JPH05257138A - Two-layer type liquid crystal display device - Google Patents

Two-layer type liquid crystal display device

Info

Publication number
JPH05257138A
JPH05257138A JP3061373A JP6137391A JPH05257138A JP H05257138 A JPH05257138 A JP H05257138A JP 3061373 A JP3061373 A JP 3061373A JP 6137391 A JP6137391 A JP 6137391A JP H05257138 A JPH05257138 A JP H05257138A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal cell
voltage
cell
optical phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3061373A
Other languages
Japanese (ja)
Inventor
Hidehiro Seki
秀廣 関
Yasutaka Itou
康尚 伊藤
Yoichiro Masuda
陽一郎 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIOTRON KK
JIESU KK
Original Assignee
BIOTRON KK
JIESU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIOTRON KK, JIESU KK filed Critical BIOTRON KK
Priority to JP3061373A priority Critical patent/JPH05257138A/en
Publication of JPH05257138A publication Critical patent/JPH05257138A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/14Negative birefingence

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To improve the visual angle characteristic at the time of not impressing a voltage to two pieces of liquid crystal cells without sacrificing the good characteristics at the time of impressing the voltage thereto by constituting the display device in such a manner that the inclination directions of liquid crystal molecules are opposite from each other when the voltage is impressed to the above-mentioned liquid crystal cells. CONSTITUTION:The inclination direction of the liquid crystal molecules when the voltage is impressed to the first liquid crystal 2 and the inclination direction of the liquid crystal molecules when the voltage is impressed to the second liquid crystal cell 3 are opposite from each other. The optical phase compensating films 40 which are laminated on this liquid crystal cell part 10 and are regarded to be optically negative uniaxial crystals improve the visual angle characteristics when the voltage is not impressed. The constitution of the substrate of the first liquid crystal cell 2 or the second liquid crystal 3 of the optical phase compensating film 40 which is regarded to be optically negative uniaxial crystal is possible as well. Further, the visual angle characteristic at the time of not impressing the voltage to the cells can also be improved by intersecting the optical axes of one set of the optically positive uniaxial crystals with each other with respect to the liquid crystal cell part 10 and laminating these crystals in such a manner that the optical axes thereof and the substrates of the liquid crystal cells parallel with each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は2層型液晶ディスプレイ
装置に係わり、特に、2個の液晶セルに電圧を印加する
と、液晶分子の傾斜方向が互いに反対となる様になって
いると共に、光学的位相補償手段を積層させることによ
り、電圧印加時の良好な特性を犠牲にすることなく電圧
無印加時の視角特性を改善することができる2層型液晶
ディスプレイ装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-layer liquid crystal display device, and in particular, when a voltage is applied to two liquid crystal cells, the tilt directions of liquid crystal molecules are opposite to each other, and The present invention relates to a two-layer type liquid crystal display device capable of improving viewing angle characteristics when no voltage is applied without sacrificing good characteristics when a voltage is applied, by stacking a dynamic phase compensation means.

【0002】[0002]

【従来の技術】負の誘電率異方性を有する液晶を用い、
電界制御複屈折効果を利用した液晶ディスプレイ(EC
B液晶ディスプレイ)は、電圧無印加時において、直交
ニコルでは完全に黒、平行ニコルでは白を表示すること
ができるので、コントラストを高くすることができる
上、しきい値特性も急峻で階調表示も可能であるため、
単純マトリクス型のフルカラー液晶ディスプレイに適し
ている。しかしながら、この様な高特性を有するECB
液晶ディスプレイは、垂直から僅かに傾いた液晶の分子
配向を得るのが困難であることや、光学特性の視角依存
性が大きいという問題点を有しているため、現在のとこ
ろ実用化されていない。
2. Description of the Related Art A liquid crystal having a negative dielectric anisotropy is used,
Liquid crystal display (EC
B liquid crystal display) can display completely black in the crossed Nicols and white in the parallel Nicols when no voltage is applied, so that the contrast can be increased and the threshold characteristics are sharp and gradation display is possible. Is also possible,
It is suitable for simple matrix full-color liquid crystal displays. However, an ECB having such high characteristics
Liquid crystal displays have not been put into practical use at the moment because they have the problems that it is difficult to obtain the molecular orientation of liquid crystal slightly tilted from the vertical and that the viewing angle dependence of the optical properties is large. ..

【0003】垂直から僅かに傾いた液晶分子の配向方法
に関しては、本出願人が、ラビング法を用いて簡便に実
現する方法を提案し、更に、電圧印加時の光学特性の視
角依存性については、ECB液晶セルを電圧印加時に液
晶分子の傾斜する方向が互いに反対となる様に2層積層
することにより改善する方法を提案した。
Regarding the method of aligning liquid crystal molecules slightly tilted from the vertical, the applicant of the present invention has proposed a method that can be easily realized by using a rubbing method. Furthermore, regarding the viewing angle dependence of optical characteristics when a voltage is applied, , A method of improving the ECB liquid crystal cell by stacking two layers so that the tilt directions of the liquid crystal molecules are opposite to each other when a voltage is applied.

