary
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4076666A
Other languages
Japanese (ja)
Inventor
Yoshiteru Nakagawa
喜照 中川
Akihiro Mabuchi
昭弘 馬淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP4076666A priority Critical patent/JPH05283062A/en
Publication of JPH05283062A publication Critical patent/JPH05283062A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To prevent the deterioration of capability due to a drop in electrical conductivity by constituting a negative electrode of a carbon material comprising a stacked composite member of carbon powder and a carbon film. CONSTITUTION:A negative electrode is constituted of the stack of a film layer 1 and a carbon powder layer 2. The film layer 1 is made of a carbon material allowing the doping an dedoping of alkaline metal, such as a film made of coal and oil mesophase pitch, and can be used as a host for intercalation reaction. The carbon power layer 2 is made of a carbon material allowing the doping and dedoping of alkaline metal or the like, such as thermally decomposed carbon, activated carbon and organic polymer compound, and can be used as a host for intercalation reaction. According to this construction, the deterioration of capability due to a drop in electrical conductivity can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池およ
びリチウム二次電池用負極、さらに詳しくは、炭素粉末
を他のカーボン材と複合化することにより、カーボン材
として炭素粉末のみを負極構成要素に用いた従来のタイ
プの場合に見られた電気伝導度の低下に起因する性能低
下が改良され、放電容量・出力密度・サイクル特性が向
上したリチウム二次電池およびかかるリチウム二次電池
用の負極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery and a negative electrode for a lithium secondary battery, and more specifically, by compounding carbon powder with another carbon material, only the carbon powder is used as the negative electrode in the negative electrode structure. A lithium secondary battery having improved discharge capacity, power density, and cycle characteristics by improving the performance deterioration due to the decrease in electrical conductivity found in the conventional type used for the element, and for such a lithium secondary battery Regarding the negative electrode.

【0002】[0002]

【従来の技術】負極活物質としてリチウム、正極活物質
として金属カルコゲン化物、金属酸化物を用い、電解液
として非プロトン性有機溶媒に種々の塩を溶解させたも
のを用いた、いわゆるリチウム二次電池は高エネルギー
密度型二次電池の一種として注目され、盛んに研究が行
われている。
2. Description of the Related Art A so-called lithium secondary battery in which lithium is used as a negative electrode active material, metal chalcogenide and a metal oxide are used as a positive electrode active material, and various salts are dissolved in an aprotic organic solvent is used as an electrolytic solution. Batteries are attracting attention as a type of high energy density secondary battery and are being actively researched.

【0003】しかしながら、従来のリチウム電池では、
負極活物質としてのリチウムは箔状の如き単体で用いら
れることが多く、充放電を繰り返すうちに、樹枝状リチ
ウムが析出して両極が短絡するため充放電のサイクル寿
命が短いという欠点を有する。
However, in the conventional lithium battery,
Lithium as a negative electrode active material is often used as a simple substance such as a foil, and has a drawback that the cycle life of charge / discharge is short because dendritic lithium is deposited and both electrodes are short-circuited during repeated charge / discharge.

【0004】そこで、アルミニウムや、鉛、カドミウム
及びインジウムを含む可融性合金を用い、充電時にリチ
ウムを合金として析出させ、放電時には合金からリチウ
ムを溶解させる方法が提案されている[米国特許第4,
002,492号(1977)参照]。しかし、このよ
うな方法では、樹枝状リチウムの析出は抑止できるが、
エネルギー密度は低下する。
Therefore, a method has been proposed in which a fusible alloy containing aluminum, lead, cadmium, and indium is used to deposit lithium as an alloy during charging and to dissolve lithium from the alloy during discharging [US Pat. ,
002, 492 (1977)]. However, although such a method can prevent the deposition of dendritic lithium,
Energy density decreases.

【0005】さらに、放電容量を向上させることを目的
に、リチウムをカーボン材に担持させようという試みも
種々行われている。例えば、種々の繊維状、あるいは粉
末状のカーボン材を用いる試みがなされている[東芝電
池(株)および三菱油化(株)共願の特開昭63−11
4056号(1988)、三菱瓦斯化学(株)出願の特
開昭62−268056号(1987)参照]。
Further, various attempts have been made to support lithium on a carbon material for the purpose of improving discharge capacity. For example, attempts have been made to use various fibrous or powdery carbon materials [Toshiba Battery Co., Ltd. and Mitsubishi Petrochemical Co., Ltd. joint application JP-A-63-11].
No. 4056 (1988), Japanese Patent Application Laid-Open No. 62-268056 (1987) filed by Mitsubishi Gas Chemical Co., Inc.].

