JPH0526630A - Displacement measuring device - Google Patents

Displacement measuring device

Info

Publication number
JPH0526630A
JPH0526630A JP20761591A JP20761591A JPH0526630A JP H0526630 A JPH0526630 A JP H0526630A JP 20761591 A JP20761591 A JP 20761591A JP 20761591 A JP20761591 A JP 20761591A JP H0526630 A JPH0526630 A JP H0526630A
Authority
JP
Japan
Prior art keywords
grating
light
gain medium
measured
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20761591A
Other languages
Japanese (ja)
Other versions
JP2915636B2 (en
Inventor
Hiromasa Inuzuka
博誠 犬塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20761591A priority Critical patent/JP2915636B2/en
Publication of JPH0526630A publication Critical patent/JPH0526630A/en
Application granted granted Critical
Publication of JP2915636B2 publication Critical patent/JP2915636B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To simply and correctly detect the displacement due to the local distortion of an object to be measured. CONSTITUTION:A light guide layer 13 is provided on the surface of an object to be measured 11 via a transparent buffer layer 12. A gain medium section 130 receiving the excitation light Lp is formed on part of the light guide layer 13, the first grating 131 with the constant grid interval LAMBDA1 is formed on one side, and the second grating 132 with the grid interval LAMBDA2(x) including twice LAMBDA1 and continuously changed is formed on the other side respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、構造物内部歪の検出に
適用される変位測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a displacement measuring device applied to detect internal strain of a structure.

【0002】[0002]

【従来の技術】従来の変位測定装置の一例を図2模式図
に示すと、これは、被測定物21の一端にミラー22を
取付けておき、光源27より出た光をハーフミラー24
により2本に分離しミラー22及び固定ミラー23に入
射させ、それぞれの反射光を再びハーフミラー24を介
して合流させレンズ25によりスクリーン26上に干渉
じまを生じさせるマイケルソン干渉計を基本構造として
持つものである。しかして、被測定物21の長さの変化
によりそこに固定したミラー22からハーフミラー24
までの距離が変化し、ミラー22及び固定ミラー23か
らの反射光のスクリーン26上での位相差が変化し干渉
じまの位置が変化する。この変化量を測定することによ
り光の波長オーダー(数100nm)以下の高精度の変
位検出が可能となる。
2. Description of the Related Art An example of a conventional displacement measuring device is shown in the schematic view of FIG. 2, in which a mirror 22 is attached to one end of an object to be measured 21 and light emitted from a light source 27 is reflected by a half mirror 24.
The Michelson interferometer is a basic structure in which the light is split into two by the laser light and is incident on the mirror 22 and the fixed mirror 23, and the respective reflected lights are merged again through the half mirror 24 to cause interference fringes on the screen 26 by the lens 25. Have as. Then, due to the change in the length of the DUT 21, the mirror 22 fixed to the half mirror 24
Changes, the phase difference of the reflected light from the mirror 22 and the fixed mirror 23 on the screen 26 changes, and the position of the interference stripe changes. By measuring this amount of change, it is possible to detect the displacement with high accuracy on the order of the wavelength of light (several hundreds of nm) or less.

【0003】しかしながらこのような装置では、被測定
物の内部で生じた歪の総量としての全長の変化しか検出
できないとともに、干渉計を安定に設置する必要があ
り、橋りょう,高層建造物等一般的な環境での使用が困
難である。
However, such an apparatus can detect only the change in the total length as the total amount of strain generated inside the object to be measured, and it is necessary to stably install the interferometer, which is generally used for bridges, high-rise buildings and the like. It is difficult to use in various environments.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
事情に鑑みて提案されたもので、被測定物の局部的な歪
による変位を簡便かつ正確に検出することができる変位
測定装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been proposed in view of the above circumstances, and provides a displacement measuring device capable of simply and accurately detecting the displacement of a measured object due to local strain. The purpose is to provide.