【0004】[0004]

【発明が解決しようとする課題】しかしながら電圧無印
加時の視角特性の改善に関しては、何等の解決がなされ
ておらず、電圧印加時の良好な特性を犠牲にすることな
く電圧無印加時の視角特性を改善することができるEC
B液晶セルの実現が強く望まれていた。
However, no improvement has been made to the viewing angle characteristics when no voltage is applied, and the viewing angle when no voltage is applied is not sacrificed without sacrificing good characteristics when a voltage is applied. EC that can improve characteristics
Realization of B liquid crystal cell was strongly desired.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題に鑑み
案出されたもので、第1の液晶セルと第2の液晶セルと
からなる液晶セル部を有する2層型液晶ディスプレイで
あって、電圧を印加した場合の第1の液晶セルに封入さ
れた液晶分子の傾斜方向と、電圧を印加した場合の第2
の液晶セルに封入された液晶分子の傾斜方向とが、互い
に反対となる様に構成されており、前記液晶セル部に対
して、光学的に負の一軸性結晶と見なされる光学的位相
補償手段を積層させている。
The present invention has been devised in view of the above problems, and is a two-layer liquid crystal display having a liquid crystal cell portion composed of a first liquid crystal cell and a second liquid crystal cell. , The tilt direction of the liquid crystal molecules enclosed in the first liquid crystal cell when a voltage is applied, and the second direction when a voltage is applied.
The optical phase compensating means is configured such that the tilt directions of the liquid crystal molecules enclosed in the liquid crystal cell are opposite to each other, and the liquid crystal cell section is regarded as an optically negative uniaxial crystal. Are stacked.

【0006】また本発明は、第1の液晶セルと第2の液
晶セルとからなる液晶セル部を有する2層型液晶ディス
プレイであって、電圧を印加した場合の第1の液晶セル
に封入された液晶分子の傾斜方向と、電圧を印加した場
合の第2の液晶セルに封入された液晶分子の傾斜方向と
が、互いに反対となる様に構成されており、前記第1の
液晶セル又は第2の液晶セルの基板が、光学的に負の一
軸性結晶と見なされる光学的位相補償手段となっている
ことを特徴としている。
Further, the present invention is a two-layer type liquid crystal display having a liquid crystal cell portion comprising a first liquid crystal cell and a second liquid crystal cell, which is enclosed in the first liquid crystal cell when a voltage is applied. The tilting direction of the liquid crystal molecules and the tilting direction of the liquid crystal molecules sealed in the second liquid crystal cell when a voltage is applied are configured to be opposite to each other. The substrate of the second liquid crystal cell is characterized in that it serves as an optical phase compensating means which is optically regarded as a negative uniaxial crystal.

【0007】更に本発明は、対向する一対の電極を有す
る第1の透明基板と該透明基板間に封入された第1の液
晶素材とからなる第1の液晶セルと、対向する一対の電
極を有する第2の透明基板と該透明基板間に封入された
第2の液晶素材とからなる第2の液晶セルと、光学的に
負の一軸性結晶と見なされる光学的位相補償手段である
光学的位相補償フィルムとからなっており、前記第1及
び第2の液晶素材が負の誘電率異方性を有する液晶であ
り、電圧を印加した場合の第1の液晶セルに封入された
第1の液晶分子の傾斜方向と、電圧を印加した場合の第
2の液晶セルに封入された第2の液晶分子の傾斜方向と
が、互いに反対となる様に構成されていることを特徴と
する2層型液晶ディスプレイ装置。
Further, according to the present invention, there is provided a first liquid crystal cell comprising a first transparent substrate having a pair of electrodes facing each other and a first liquid crystal material enclosed between the transparent substrates, and a pair of electrodes facing each other. A second liquid crystal cell composed of the second transparent substrate and a second liquid crystal material enclosed between the transparent substrates, and an optical phase compensating means optically regarded as a negative uniaxial crystal. A phase compensation film, wherein the first and second liquid crystal materials are liquid crystals having a negative dielectric constant anisotropy, and the first and second liquid crystal materials are sealed in the first liquid crystal cell when a voltage is applied. A two-layer structure in which the tilt direction of the liquid crystal molecules and the tilt direction of the second liquid crystal molecules enclosed in the second liquid crystal cell when a voltage is applied are opposite to each other. Type liquid crystal display device.

【0008】そして本発明は、第1の液晶セルと第2の
液晶セルとからなる液晶セル部を有する2層型液晶ディ
スプレイであって、電圧を印加した場合の第1の液晶セ
ルに封入された液晶分子の傾斜方向と、電圧を印加した
場合の第2の液晶セルに封入された液晶分子の傾斜方向
とが、互いに反対となる様に構成されており、前記液晶
セル部に対して、一組の光学的に正の一軸性結晶を光軸
を互いに直交させると共に、これらの光軸と前記液晶セ
ルの基板とが平行になる様にした光学的位相補償手段を
積層している。
The present invention is a two-layer type liquid crystal display having a liquid crystal cell section consisting of a first liquid crystal cell and a second liquid crystal cell, which is enclosed in the first liquid crystal cell when a voltage is applied. The tilting direction of the liquid crystal molecules and the tilting direction of the liquid crystal molecules sealed in the second liquid crystal cell when a voltage is applied are configured to be opposite to each other. The optical axes of a pair of optically positive uniaxial crystals are orthogonal to each other, and optical phase compensating means for laminating the optical axes and the substrate of the liquid crystal cell are laminated.