【0006】[0006]

【発明が解決しようとする課題】前記したごとき種々の
カーボンのうち、カーボン材として炭素粉末のみを負極
構成要素とした従来のリチウム二次電池では、電気伝導
度の低下に由来する性能低下が指摘されており、特に出
力密度の問題は顕著で改善が強く要望されていた。従っ
て、本発明の課題はこれらの問題点を解決することにあ
る。
Among the various carbons described above, the conventional lithium secondary battery using only carbon powder as a carbon material as a negative electrode constituent element has a performance deterioration due to a decrease in electric conductivity. In particular, the problem of power density is remarkable, and improvement has been strongly demanded. Therefore, an object of the present invention is to solve these problems.

【0007】[0007]

【課題を解決するための手段】かかる事情に鑑み、本発
明者らは、炭素粉末を他のカーボン材と複合化すること
に着目し、複合化の相手となる種々のカーボン材を試み
た結果、炭素フィルムを用いることにより、意外にも前
記課題を解決できることを見出し、本発明を完成するに
至った。
In view of the above circumstances, the present inventors have focused their attention on compounding carbon powder with other carbon materials, and have tried various carbon materials to be compounded. Surprisingly, they have found that the above problems can be solved by using a carbon film, and completed the present invention.

【0008】すなわち、本発明は、炭素粉末および炭素
フィルムを積層複合化したカーボン材よりなるリチウム
二次電池用負極を提供するものである。以下、図面を参
照して本発明のリチウム二次電池用負極を説明する。図
1は本発明のリチウム二次電池用負極を模式的に示す断
面図である。図1を参照し、本発明のリチウム二次電池
はフィルム層(1)と炭素粉末層(2)よりなる積層構
造を有する。このように用いるカーボン材として、炭素
フィルムを炭素粉末と組み合わせ、かつ積層構造とする
ことにより、始めて本発明の目的が達成されるものであ
る。
That is, the present invention provides a negative electrode for a lithium secondary battery, which is made of a carbon material obtained by laminating and compositing carbon powder and a carbon film. Hereinafter, the negative electrode for a lithium secondary battery of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view schematically showing the negative electrode for a lithium secondary battery of the present invention. Referring to FIG. 1, the lithium secondary battery of the present invention has a laminated structure including a film layer (1) and a carbon powder layer (2). As the carbon material used in this way, the object of the present invention is achieved for the first time by combining a carbon film with carbon powder and forming a laminated structure.

【0009】まず、フィルム層(1)では炭素フィルム
を用いる。この炭素フィルムとしては、アルカリ金属等
をドープ・脱ドープし得る炭素材でインターカレーショ
ン反応のホストとして使用できるものであればいずれで
もよく、例えば、石炭系・石油系のメソフェーズピッチ
を原料とするフィルムが使用でき、この場合、等方性ピ
ッチをある程度含んでいても支障はない。炭素フィルム
1枚の厚みは、一般に、10〜40μmの範囲内とす
る。
First, a carbon film is used for the film layer (1). The carbon film may be any carbon material capable of being doped / dedoped with an alkali metal or the like and used as a host for the intercalation reaction. For example, a coal-based or petroleum-based mesophase pitch is used as a raw material. A film can be used, and in this case, there is no problem even if it contains some isotropic pitch. The thickness of one carbon film is generally within the range of 10 to 40 μm.

【0010】一方、炭素粉末層(2)で用いる炭素粉末
としては、アルカリ金属等をドープ・脱ドープし得るカ
ーボン材であってインターカレーション反応のホストと
して使用できるものであればいずれでもよく、例えば、
熱分解炭素類・活性炭・有機高分子化合物の焼成体・ガ
ラス状炭素・グラファイト類・コークス類などの粉砕品
が使用できる。炭素粉末の粒子径は特に限定されるもの
ではないが、分散性・成型性の観点より0.1〜100
μmの範囲が好ましい。
On the other hand, the carbon powder used in the carbon powder layer (2) may be any carbon material that can be doped or dedoped with an alkali metal or the like and can be used as a host for the intercalation reaction. For example,
Pulverized products such as pyrolytic carbons, activated carbon, fired bodies of organic polymer compounds, glassy carbon, graphites and cokes can be used. The particle size of the carbon powder is not particularly limited, but from the viewpoint of dispersibility and moldability, it is 0.1 to 100.
The range of μm is preferred.

【0011】本発明のリチウム二次電池用負極は、かか
る材料を用いたフィルム層および炭素粉末層を交互に何
層か積層してなり、実際の電池の構成要素とするに際し
ては、該積層構造体を所望の形状・寸法に裁断して使用
する。
The negative electrode for a lithium secondary battery of the present invention comprises a plurality of film layers and carbon powder layers using such materials, which are alternately laminated. The body is cut into the desired shape and size for use.