【0005】[0005]

【課題を解決するための手段】そのために本発明は、被
測定物の表面に透明のバッファー層を介して光の導波層
を設け、同導波層の一部に励起光を受ける利得媒質部を
形成するとともに、同利得媒質部の一方の側に格子間隔
一定の第1グレーティング、他方の側に格子間隔が上記
第1グレーティングのそれの2倍を含み連続的に変化す
る第2グレーティングをそれぞれ形成したことを特徴と
する。
To this end, the present invention provides a gain medium in which an optical waveguide layer is provided on the surface of an object to be measured through a transparent buffer layer, and a portion of the waveguide layer receives pumping light. Part of the same gain medium portion, a first grating having a constant lattice spacing is provided on one side of the gain medium portion, and a second grating having a lattice spacing continuously changing including twice that of the first grating is provided on the other side. It is characterized in that each is formed.

【0006】[0006]

【作用】上述の構成により、被測定物の局部的な歪によ
る変位を簡便かつ正確に検出することができる変位測定
装置を得ることができる。
With the above structure, it is possible to obtain a displacement measuring device capable of simply and accurately detecting the displacement of the object to be measured due to local strain.

【0007】[0007]

【実施例】本発明変位測定装置の一実施例を図1断面図
について説明すると、被測定物11の表面に、 SiO2
PMMA(ポリメタクリレート)などの透明のバッファ
ー層12を介してそれより屈折率の高い導波層13を設
け、光導波路を形成する。この導波層13としてはガラ
スや透明な樹脂を用いる。しかしてこの導波層13の一
部に、励起光LP を受ける部分として、利得媒質として
レーザー色素やNd ,Erなどの原子を含む利得媒質部13
0 を形成する。更にこの利得媒質部130 の両側に、一
定の格子間隔Λ1 の第1グレーティング131 と、Λ1
の2倍を含み位置によってなだらかに連続して変化する
格子間隔Λ2(x) を有する第2グレーティング132
形成する。
EXAMPLES To illustrate an embodiment of the present invention displacement measuring apparatus 1 a cross-sectional view for, on the surface of the object 11, than through the SiO 2 and PMMA (polymethyl methacrylate) transparent buffer layer 12, such as The waveguide layer 13 having a high refractive index is provided to form an optical waveguide. Glass or transparent resin is used as the waveguide layer 13. As a gain medium, a portion of the waveguide layer 13 that receives the pumping light L P includes a gain medium portion 13 that includes a laser dye and atoms such as Nd and Er.
Form 0 . Further on either side of the gain medium 13 0, the first grating 13 1 having a constant grating spacing lambda 1, lambda 1
To form a second grating 13 2 having a lattice spacing Λ 2 (x) which is twice as large as and which continuously changes depending on the position.

【0008】このような装置において、利得媒質部13
0 を励起光LP によって励起することによって利得媒質
からある波長範囲の光を持つ蛍光が生ずる。その内の波
長λ0 に対してグレーティング格子間隔Λを導波路中の
光波の位相定数βを用いてΛ=qπ/βの関係を満たす
ようにすれば、グレーティングは反射器としての特性を
示す。ただしqは整数である。
In such a device, the gain medium section 13
By exciting 0 with the pumping light L P , fluorescence having light in a certain wavelength range is generated from the gain medium. If the grating lattice spacing Λ for the wavelength λ 0 among them is set to satisfy the relation of Λ = qπ / β by using the phase constant β of the light wave in the waveguide, the grating exhibits characteristics as a reflector. However, q is an integer.

【0009】そしてΛ1 はq=1とした場合であり、Λ
2 はある位置x0 においてΛ2(x0 ) =2Λ1 を持ち連
続的に格子間隔がゆるやかに変化するように選んであ
る。q=2の場合においては2次の回折波が反射波とな
り1次の回折波は導波層表面の法線方向に生ずる。すな
わち波長λ0 の光が第1グレーティング131 と第2グ
レーティング132 のΛ2 =2Λ1 となる領域との間で
くり返し反射されることにより増幅されレーザー発振を
生じ、第2グレーティング132 の1次回折波によって
波長λ0 のレーザー出力L0 が出力される面発光レーザ
ーとなる。
Λ 1 is the case where q = 1, and Λ
2 has Λ 2 (x 0 ) = 2Λ 1 at a certain position x 0 , and is selected so that the lattice spacing changes continuously and gradually. When q = 2, the second-order diffracted wave becomes a reflected wave and the first-order diffracted wave is generated in the direction normal to the surface of the waveguide layer. That is, the light of the wavelength λ 0 is repeatedly reflected between the region of Λ 2 = 2Λ 1 of the first grating 13 1 and the second grating 13 2 to be amplified and generate laser oscillation, and the second grating 13 2 The surface emitting laser outputs a laser output L 0 having a wavelength λ 0 by the first-order diffracted wave.