【0009】[0009]

【作用】以上の様に構成された本発明は、第1の液晶セ
ルに電圧を印加した時の液晶分子の傾斜方向と、第2の
液晶セルに電圧を印加した時の液晶分子の傾斜方向と
が、互いに反対となる様になっており、この液晶セル部
に対して積層され、光学的に負の一軸性結晶と見なされ
る光学的位相補償手段が、電圧無印加時の視角特性を改
善する様になっている。また本発明は、第1の液晶セル
又は第2の液晶セルの基板を、光学的に負の一軸性結晶
と見なされる光学的位相補償手段にすることもできる。
According to the present invention constructed as above, the tilt direction of the liquid crystal molecules when a voltage is applied to the first liquid crystal cell and the tilt direction of the liquid crystal molecules when a voltage is applied to the second liquid crystal cell. And are opposite to each other, and the optical phase compensating means, which is laminated with respect to the liquid crystal cell section and is regarded as an optically negative uniaxial crystal, improves the viewing angle characteristics when no voltage is applied. It is supposed to do. Further, in the present invention, the substrate of the first liquid crystal cell or the second liquid crystal cell may be an optical phase compensating means which is optically regarded as a negative uniaxial crystal.

【0010】また本発明は、対向する一対の電極を有す
る第1の透明基板と該透明基板間に負の誘電率異方性を
有する液晶素材を封入して第1の液晶セルを構成し、対
向する一対の電極を有する第2の透明基板と該透明基板
間に負の誘電率異方性を有する液晶素材を封入して第2
の液晶セルを構成し、電圧を印加した場合の第1の液晶
セルに封入された第1の液晶分子の傾斜方向と、電圧を
印加した場合の第2の液晶セルに封入された第2の液晶
分子の傾斜方向とが、互いに反対となる様になってお
り、光学的に負の一軸性結晶と見なされる光学的位相補
償手段である光学的位相補償フィルムが、電圧無印加時
の視角特性を改善する様になっている。
Further, according to the present invention, a first liquid crystal cell having a pair of electrodes facing each other and a liquid crystal material having a negative dielectric anisotropy is sealed between the transparent substrates to form a first liquid crystal cell. A second transparent substrate having a pair of electrodes facing each other and a liquid crystal material having negative dielectric anisotropy enclosed between the transparent substrates
Of the liquid crystal cell, the tilt direction of the first liquid crystal molecules enclosed in the first liquid crystal cell when a voltage is applied, and the second liquid crystal cell enclosed in the second liquid crystal cell when a voltage is applied. The liquid crystal molecules are tilted in mutually opposite directions, and the optical phase compensating film, which is an optical phase compensating means optically regarded as a negative uniaxial crystal, has a viewing angle characteristic when no voltage is applied. Is designed to improve.

【0011】そして本発明は液晶セル部に対して、一組
の光学的に正の一軸性結晶を光軸を互いに直交させると
共に、これらの光軸と前記液晶セルの基板とが平行にな
る様に積層して、電圧無印加時の視角特性を改善するこ
とができる。
According to the present invention, a pair of optically positive uniaxial crystals are made to have their optical axes orthogonal to each other with respect to the liquid crystal cell section, and these optical axes are parallel to the substrate of the liquid crystal cell. It is possible to improve the viewing angle characteristics when no voltage is applied by stacking the layers.

【0012】[0012]

【実施例】本発明の一実施例を図面に基づいて説明す
る。第1図は2層型ECBセル1の構成を示すものであ
り、2層型ECBセル1は、液晶セル部10と、光学的
位相補償フィルム40と、偏光子50、50とから構成
されている。液晶セル部10は、第1の液晶セル2と第
2の液晶セル3とからなっている。第1の液晶セルは、
負の誘電率異方性を有する液晶を用い、電界制御複屈折
効果(ECB効果)を利用したセルである。第1の液晶
セル2は、対向する一対の第1の透明基板21、21
と、この第1の透明基板21、21に形成された第1の
透明電極22、22と、第1の液晶素材23とからなっ
ている。第1の透明基板21、21は、フロートガラス
やポリエステルフイルムから構成されているが、透明性
が高く表面が平坦であれば何れの材料を採用することが
できる。第1の透明電極22、22は、第1の液晶素材
23に電圧を印加するためのもので、NESA膜やIT
O膜を採用することもできるが、透明性が高く、電気抵
抗の低いものであれば、何れの電極部材を使用すること
ができる。なお、第1の液晶セル2には配向層が形成さ
れており、この配向層は、In23 膜やSiOを第1
の透明基板21に垂直蒸着したもの、或は有機Si0
(OCD)を第1の基板21にスピンコートしたもの等
を採用することができる。更にDMOAP等の垂直配向
剤を使用し、ラビングマシン等を利用して傾斜垂直配向
を実現している。この傾斜垂直配向処理は、回転するラ
ビングローラーと水平移動台を組合せ、適宜の重量をラ
ビングローラーに印加させることにより、液晶分子の傾
斜角を調整することができる。また、ラビング法に限ら
ず、斜め蒸着法により傾斜垂直配向処理を行うことがで
きる。本実施例では第1の液晶素材23にチッソ株式会
社製のENー38を使用しているが、負の誘電率異方性
を有する液晶であれば何れの液晶材料も採用することが
できる。
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the structure of a two-layer type ECB cell 1. The two-layer type ECB cell 1 includes a liquid crystal cell section 10, an optical phase compensation film 40, and polarizers 50, 50. There is. The liquid crystal cell unit 10 is composed of a first liquid crystal cell 2 and a second liquid crystal cell 3. The first liquid crystal cell is
This cell uses a liquid crystal having a negative dielectric anisotropy and utilizes an electric field control birefringence effect (ECB effect). The first liquid crystal cell 2 includes a pair of first transparent substrates 21 and 21 facing each other.
And the first transparent electrodes 22 and 22 formed on the first transparent substrates 21 and 21, and the first liquid crystal material 23. The first transparent substrates 21 and 21 are made of float glass or polyester film, but any material can be used as long as it has high transparency and a flat surface. The first transparent electrodes 22 and 22 are for applying a voltage to the first liquid crystal material 23, and include a NESA film and an IT.
Although an O film can be used, any electrode member can be used as long as it has high transparency and low electric resistance. An alignment layer is formed in the first liquid crystal cell 2, and the alignment layer is formed of an In 2 O 3 film or SiO.
Vertically vapor-deposited on transparent substrate 21 or organic Si0
It is possible to employ the one in which (OCD) is spin-coated on the first substrate 21. Further, a vertical aligning agent such as DMOAP is used and a tilted vertical alignment is realized by using a rubbing machine or the like. In this tilted vertical alignment treatment, a tilting angle of liquid crystal molecules can be adjusted by combining a rotating rubbing roller and a horizontal moving table and applying an appropriate weight to the rubbing roller. Further, not only the rubbing method but also the oblique vertical alignment treatment can be performed by the oblique vapor deposition method. In this embodiment, EN-38 manufactured by Chisso Corporation is used as the first liquid crystal material 23, but any liquid crystal material having negative dielectric anisotropy can be used.