【0012】次に、積層構造体の製法について説明す
る。いくつかの製法が考えられるが、第1の例として、
成型後かつ不融化前の炭素フィルムをその表面が接着性
を保てるような温度に保持しながら、炭素粉末の噴流床
の中を通過させその表面に炭素粉末を付着させたものを
不融化する。得られた炭素粉末付着フィルムの数枚から
数10枚を積層し、ホットプレスしてフィルム層と炭素
粉末層が交互に積層されたシートが得られる。別法とし
て、炭化・黒鉛化工程を経た炭素フィルムに炭素粉末と
適量のバインダーを混合したものを塗布し、それらを積
層した後、プレス機にてプレス成型して、炭素フィルム
と炭素粉末層(+バインダー)が交互に積層したシート
が得られる。
Next, a method of manufacturing the laminated structure will be described. Several manufacturing methods are possible, but as the first example,
While the carbon film after molding and before being made infusible is maintained at a temperature at which its surface can maintain its adhesiveness, it is made infusible by passing it through a jet bed of carbon powder and adhering the carbon powder to its surface. Several to several tens of the obtained carbon powder-attached films are laminated and hot pressed to obtain a sheet in which film layers and carbon powder layers are alternately laminated. Alternatively, a carbon film that has undergone a carbonization / graphitization process is coated with a mixture of carbon powder and an appropriate amount of a binder, and these are laminated and then press-molded with a press machine to form a carbon film and a carbon powder layer ( A sheet in which + binders are alternately laminated is obtained.

【0013】ここに、本発明で用いることができる炭素
フィルム自体の製法例を参考のために記載する。最初の
工程では、溶融したピッチをスリット状ノズルから押し
出して、フィルム状ないしはシート状の形状を付与す
る。かかる工程用の装置が図2〜図4に示す押出装置で
ある。
An example of the method for producing the carbon film itself that can be used in the present invention will be described here for reference. In the first step, the melted pitch is extruded from a slit-shaped nozzle to give a film-like or sheet-like shape. The apparatus for such a process is the extrusion apparatus shown in FIGS.

【0014】まず、図1を参照し、溶融ピッチを装置
(3)に供給し、スリット型ノズル(6)(図4参照)
からシート状に押し出し、次いで押し出されたシート状
ピッチ(4)を巻取装置(5)に牽引して巻取る。装置
(3)には、フィルム状ないしはシート状にて巻き取る
ことができるように工夫がなされている。
First, referring to FIG. 1, a molten pitch is supplied to an apparatus (3), and a slit type nozzle (6) (see FIG. 4).
The sheet-shaped pitch (4) is extruded in a sheet shape from the sheet, and then the sheet-shaped pitch (4) is pulled by the winding device (5) and wound up. The device (3) is devised so that it can be wound up in the form of a film or a sheet.

【0015】即ち、装置(3)には、シート状ピッチ
(4)の軸方向両端面近傍に向けて且つスリット中央点
Cを通るスリット長さ方向に垂直な仮想面Pに対称な方
向に、外向成分および下向成分の分力を有する気流を吹
き付けるための少なくとも2個の気流吹出口(7)が設
けられている。
That is, in the device (3), toward the vicinity of both axial end faces of the sheet-like pitch (4) and in a direction symmetrical to an imaginary plane P perpendicular to the slit length direction passing through the slit center point C, At least two airflow outlets (7) are provided for blowing an airflow having component forces of an outward component and a downward component.

【0016】このように複数の気流吹出口を配すること
により、スリット型ノズル(6)から出て巻取装置
(5)に牽引されつつあるシート状ピッチ(4)が十分
に固化する前に、換言すればまだスリット型ノズル
(6)の直下に位置する時点で、シート状ピッチ(4)
の幅方向両端部近傍に気流を吹き付けて当該シート状ピ
ッチ(4)を幅方向に広げる分力を作用させることによ
り、ネックダウン現象が抑制されて、広幅のテープ状ピ
ッチフィルム(8)が得られる。
By arranging a plurality of air flow outlets in this way, before the sheet-like pitch (4) which is being drawn out from the slit type nozzle (6) and being pulled by the winding device (5) is sufficiently solidified. In other words, at the time when it is still directly below the slit type nozzle (6), the sheet-like pitch (4)
The neck down phenomenon is suppressed and a wide tape-shaped pitch film (8) is obtained by blowing an air current in the vicinity of both ends in the width direction of the sheet to exert a component force for expanding the sheet-shaped pitch (4) in the width direction. Be done.