【0010】次に被測定物11が内部歪により変形し表
面の長さが変化した場合について考える。長さの変化量
が第1グレーティング131 の格子間隔Λ1 に対してδ
である(Λ1′=Λ1 +δ)とすると、第2グレーティ
ング132 のx0 における格子間隔Λ2′(x0 ) はΛ
2(x0)+δ=2(Λ1 +δ/2)となり、Λ2′( x0)=
2Λ1′の関係が満たされなくなる。しかし第2グレー
ティング132 の格子間隔は連続的に変化しているた
め、Λ2′(x)=2Λ1′が成り立つ位置xが存在し、
Λ1′に対応する波長λ′のレーザー光が出力される。
かくして被測定物11の変位は連続的な波長の変化とし
て検出される。
Next, consider a case where the object 11 to be measured is deformed by internal strain and the surface length is changed. The amount of change in length is δ for the lattice spacing Λ 1 of the first grating 13 1.
1 ′ = Λ 1 + δ), the lattice spacing Λ 2 ′ (x 0 ) of the second grating 13 2 at x 0 is Λ
2 (x 0 ) + δ = 2 (Λ 1 + δ / 2), and Λ 2 ′ (x 0 ) =
The relation of 2Λ 1 ′ cannot be satisfied. However, since the lattice spacing of the second grating 13 2 is continuously changing, there is a position x where Λ 2 ′ (x) = 2Λ 1 ′ holds,
Laser light of wavelength λ'corresponding to Λ 1 'is output.
Thus, the displacement of the DUT 11 is detected as a continuous wavelength change.

【0011】以上説明したように、このような装置によ
れば、被測定物11の表面に面発光分布反射型波長可変
レーザーをバッファー層12を介して形成することによ
って、内部歪によって生じた表面の変位を波長の変化と
して検出できる。またこの装置は光のみで動作させるこ
とが可能であり、励起光LP としてパルス幅が数ns以
下の短光パルスを用いれば励動などによる変動を受けな
い安定な検出ができる。更に面発光レーザーであるため
出力光が直接外部に取り出せることから非接触計測が可
能である。
As described above, according to such an apparatus, the surface emission distributed reflection type wavelength tunable laser is formed on the surface of the DUT 11 through the buffer layer 12, so that the surface generated by the internal strain is generated. Can be detected as a change in wavelength. Further, this device can be operated only by light, and if a short optical pulse having a pulse width of several ns or less is used as the excitation light L P , stable detection can be performed without fluctuation due to excitation or the like. Furthermore, since it is a surface emitting laser, the output light can be directly extracted to the outside, so non-contact measurement is possible.

【0012】[0012]

【発明の効果】要するに本発明によれば、被測定物の表
面に透明のバッファー層を介して光の導波層を設け、同
導波層の一部に励起光を受ける利得媒質部を形成すると
ともに、同利得媒質部の一方の側に格子間隔一定の第1
グレーティング、他方の側に格子間隔が上記第1グレー
ティングのそれの2倍を含み連続的に変化する第2グレ
ーティングをそれぞれ形成したことにより、被測定物の
局部的な歪による変位を簡便かつ正確に検出することが
できる変位測定装置を得るから、本発明は産業上極めて
有益なものである。
In summary, according to the present invention, an optical waveguide layer is provided on the surface of the object to be measured through a transparent buffer layer, and a gain medium portion for receiving pump light is formed in a part of the waveguide layer. In addition, a first grating with a constant lattice spacing is provided on one side of the gain medium section.
By forming a grating and a second grating, on the other side of which the grating spacing continuously changes, including twice that of the first grating, the displacement due to local strain of the measured object can be easily and accurately obtained. The present invention is extremely useful industrially because a displacement measuring device capable of detecting is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明変位測定装置の一実施例の断面図であ
る。
FIG. 1 is a sectional view of an embodiment of a displacement measuring device of the present invention.