【0013】同様に第2の液晶セル3は、対向する一対
の第2の透明基板31、31(但し本実施例では一方の
第2の透明基板31が、第1の透明基板21と共用とな
っている。)と、この第2の透明基板31、31に形成
された第2の透明電極32、32と、第2の液晶素材3
3とからなっている。
Similarly, the second liquid crystal cell 3 has a pair of second transparent substrates 31 and 31 facing each other (however, in the present embodiment, one second transparent substrate 31 is also used as the first transparent substrate 21). ), The second transparent electrodes 32 and 32 formed on the second transparent substrates 31 and 31, and the second liquid crystal material 3
It consists of 3.

【0014】なお本実施例では、第1の透明基板21の
一方と、第2の透明基板31の一方とが共通となってい
る。本明細書では一つの透明基板が、第1の透明基板2
1と第2の透明基板31を兼ねる構成を含むものであ
る。
In this embodiment, one of the first transparent substrate 21 and one of the second transparent substrates 31 are common. In this specification, one transparent substrate is the first transparent substrate 2
It includes a configuration that doubles as the first and second transparent substrates 31.

【0015】第2の液晶セル3は、第1の液晶セル2と
同様な構成となっており、ほぼ同一の特性となってい
る。しかしながら、第1の液晶セル2及び第2の液晶セ
ル3のそれぞれに電圧を印加した場合の液晶分子の傾斜
方向が互いに反対方向となっている。
The second liquid crystal cell 3 has the same structure as the first liquid crystal cell 2 and has substantially the same characteristics. However, the tilt directions of the liquid crystal molecules when the voltage is applied to the first liquid crystal cell 2 and the second liquid crystal cell 3 are opposite to each other.

【0016】従って第1の液晶セル2と第2の液晶セル
3の電圧印加時に、第1の液晶セル2の液晶分子の傾斜
方向に視角を取れば、第1の液晶セル2では視角が大き
くなるに従い複屈折性は小さくなる。これに対して第2
の液晶セル3は、液晶分子の傾斜方向と逆の方向に視角
を取ることになり、複屈折性は大きくなる。このために
第1の液晶セル2と第2の液晶セル3を積層した場合、
複屈折性の視角依存性が抑えられ、2層型ECBセル1
全体では光学的特性が補償されることになる。
Therefore, when a voltage is applied to the first liquid crystal cell 2 and the second liquid crystal cell 3, if the viewing angle is taken in the tilt direction of the liquid crystal molecules of the first liquid crystal cell 2, the first liquid crystal cell 2 has a large viewing angle. The birefringence becomes smaller as it gets closer. Second to this
The liquid crystal cell 3 has a viewing angle in the direction opposite to the tilt direction of the liquid crystal molecules, and the birefringence is increased. For this reason, when the first liquid crystal cell 2 and the second liquid crystal cell 3 are stacked,
Bilayer type ECB cell 1 in which the viewing angle dependence of birefringence is suppressed
Overall, the optical characteristics will be compensated.

【0017】また電圧印加時に第1の液晶セル2の液晶
分子の傾斜方向と反対側では、視角が大きくなるにつれ
複屈折性が第1の液晶セル2では大きくなる。これに対
して第2の液晶セル3は、複屈折性は小さくなることに
なる。従って、この場合にも光学的特性の視角依存性が
補償されることになる。
On the side opposite to the tilt direction of the liquid crystal molecules of the first liquid crystal cell 2 when a voltage is applied, the birefringence increases in the first liquid crystal cell 2 as the viewing angle increases. On the other hand, the second liquid crystal cell 3 has a small birefringence. Therefore, also in this case, the viewing angle dependence of the optical characteristics is compensated.