【0017】吹付気体は、50〜100m/秒程度の速
度(気流吹出口の出口での速度)で吹き付けることが好
ましく、また、吹付量は、気流吹出口1箇所当たり0.
4〜0.5リットル/分程度とすることが好ましい。吹
付気体の種類としては、空気、窒素、ガス燃焼廃ガス等
を使用することができる。その温度は、通常、シート状
ピッチ(4)が巻取により延伸され得る200〜400
℃の範囲とし、好ましくは250〜350℃の範囲とす
る。気流吹出口(7)は、シート状ピッチ(4)の両端
部近傍に両面から気流が吹き付けることができるよう
に、各端部近傍に少なくとも2箇所ずつ、合計して少な
くとも4箇所に設けるのが好ましい。
The blowing gas is preferably blown at a velocity of about 50 to 100 m / sec (velocity at the outlet of the airflow outlet), and the amount of the air blown is 0.1 per airflow outlet.
It is preferably about 4 to 0.5 liter / minute. Air, nitrogen, gas combustion waste gas, or the like can be used as the type of sprayed gas. The temperature is usually 200 to 400 at which the sheet-like pitch (4) can be stretched by winding.
C., preferably 250 to 350.degree. The airflow outlets (7) are provided at least at two places near each end so that the airflow can be blown from both sides near the ends of the sheet-like pitch (4), and at least at a total of four places. preferable.

【0018】次の工程では、炭素繊維の製造で採用され
ている常法に準じ、先の工程で得られたピッチフィルム
(通常厚さ12〜50μm、幅2〜45mm)を不融化
する。この不融化工程は後の炭素化、黒鉛化においてフ
ィルム状ないしはシート状を保持することを目的とす
る。
In the next step, the pitch film (usually 12 to 50 μm in thickness and 2 to 45 mm in width) obtained in the previous step is infusibilized according to a conventional method used in the production of carbon fibers. This infusibilizing step is intended to maintain a film or sheet shape in the subsequent carbonization and graphitization.

【0019】不融化は、例えば、空気雰囲気中、280
〜340℃の範囲の温度で行うことができる。不融化に
要する時間は、シート状ピッチの厚みに応じて適宜選択
することができ、薄い程短時間で完了できる。
The infusibilization is performed, for example, in an air atmosphere at 280
It can be carried out at a temperature in the range of ˜340 ° C. The time required for infusibilization can be appropriately selected according to the thickness of the sheet-like pitch, and the thinner the time, the shorter the time required for completion.

【0020】最後の工程となる前記不融化物の焼成は、
所望するカーボン材フィルムの電気抵抗に応じた温度で
行うことができる。即ち、焼成温度が高くなるにつれ
て、炭化度、黒鉛化度が高くなり、電気抵抗の小さな炭
素化は、不活性雰囲気(窒素、二酸化炭素、アルゴン等
の雰囲気)中、1000〜2000℃の範囲の温度で行
うことができる。また、不融化物の黒鉛化は、アルゴン
等の雰囲気中、2000〜3000℃の範囲の温度で行
うことができる。
The firing of the infusible substance as the final step is as follows.
It can be performed at a temperature according to the desired electrical resistance of the carbon material film. That is, as the firing temperature becomes higher, the degree of carbonization and the degree of graphitization become higher, and carbonization with a low electric resistance is performed in an inert atmosphere (an atmosphere such as nitrogen, carbon dioxide, or argon) in the range of 1000 to 2000 ° C. It can be done at temperature. Further, graphitization of the infusibilized product can be performed at a temperature in the range of 2000 to 3000 ° C. in an atmosphere such as argon.

【0021】以上の工程により、通常は厚みが10〜4
0μm、幅が1.5〜45mm程度のカーボン材フィル
ムが得られる。これを適当な寸法に裁断して、本発明の
負極で用いることができる。
By the above steps, the thickness is usually 10 to 4
A carbon material film having a width of 0 μm and a width of about 1.5 to 45 mm is obtained. This can be cut into an appropriate size and used in the negative electrode of the present invention.

【0022】次に、本発明のリチウム二次電池用負極に
おいて、前記積層体の形状としては、最終的な用途・電
池の形状に応じ、シート状・棒状・板状・膜状等種々の
形態とし得る。サイズとしては、厚みが0.05〜1m
m、幅が1.5〜150mmの範囲とし、長さは特に限
定されず、適宜所望の長さに裁断できる。このような形
態とすることにより本発明のリチウム二次電池用負極が
得られる。
Next, in the negative electrode for a lithium secondary battery of the present invention, the laminated body may have various shapes such as a sheet shape, a rod shape, a plate shape, and a film shape, depending on the final use and the shape of the battery. Can be As for size, the thickness is 0.05-1m
The width m is in the range of 1.5 to 150 mm, and the length is not particularly limited, and can be appropriately cut into a desired length. With such a form, the negative electrode for a lithium secondary battery of the present invention can be obtained.