【図2】従来の変位測定装置の模式図である。FIG. 2 is a schematic diagram of a conventional displacement measuring device.

【符号の説明】[Explanation of symbols]

11 被測定物 12 バッファー層 13 導波層 130 利得媒質部 131 第1グレーティング 132 第2グレーティング11 DUT 12 Buffer layer 13 Waveguide layer 13 0 Gain medium part 13 1 First grating 13 2 Second grating

Claims (1)

【特許請求の範囲】 【請求項1】 被測定物の表面に透明のバッファー層を
介して光の導波層を設け、同導波層の一部に励起光を受
ける利得媒質部を形成するとともに、同利得媒質部の一
方の側に格子間隔一定の第1グレーティング、他方の側
に格子間隔が上記第1グレーティングのそれの2倍を含
み連続的に変化する第2グレーティングをそれぞれ形成
したことを特徴とする変位測定装置。
Claim: What is claimed is: 1. A waveguide layer for light is provided on the surface of an object to be measured through a transparent buffer layer, and a gain medium portion for receiving pump light is formed in a part of the waveguide layer. At the same time, a first grating having a constant lattice spacing is formed on one side of the same gain medium portion, and a second grating having a lattice spacing continuously changing including twice that of the first grating is formed on the other side. Displacement measuring device.
JP20761591A 1991-07-24 1991-07-24 Displacement measuring device Expired - Lifetime JP2915636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20761591A JP2915636B2 (en) 1991-07-24 1991-07-24 Displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20761591A JP2915636B2 (en) 1991-07-24 1991-07-24 Displacement measuring device

Publications (2)

Publication Number Publication Date
JPH0526630A true JPH0526630A (en) 1993-02-02
JP2915636B2 JP2915636B2 (en) 1999-07-05

Family

ID=16542727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20761591A Expired - Lifetime JP2915636B2 (en) 1991-07-24 1991-07-24 Displacement measuring device

Country Status (1)

Country Link
JP (1) JP2915636B2 (en)

Also Published As

Publication number Publication date
JP2915636B2 (en) 1999-07-05

Similar Documents

Publication Publication Date Title
US6549687B1 (en) System and method for measuring physical, chemical and biological stimuli using vertical cavity surface emitting lasers with integrated tuner
US6836578B2 (en) System and method for measuring physical stimuli using vertical cavity surface emitting lasers with integrated tuning means
US5677769A (en) Optical sensor utilizing rare-earth-doped integrated-optic lasers
US5341205A (en) Method for characterization of optical waveguide devices using partial coherence interferometry
US6643025B2 (en) Microinterferometer for distance measurements
EP0023345A2 (en) Optical sensing system
JP4892401B2 (en) Optical interference measurement device
TW201719109A (en) Apparatus for measuring cavity length of optical resonant cavity
US7308162B2 (en) Intrinsic Fabry-Perot optical fiber sensors and their multiplexing
CN112304213B (en) Fabry-Perot grating interferometer for single-degree-of-freedom displacement measurement and measurement method thereof
US20030046024A1 (en) Apparatus and method for volumetric dilatometry
JP2915636B2 (en) Displacement measuring device
JP4027352B2 (en) Optical fiber probe device
Imran et al. Measurement of the group-delay dispersion of femtosecond optics using white-light interferometry
EP1690254B1 (en) Measurement device
JPH06241929A (en) Optical fiber sensor
RU2082119C1 (en) Fiber-optical multiplexer which measures temperature
RU2084845C1 (en) Fibre-interference system of pressure measurement
JP2934535B2 (en) Waveguide type tunable ring laser
Qu et al. Micro-displacement sensors based on plastic photonic bandgap bragg fibers
Chen et al. Fiber-optic Fabry-Perot Interferometry for High-resolution Motion Detection
JPH0953999A (en) Optical external force detector
JPH06281414A (en) Photo-integrated displacement measuring device
JP2712509B2 (en) Reflection film characteristic measuring device
JPH11274643A (en) Variable wavelength semiconductor laser light source

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990317