【0018】そして本実施例では、第1の液晶セル2と
第2の液晶セル3に対して、光学的位相補償フィルム4
0を積層している。更に、第1の液晶セル2と第2の液
晶セル3と光学的位相補償フィルム40を挟んで、偏光
子50、50を対向させる様になっている。光学的位相
補償フィルム40は、光学的に負の一軸性結晶と見なさ
れる光学的位相補償手段に該当するものである。本実施
例では、第1の液晶セル2の上部に光学的位相補償フィ
ルム40を積層させているが、第2の液晶セル3の下部
に積層させてもよい。即ち、光学的位相補償フィルム4
0は、液晶セル部10の入射側に配置しても出射側に配
置してもよい。この光学的位相補償フィルム40は位相
差板と呼ばれるものであり、複屈折性を高精度に制御し
た延伸高分子フィルムである。即ち光学的位相補償フィ
ルム40は、高分子フィルムを一軸延伸して形成され
る。光学的位相補償フィルム40における位相差は、フ
ィルム成形過程で与えられる配向屈折率とフィルムの厚
さdの積で表される。
In this embodiment, the optical phase compensation film 4 is added to the first liquid crystal cell 2 and the second liquid crystal cell 3.
0 is stacked. Further, the first liquid crystal cell 2, the second liquid crystal cell 3 and the optical phase compensation film 40 are sandwiched, and the polarizers 50, 50 are opposed to each other. The optical phase compensating film 40 corresponds to an optical phase compensating means which is optically regarded as a negative uniaxial crystal. In this embodiment, the optical phase compensation film 40 is laminated on the upper part of the first liquid crystal cell 2, but it may be laminated on the lower part of the second liquid crystal cell 3. That is, the optical phase compensation film 4
0 may be arranged on the incident side or the emitting side of the liquid crystal cell unit 10. This optical phase compensation film 40 is called a retardation plate, and is a stretched polymer film whose birefringence is controlled with high precision. That is, the optical phase compensation film 40 is formed by uniaxially stretching a polymer film. The retardation in the optical phase compensation film 40 is represented by the product of the orientation refractive index given in the film forming process and the film thickness d.

【0019】また偏光子50、50は、偏光板とも呼ば
れるものであり、あらゆる方向の偏光成分を含む自然光
の中から、ある特定の方向の偏光成分(直線偏光)のみ
を通過させるためのものである。偏光板50、50は、
一方向に引き伸ばしたポリビニルアルコール膜にヨウ素
を侵み込ませたフィルム上の偏光膜が使用されるが、他
の種類の偏光膜を使用することもできる。
The polarizers 50, 50 are also called polarizing plates, and are for passing only the polarized light component (linear polarized light) in a specific direction from natural light including polarized light components in all directions. is there. The polarizing plates 50, 50 are
A polarizing film on a film obtained by impregnating a polyvinyl alcohol film stretched in one direction with iodine is used, but other types of polarizing films can also be used.

【0020】ここで、光学的位相補償フィルム40の作
用を説明する。上述の実施例において、光学的位相補償
フィルム40を使用しなければ、2層型ECBセル1は
電圧無印加時の初期状態において、液晶分子が基板に略
垂直に配向している。正の一軸性結晶である液晶のこの
様な分子配向状態では、光軸が基板に対して略垂直とな
っているため、直交ニコル間に液晶セルを挟み、基板法
線方向から観察しても複屈折性は生じず、略完全な黒を
表示することができる。しかしながら視角を傾けると、
光軸とずれた方向から観察することとなり、複屈折性が
生じ、光が透過してしまうという問題点があった。即ち
ECB液晶セルの法線方向から観察した場合には、黒の
表示となるが、視角を変化させると黒の表示でなくなる
という現象が生じ、視角によってコントラストが低下す
るという問題点があった。
Here, the function of the optical phase compensation film 40 will be described. In the above-described embodiment, if the optical phase compensation film 40 is not used, in the two-layer ECB cell 1, liquid crystal molecules are aligned substantially perpendicular to the substrate in the initial state when no voltage is applied. In such a molecular orientation state of liquid crystal, which is a positive uniaxial crystal, the optical axis is substantially perpendicular to the substrate, and therefore a liquid crystal cell is sandwiched between orthogonal Nicols and observed from the normal direction of the substrate. Birefringence does not occur, and almost perfect black can be displayed. However, if you tilt your viewing angle,
There is a problem in that the light is transmitted from the direction deviated from the optical axis, which causes birefringence and allows light to pass therethrough. That is, when viewed from the normal direction of the ECB liquid crystal cell, black is displayed, but when the viewing angle is changed, a black display is not produced, and there is a problem that the contrast is reduced depending on the viewing angle.

【0021】この問題点を解決するために、光学的に負
の一軸結晶と見なされる物質を液晶セル部10に積層す
ることが効果的である。即ち、光学的に負の一軸結晶と
見なされる光学的位相補償フィルム40の光軸を液晶セ
ル部10の法線方向に一致させた場合には、液晶セル部
10の法線方向に視角を取っても光学的影響はない。ま
た視角を傾けて液晶セル部10中を光が進行する場合に
は、複屈折が生じ、異常光の位相に比べて常光の位相が
遅れリタデーションが生じるが、この光学的位相補償フ
ィルム40に入射すると、液晶層とは逆に異常光の位相
が常光の位相より遅れるので、出射する光は再び位相が
揃うことになり、全体的にはリタデーションは生じない
こととなる。従って、視角を変化させても表示は黒のま
ま変化しないことなる。
In order to solve this problem, it is effective to stack a substance optically regarded as a negative uniaxial crystal in the liquid crystal cell section 10. That is, when the optical axis of the optical phase compensation film 40, which is optically regarded as a negative uniaxial crystal, is aligned with the normal direction of the liquid crystal cell unit 10, the viewing angle is taken in the normal direction of the liquid crystal cell unit 10. However, there is no optical effect. When light travels in the liquid crystal cell unit 10 with a tilted viewing angle, birefringence occurs, and the phase of ordinary light is delayed compared with the phase of extraordinary light to cause retardation, but the light enters the optical phase compensation film 40. Then, the phase of the extraordinary light is delayed from the phase of the ordinary light, which is opposite to the phase of the liquid crystal layer, so that the phases of the emitted light are aligned again, and retardation does not occur as a whole. Therefore, the display remains black even if the viewing angle is changed.