【0023】かかる本発明の二次電池用負極は、通常用
いられるプロピレンカーボネート、エチレンカーボネー
ト、γ−ブチロラクトン、テトラヒドロフラン、2−メ
チルテトラヒドロフラン、ジオキソラン、4−メチルジ
オキソラン、スルホラン、アセトニトリル等の電解液、
25、Mn2O等の正極と組み合わせて、常法によ
り、リチウム二次電池に組み立てることができる。本発
明はこのようなリチウム二次電池も提供するものであ
り、ポータブル電子機器等の電源、その他各種メモリー
やソーラーのバックアップ等、さらには電気自動車、電
力貯蔵用バッテリーなどに好適に使用することができ
る。
The negative electrode for a secondary battery according to the present invention is an electrolyte such as propylene carbonate, ethylene carbonate, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, 4-methyldioxolane, sulfolane, acetonitrile, etc.
A lithium secondary battery can be assembled by a conventional method in combination with a positive electrode such as V 2 O 5 or Mn 2 O. The present invention also provides such a lithium secondary battery, and can be suitably used as a power source for portable electronic devices and the like, backup of various memories and solars, and also as an electric vehicle, a battery for power storage, and the like. it can.

【0024】次に、上記した炭素粉末と炭素フィルムの
複合体を用いることによる効果を説明する。まず、炭素
粉末と炭素フィルムの複合化により、(1)炭素粉末を
単独で用いた場合に比べ、導電性が大幅に向上し、充放
電反応の速度が向上し、従来必要とされた金属性集電体
が不必要となり、軽量化が図れる、(2)炭素フィルム
を単独で用いた場合に比べ、バルキーな構造となり、負
極への電解液等の拡散が容易となる気孔が形成される、
等の作用により、充放電反応が容易となり、その結果出
力密度が向上する。
Next, the effect of using the above-mentioned composite of carbon powder and carbon film will be described. First, by combining carbon powder and carbon film, (1) the conductivity is significantly improved and the charge / discharge reaction speed is improved as compared with the case where carbon powder is used alone, and the metallic property that has been conventionally required. A current collector is unnecessary, and weight reduction can be achieved. (2) A bulky structure is formed as compared with the case where a carbon film is used alone, and pores are formed that facilitate diffusion of an electrolytic solution or the like into a negative electrode.
Due to such actions, the charge / discharge reaction is facilitated, and as a result, the output density is improved.

【0025】また、結晶子に層状構造をもつカーボン材
を二次電池の電極に用いた場合、充放電の際に層間に化
学種が侵入・脱離するが、それに伴って結晶子のc軸方
向への膨張・収縮が起こる。この膨張・収縮が繰り返さ
れると、電極面と平行方向に歪みが増加し、ついには電
極の破壊が起こる。しかして、本発明におけるハイブリ
ッド構造のカーボン材では結晶子のa軸方向が電極面と
平行に配向したものを使用しているため、その膨張・収
縮が電極面と垂直方向に起こることになり、電極は破壊
されにくく長寿命化が可能となる。
When a carbon material having a layered structure in the crystallite is used for an electrode of a secondary battery, chemical species enter and leave the layers during charge / discharge, and the c-axis of the crystallite is accompanied with it. Expansion / contraction in the direction occurs. When the expansion and contraction are repeated, the strain increases in the direction parallel to the electrode surface, and eventually the electrode breaks down. In the carbon material of the hybrid structure in the present invention, the crystallites whose a-axis direction is oriented parallel to the electrode surface are used, so that the expansion / contraction thereof occurs in the direction perpendicular to the electrode surface. The electrode is less likely to be broken and the life can be extended.

【0026】さらに、電池特性に大きく影響を及ぼす因
子として、電気伝導性や熱伝導性が挙げられる。カーボ
ンのπ電子は炭素原子の六角網目構造による共役系の中
で移動するため、カーボン結晶の配向の乱れは電気伝導
性の低下やジュール熱の増加をもたらす原因となる。し
かして、本発明で使用するハイブリッド構造のカーボン
材では、炭素フィルム側の結晶子のa軸が電極面と平行
に配向しているため、電気・熱伝導性に対する異方性が
顕著に発現する。その結果、集電効果を高める方向の電
気伝導性とジュール熱の移動・放熱を容易にする方向の
熱伝導性の両特性を電池用電極に付与することができ
る。
Further, as factors that greatly affect the battery characteristics, electrical conductivity and thermal conductivity can be mentioned. Since the π-electrons of carbon move in the conjugated system of the hexagonal network structure of carbon atoms, the disorder of the orientation of the carbon crystal causes a decrease in electrical conductivity and an increase in Joule heat. In the carbon material of the hybrid structure used in the present invention, the a-axis of the crystallite on the carbon film side is oriented parallel to the electrode surface, so that anisotropy with respect to electric / thermal conductivity is remarkably exhibited. .. As a result, the battery electrode can be provided with both the electrical conductivity in the direction of increasing the current collecting effect and the thermal conductivity in the direction of facilitating the movement and heat dissipation of Joule heat.