【0022】ここでリタデーションとは、常光と異常光
の光路差を示す量で、平行配向した液晶セルの場合、液
晶の屈折率異方性をデルタn、セル厚をdとすれば、電
圧を印加しない時のリタデーションRは R=デルタnd と表せる。
Here, the retardation is an amount showing the optical path difference between ordinary light and extraordinary light, and in the case of a parallel aligned liquid crystal cell, if the refractive index anisotropy of the liquid crystal is delta n and the cell thickness is d, the voltage is The retardation R when not applied can be expressed as R = delta nd.

【0023】なお、光学的に負の一軸性結晶と見なされ
る光学的位相補償手段の代わりに、一組の光学的に正の
一軸性結晶を互いの光軸が直交する様に積層し、この結
晶光軸が液晶セル部10が平行になる様に、液晶セル部
10に対して、一組の光学的に正の一軸性結晶を積層す
ることもできる。
Instead of the optical phase compensator which is regarded as an optically negative uniaxial crystal, a set of optically positive uniaxial crystals are laminated so that their optical axes are orthogonal to each other, and A set of optically positive uniaxial crystals may be laminated on the liquid crystal cell unit 10 so that the crystal optical axis is parallel to the liquid crystal cell unit 10.

【0024】また光学的位相補償フィルム40を、第1
の透明基板21又は第2の透明基板31と兼ねさせる構
成にすることもできる。
Further, the optical phase compensation film 40 is used as the first
The transparent substrate 21 or the second transparent substrate 31 can also be used.

【0025】次に本実施例の数値計算によるシミュレー
ションについて説明する。
Next, a simulation by numerical calculation of this embodiment will be described.

【0026】本シミュレーションは、電圧印加時の液晶
分子の分子配向を連続体理論により求め、この後にBe
rremanの4×4マトリクス法により光学的な特性
を計算することとした。なお座標は、第2図に示す様に
定義した。セル基板の法線方向をz軸とし、視角方向は
極角α、方位角βで示すことにする。液晶分子の傾斜方
向はβ=45゜とした。偏光子は直交ニコルとし、x及
びy方向に偏光方向を一致させるものとする。更にシミ
ュレーションに用いた液晶の物理定数は、EN−38を
考慮して表1に示すものを用いた。
In this simulation, the molecular orientation of liquid crystal molecules when a voltage is applied is determined by continuum theory, and then Be
It was decided to calculate the optical characteristics by the rreman 4 × 4 matrix method. The coordinates are defined as shown in FIG. The normal direction of the cell substrate is the z axis, and the viewing angle direction is the polar angle α and the azimuth angle β. The tilt direction of the liquid crystal molecules was β = 45 °. The polarizer is a crossed Nicol, and the polarization directions are aligned with the x and y directions. Further, as the physical constants of the liquid crystal used in the simulation, those shown in Table 1 were used in consideration of EN-38.

【0027】また光学的位相補償フィルム40は、屈折
率異方性の絶対値が液晶に等しい負の一軸性結晶を仮定
し、光軸をz軸に平行にして液晶セル部10に積層する
ものとした。そして計算に用いる光の波長は、特に断わ
らない限り550nmとする。
The optical phase compensation film 40 is assumed to be a negative uniaxial crystal whose absolute value of refractive index anisotropy is equal to that of liquid crystal, and is laminated on the liquid crystal cell unit 10 with its optical axis parallel to the z axis. And The wavelength of light used for calculation is 550 nm unless otherwise specified.

【0028】このシミュレーション結果を示したのが第
3図から第7図である。
The results of this simulation are shown in FIGS. 3 to 7.

【0029】第3図は、電圧無印加時の2層型ECBセ
ルにおける光学的位相補償の効果を示すために、透過率
の極角依存性の比較を表示したものである。但し、方位
角βは45度としたものである。第3図に示す様に光学
的位相補償を行わない場合には、極角が大きくなるに従
い、光が透過してしまう現象が表れている。これに比較
して光学的位相補償を行った場合には、極角が大きくな
っても殆ど光が透過しないため、透過率の視角依存性が
殆ど無いことが理解される。
FIG. 3 shows a comparison of polar angle dependence of transmittance in order to show the effect of optical phase compensation in a two-layer type ECB cell when no voltage is applied. However, the azimuth angle β is 45 degrees. As shown in FIG. 3, when optical phase compensation is not performed, there is a phenomenon that light is transmitted as the polar angle increases. In comparison with this, it is understood that when optical phase compensation is performed, almost no light is transmitted even if the polar angle becomes large, and therefore the transmittance hardly has a viewing angle dependency.

【0030】電圧印加時の透過率の視角依存性を第4図
から第7図に示すことにする。印加電圧は液晶セル法線
方向から見たときの透過率が最大になる様に、即ち、液
晶セルのリタデーションが1/2波長になる様な電圧を
印加するものとした。
The viewing angle dependence of the transmittance when a voltage is applied is shown in FIGS. 4 to 7. The applied voltage is such that the transmittance when viewed from the direction normal to the liquid crystal cell is maximized, that is, the voltage at which the retardation of the liquid crystal cell becomes ½ wavelength.

【0031】第4図は、視角を液晶分子の傾斜方向、即
ち、方位角βを45度とした時の光学的位相補償を行っ
た場合の1層型及び2層型ECB液晶セルの透過率の極
角依存性を示したものである。第4図に示す様に1層型
ECB液晶セル(ECBセル)は、電圧無印加時の光学
的位相補償を行っても電圧印加時の光学的特性は、視角
に大きく依存することが理解される。これに比較して2
層型ECB液晶セル(D−ECBセル)は、電圧無印加
時の光学的位相補償を行っても良好な視角特性を有する
ことが理解される。
FIG. 4 shows the transmittance of the one-layer type and two-layer type ECB liquid crystal cells when optical phase compensation is performed when the viewing angle is the tilt direction of the liquid crystal molecules, that is, the azimuth angle β is 45 degrees. This shows the polar angle dependence of. As shown in FIG. 4, it is understood that in the one-layer type ECB liquid crystal cell (ECB cell), the optical characteristics when a voltage is applied greatly depends on the viewing angle even if optical phase compensation is performed when a voltage is not applied. It 2 compared to this
It is understood that the layered ECB liquid crystal cell (D-ECB cell) has a good viewing angle characteristic even if optical phase compensation is performed when no voltage is applied.

【0032】第5図は、極角αを20度にした場合にお
ける光学的位相補償を行った場合の1層型及び2層型E
CB液晶セルの透過率の方位角依存性を示すものであ
る。第5図に示す様に1層型ECB液晶セル(ECBセ
ル)は、電圧印加時には液晶セル法線方向から見た時の
透過率が100%であったものが、視角を変化させるこ
とにより透過率が大きく変化することが理解される。こ
れに比較して2層型ECB液晶セル(D−ECB)は光
学的位相補償を行っても良好な視角特性を示すのが理解
される。
FIG. 5 shows a one-layer type and a two-layer type E when optical phase compensation is performed when the polar angle α is 20 degrees.
It shows the azimuth angle dependence of the transmittance of the CB liquid crystal cell. As shown in FIG. 5, the single-layer ECB liquid crystal cell (ECB cell) had a transmittance of 100% when viewed from the normal direction of the liquid crystal cell when a voltage was applied, but the transmittance was changed by changing the viewing angle. It is understood that the rates vary greatly. In comparison, it is understood that the two-layer ECB liquid crystal cell (D-ECB) exhibits good viewing angle characteristics even if optical phase compensation is performed.

【0033】第6図と第7図は、それぞれ1層型及び2
層型ECB液晶セルに光学的位相補償を行った場合に、
視角を液晶分子が傾斜する方向、即ち、方位角βを45
度として各波長による透過率の極角依存性を計算したも
のである。ここで、赤、緑及び青は、それぞれ波長65
0、550及び450nmとした。第6図に示す様に1
層型ECB液晶セルに光学的位相補償を行った物は、液
晶分子が傾斜する方向、即ち、極角が正の方向に視角を
大きくして行った場合に、透過率が減少し暗くなる。逆
に液晶分子が傾斜する方向と反対方向、即ち、極角が負
の方向に視角を大きくした場合には、各波長によるリタ
デーションの差が大きくなるため、着色が生じるという
現象が見られることが理解される。これに比較して2層
型ECB液晶セルは、第7図に示す様に、極角が変化し
ても透過率の変動が少なく、各波長によるリタデーショ
ンの差が大きくならないために、着色も殆ど生じないこ
とが判る。
FIGS. 6 and 7 show a one-layer type and a two-type, respectively.
When optical phase compensation is performed on the layered ECB liquid crystal cell,
The viewing angle is the direction in which the liquid crystal molecules are tilted, that is, the azimuth angle β is 45
As a degree, the polar angle dependence of the transmittance at each wavelength is calculated. Here, red, green and blue have wavelengths of 65
0, 550 and 450 nm. 1 as shown in FIG.
The optical phase compensation of the layered ECB liquid crystal cell decreases the transmittance and becomes dark when the viewing angle is increased in the direction in which the liquid crystal molecules are tilted, that is, the direction in which the polar angle is positive. On the contrary, when the viewing angle is increased in the direction opposite to the direction in which the liquid crystal molecules are tilted, that is, the direction in which the polar angle is negative, the difference in retardation between wavelengths becomes large, and thus a phenomenon in which coloring occurs may be observed. To be understood. Compared with this, the two-layer ECB liquid crystal cell, as shown in FIG. 7, shows little change in transmittance even if the polar angle changes, and the difference in retardation between wavelengths does not increase, so that almost no coloring occurs. It turns out that it does not occur.