【0027】また、炭素粉末および炭素フィルムと、い
ずれもリチウムイオンを吸蔵可能な材料を複合化させる
ことにより、両者の長所を相補的に生かせることができ
ると共に、負極体当たりに吸蔵されるリチウムイオンの
量、すなわち放電容量を高めることができる。
By compositing a carbon powder and a carbon film with a material capable of occluding lithium ions, the advantages of both can be utilized complementarily, and at the same time, the lithium ions occluded per negative electrode body. , The discharge capacity can be increased.

【0028】[0028]

【実施例】以下に実施例を挙げて本発明をさらに詳しく
説明する。 [炭素フィルムの製造]軟化点(メトラー法)=100
℃、キノリン不溶分(QI成分)=0.2%、ベンゼン
不溶分(BI成分)=30%のコールタールピッチに2
倍量の水素化アントラセン油を加え、430℃で60分
間加熱し、さらに減圧下300℃で水素化アントラセン
油を除去して還元ピッチを得た。次いで、この還元ピッ
チに窒素ガスを導入して、低分子量成分を除去し、40
0℃で5時間熱重合して、軟化点(メトラー法)=26
2.4℃、QI成分=50%、BI成分=98%、メソ
フェーズ含有量90%以上の押出用メソフェーズピッチ
を得た。このピッチを図2〜図4に示した装置を使用
し、前記ピッチを溶融状態にてスリット型ノズル(6)
から押し出し、空気を吹きつけつつ巻き取ることによっ
て、シート状ピッチ系フィルムを得た。次いで、該ピッ
チ系フィルムを空気中3℃/分の昇温速度で300℃ま
で加熱した後、同温度に2時間保持することによって不
融化処理を行った。その後、アルゴン中、1000℃で
加熱焼成してテープ状ピッチ系炭素フィルムを得た。具
体的製造条件と、得られたテープ状ピッチ系炭素フィル
ムの性状を表1に示す。
EXAMPLES The present invention will be described in more detail with reference to the following examples. [Production of carbon film] Softening point (Mettler method) = 100
℃, quinoline insoluble matter (QI component) = 0.2%, benzene insoluble matter (BI component) = 30% Coal tar pitch 2
A double amount of hydrogenated anthracene oil was added, the mixture was heated at 430 ° C. for 60 minutes, and the hydrogenated anthracene oil was removed at 300 ° C. under reduced pressure to obtain reduced pitch. Then, nitrogen gas was introduced into this reduced pitch to remove low molecular weight components,
Thermal polymerization at 0 ° C. for 5 hours, softening point (Mettler method) = 26
A mesophase pitch for extrusion was obtained at 2.4 ° C., QI component = 50%, BI component = 98%, and mesophase content of 90% or more. The pitch is melted by using the device shown in FIGS. 2 to 4, and the slit type nozzle (6) is used.
The sheet-like pitch-based film was obtained by extruding from the sheet and winding it while blowing air. Next, the pitch-based film was heated to 300 ° C. in air at a temperature rising rate of 3 ° C./min, and then held at the same temperature for 2 hours for infusibilization treatment. Then, the tape-shaped pitch type | system | group carbon film was obtained by baking at 1000 degreeC in argon. Table 1 shows specific production conditions and properties of the obtained tape-shaped pitch-based carbon film.

【0029】[0029]

【表1】 [Table 1]

【0030】[炭素粉末の調製]中心粒径20μmにな
るように粉砕したニードルコークスにバインダーとして
ディスパージョンタイプのPTFE(濃度10%)を重
量比で90:10で混合し、ペースト状とした。
[Preparation of carbon powder] A needle coke pulverized to have a central particle size of 20 μm was mixed with a dispersion type PTFE (concentration 10%) as a binder at a weight ratio of 90:10 to form a paste.

【0031】[負極体の作成]上記の炭素フィルム上に
コーティングマシーンを用いて、炭素粉末のペーストを
塗布し、乾燥させた。得られたペースト付き炭素フィル
ムを10枚積層し、260℃で10分間プレスした板状
の負極体を得た。得られた負極体を作用極として、対極
及び参照極にリチウム金属を用いて、電位が0Vになる
まで負極体にリチウムを吸蔵させた。この条件(電解
液、電流密度等)は、後記する電池特性の測定の条件と
同様にした行った。
[Production of Negative Electrode Body] A carbon powder paste was applied onto the above carbon film using a coating machine and dried. Ten pieces of the obtained carbon film with a paste were laminated and pressed at 260 ° C. for 10 minutes to obtain a plate-shaped negative electrode body. Using the obtained negative electrode body as a working electrode, lithium metal was used for the counter electrode and the reference electrode, and lithium was stored in the negative electrode body until the potential became 0V. The conditions (electrolyte solution, current density, etc.) were the same as the conditions for measuring battery characteristics described later.

【0032】[電池の作成]図5にその断面図を示すご
とく、前記にて得られた負極体(9)の他、正極体(1
0)として電解二酸化マンガンを、電解液として1モル
/lの濃度にLiClO4を溶解させたプロピレンカー
ボネートを用い、セパレータ(11)としてポリプロピ
レン不織布、さらにケース(12)、封口板(13)お
よび絶縁パッキング(14)を用い、常法により、リチ
ウム二次電池を作成した。
[Preparation of Battery] As shown in the sectional view of FIG. 5, in addition to the negative electrode body (9) obtained above, a positive electrode body (1
Electrolytic manganese dioxide is used as 0), propylene carbonate in which LiClO 4 is dissolved at a concentration of 1 mol / l is used as an electrolytic solution, polypropylene nonwoven fabric is used as a separator (11), and further a case (12), a sealing plate (13) and an insulating material. Using the packing (14), a lithium secondary battery was prepared by a conventional method.

【0033】[電池特性の測定]前記にて得られたリチ
ウム二次電池の出力密度、放電容量およびサイクル特性
を測定した。測定は、通常、50mA/g(負極カーボ
ン基準)の定電流充放電下で行った。放電容量は、電池
電圧が2.0Vに低下するまでの容量とした。サイクル
特性は、放電容量が初期放電容量の90%にまで低下す
るまでのサイクル数で評価した。また、出力密度は放電
電流密度を変化させて得た電流−電位曲線から求めた。
対照として、負極用カーボン材として、上記の炭素粉末
を単独で用いた以外は同様にして作成したリチウム二次
電池についても同条件下で測定を行った。結果を表2に
示す。
[Measurement of Battery Characteristics] The output density, discharge capacity and cycle characteristics of the lithium secondary battery obtained above were measured. The measurement was usually performed under constant current charge / discharge of 50 mA / g (negative electrode carbon standard). The discharge capacity was the capacity until the battery voltage dropped to 2.0V. The cycle characteristics were evaluated by the number of cycles until the discharge capacity decreased to 90% of the initial discharge capacity. The output density was obtained from the current-potential curve obtained by changing the discharge current density.
As a control, a lithium secondary battery prepared in the same manner except that the above carbon powder was used alone as the carbon material for the negative electrode was also measured under the same conditions. The results are shown in Table 2.

【0034】[0034]

【表2】 [Table 2]

【0035】表2より、本発明のリチウム二次電池は対
照リチウム二次電池よりも、放電容量、サイクル特性、
出力密度いずれの点においても優れていることが分か
る。
As shown in Table 2, the lithium secondary battery of the present invention was superior to the control lithium secondary battery in discharge capacity, cycle characteristics,
It can be seen that the power density is excellent in both respects.

【0036】[0036]

【発明の効果】本発明により、負極用カーボン材として
炭素粉末のみを用いた従来タイプのもので見られた電気
伝導度の低下に起因する性能低下が改良され、より軽量
で、単位体積(重量)当たりの容量、出力密度およびサ
イクル特性が共に向上したリチウム二次電池およびその
ための負極が提供される。
EFFECTS OF THE INVENTION According to the present invention, the performance deterioration due to the decrease in electric conductivity, which is observed in the conventional type using only carbon powder as the carbon material for the negative electrode, is improved, and the weight is reduced, and the unit volume (weight) A lithium secondary battery having improved capacity, power density and cycle characteristics, and a negative electrode therefor are provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のリチウム二次電池用負極を模式的に
示す断面図である。
FIG. 1 is a cross-sectional view schematically showing a negative electrode for a lithium secondary battery of the present invention.

【図2】 炭素フィルムを製造するための押出装置の概
要を示す斜視図である。
FIG. 2 is a perspective view showing an outline of an extrusion apparatus for producing a carbon film.

【図3】 図2に示した押出装置の正面図である。FIG. 3 is a front view of the extrusion device shown in FIG.

【図4】 図2に示した押出装置のノズルと気流噴き出
し口を特に強調して示す概要図である。
FIG. 4 is a schematic diagram showing the nozzle and the air flow outlet of the extrusion device shown in FIG. 2 with particular emphasis.

【図5】 実施例で作成した本発明のリチウム二次電池
の断面図である。
FIG. 5 is a cross-sectional view of a lithium secondary battery of the present invention created in an example.

【符号の説明】[Explanation of symbols]

1:フィルム層、2:炭素粉末層、3:押出装置、4:
シート状ピッチ、5:巻取装置、6:スリット型ノズ
ル、7:気流噴き出し口、8:テープ状ピッチフィル
ム、9:負極、10:正極、11:セパレータ、12:
ケース、13:封口板、14:絶縁パッキング
1: film layer, 2: carbon powder layer, 3: extrusion device, 4:
Sheet-like pitch, 5: winding device, 6: slit type nozzle, 7: air flow ejection port, 8: tape-like pitch film, 9: negative electrode, 10: positive electrode, 11: separator, 12:
Case, 13: sealing plate, 14: insulating packing

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭素粉末および炭素フィルムを積層複合
化したカーボン材よりなるリチウム二次電池用負極。
1. A negative electrode for a lithium secondary battery, comprising a carbon material obtained by laminating and compositing carbon powder and a carbon film.
【請求項2】 請求項1記載の負極を電池構成要素とし
てなるリチウム二次電池。
2. A lithium secondary battery comprising the negative electrode according to claim 1 as a battery constituent element.
JP4076666A 1992-03-31 1992-03-31 Negative electrode for lithium secondary battery and lithium secondary battery using same electrode Pending JPH05283062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4076666A JPH05283062A (en) 1992-03-31 1992-03-31 Negative electrode for lithium secondary battery and lithium secondary battery using same electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4076666A JPH05283062A (en) 1992-03-31 1992-03-31 Negative electrode for lithium secondary battery and lithium secondary battery using same electrode

Publications (1)

Publication Number Publication Date
JPH05283062A true JPH05283062A (en) 1993-10-29

Family

ID=13611741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4076666A Pending JPH05283062A (en) 1992-03-31 1992-03-31 Negative electrode for lithium secondary battery and lithium secondary battery using same electrode

Country Status (1)

Country Link
JP (1) JPH05283062A (en)

Similar Documents

Publication Publication Date Title
KR102105475B1 (en) Carbon-based fiber sheet and lithium-sulfur battery comprising the same
JP5334278B1 (en) Carbon fiber material, carbon fiber material manufacturing method, and material having the carbon fiber material
US8808609B2 (en) Process of making a carbon fiber nonwoven fabric
KR20230096930A (en) Complex for anode active material, anode including the complex, lithium secondary battery including the anode, and method of preparing the complex
JP4697901B1 (en) Non-woven fabric made of carbon fiber, carbon fiber, and manufacturing method thereof, electrode, battery, and filter
EP2503626A1 (en) Positive-electrode material for a lithium ion secondary battery, and manufacturing method therefor
JP7309032B2 (en) Method for manufacturing lithium metal negative electrode, lithium metal negative electrode manufactured by the same, and lithium-sulfur battery including the same
KR20180101896A (en) Negative electrode active material for lithium secondary battery, and preparing method therof
JPWO2017135406A1 (en) Carbon fiber aggregate and method for producing the same, electrode mixture layer for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN111095626A (en) Negative active material for lithium secondary battery and method for preparing same
KR101276336B1 (en) Lithium Ion Capacitor Electrode Using Fibrous Current Collector Comprising Carbon Nano Fiber, Method of Manufacturing the Same, and Lithium Ion Capacitor Using the Same
JP2012003985A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
JPH11219704A (en) Lithium secondary battery, its negative electrode and its manufacture
JP4123313B2 (en) Carbon material for negative electrode, method for producing the same, and lithium secondary battery using the same
JP2023520194A (en) Negative electrode and secondary battery containing the same
JP5489184B2 (en) Branched carbon fiber, branched carbon fiber manufacturing method, material having the branched carbon fiber
CN113950759A (en) Negative electrode, method for producing same, and secondary battery comprising same
KR20210053059A (en) Negative electrode active material, method for manufacturing the same, negative electrode and secondary battery comprising the same
JP2013221232A (en) Carbon fiber, method for producing carbon fiber and material having the carbon fiber
JP2011157668A (en) Method for pitch fiber spinning, method for producing carbon fiber, and carbon nanofiber
KR20190108429A (en) Method for manufacturing positive electrode
JP2017010935A (en) Electrode mixture layer for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery including the same, and nonaqueous electrolyte secondary battery
JP2011114140A (en) Electrode material, manufacturing method thereof, and electrochemical capacitor using electrode material
JPH05283062A (en) Negative electrode for lithium secondary battery and lithium secondary battery using same electrode
JPH11219700A (en) Lithium secondary battery, its negative electrode and its manufacture