【0034】[0034]

【効果】以上の様に構成された本発明は、第1の液晶セ
ルと第2の液晶セルとからなる液晶セル部を有する2層
型液晶ディスプレイであって、電圧を印加した場合の第
1の液晶セルに封入された液晶分子の傾斜方向と、電圧
を印加した場合の第2の液晶セルに封入された液晶分子
の傾斜方向とが、互いに反対となる様に構成されてお
り、前記液晶セル部に対して、光学的に負の一軸性結晶
と見なされる光学的位相補償手段を積層させた構成を有
するので、電圧無印加時に視角を変えても、光が透過し
ないため、良好な黒を表示することができ、電圧印加時
の白状態とのコントラストが高くなるという卓越した効
果がある。そして本発明は、2層型ECB液晶セルが有
している電圧印加時の良好な視角特性を犠牲にすること
がないので、視角を変えても高いコントラストが実現で
きるという効果がある。従って光学的位相補償を行った
本発明は、電圧の印加状態によらずに極めて良好な視角
特性を有する液晶ディスプレイを提供することができる
という卓越した効果がある。
The present invention configured as described above is a two-layer type liquid crystal display having a liquid crystal cell portion composed of a first liquid crystal cell and a second liquid crystal cell, and the first layer when a voltage is applied. The tilting direction of the liquid crystal molecules sealed in the liquid crystal cell and the tilting direction of the liquid crystal molecules sealed in the second liquid crystal cell when a voltage is applied are configured to be opposite to each other. It has a structure in which optical phase compensation means, which is optically regarded as a negative uniaxial crystal, is laminated to the cell part, so that light does not pass through even if the viewing angle is changed when no voltage is applied, so that a good black color is obtained. Can be displayed, and there is an excellent effect that the contrast with the white state when a voltage is applied is increased. The present invention does not sacrifice the good viewing angle characteristics when a voltage is applied, which the two-layer ECB liquid crystal cell has, and therefore has the effect of achieving high contrast even when the viewing angle is changed. Therefore, the present invention in which optical phase compensation is performed has an outstanding effect that it can provide a liquid crystal display having extremely good viewing angle characteristics regardless of a voltage application state.

【0035】そして本発明は、第1の液晶セルと第2の
液晶セルとからなる液晶セル部を有する2層型液晶ディ
スプレイであって、電圧を印加した場合の第1の液晶セ
ルに封入された液晶分子の傾斜方向と、電圧を印加した
場合の第2の液晶セルに封入された液晶分子の傾斜方向
とが、互いに反対となる様に構成されており、前記液晶
セル部に対して、一組の光学的に正の一軸性結晶を光軸
を互いに直交させると共に、これらの光軸と前記液晶セ
ルの基板とが平行になる様にした光学的位相補償手段を
積層して構成されているので、負の一軸性結晶による光
学的位相補償が実現できない場合でも、正の一軸性結晶
を利用して光学的位相補償が実現でき、極めて良好な視
角特性を有する液晶ディスプレイを提供することができ
るという効果がある。
The present invention is a two-layer type liquid crystal display having a liquid crystal cell section consisting of a first liquid crystal cell and a second liquid crystal cell, which is enclosed in the first liquid crystal cell when a voltage is applied. The tilting direction of the liquid crystal molecules and the tilting direction of the liquid crystal molecules sealed in the second liquid crystal cell when a voltage is applied are configured to be opposite to each other. A set of optically positive uniaxial crystals having their optical axes orthogonal to each other and laminating optical phase compensating means for making these optical axes parallel to the substrate of the liquid crystal cell. Therefore, even if the optical phase compensation by the negative uniaxial crystal cannot be realized, the optical phase compensation can be realized by using the positive uniaxial crystal, and it is possible to provide a liquid crystal display having an excellent viewing angle characteristic. Has the effect that .

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例の2層型液晶セルの構成を示す図であ
る。
FIG. 1 is a diagram showing a configuration of a two-layer liquid crystal cell of this example.

【図2】座標の定義を説明する図である。FIG. 2 is a diagram illustrating the definition of coordinates.

【図3】電圧無印加時の透過率の極角依存性を示す図で
ある。
FIG. 3 is a diagram showing polar angle dependence of transmittance when no voltage is applied.

【図4】電圧印加時の透過率の極角依存性を示す図であ
る。
FIG. 4 is a diagram showing polar angle dependence of transmittance when voltage is applied.

【図5】電圧印加時の透過率の方位角依存性を示す図で
ある。
FIG. 5 is a diagram showing the azimuth angle dependence of the transmittance when a voltage is applied.

【図6】電圧印加時の透過率の極角依存性を示す図であ
る。
FIG. 6 is a diagram showing polar angle dependence of transmittance when a voltage is applied.

【図7】電圧印加時の透過率の極角依存性を示す図であ
る。
FIG. 7 is a diagram showing polar angle dependence of transmittance when a voltage is applied.

【図8】計算に用いた各種物理定数を示す図である。FIG. 8 is a diagram showing various physical constants used for calculation.

【符号の説明】[Explanation of symbols]

1・・・2層型ECBセル 2・・・第1の液晶セル 3・・・第2の液晶セル 10・・液晶セル部 40・・光学的位相補償フィルム 50・・偏光子 DESCRIPTION OF SYMBOLS 1 ... Two-layer type ECB cell 2 ... 1st liquid crystal cell 3 ... 2nd liquid crystal cell 10 ... Liquid crystal cell part 40 ... Optical phase compensation film 50 ... Polarizer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 第1の液晶セルと第2の液晶セルとから
なる液晶セル部を有する2層型液晶ディスプレイであっ
て、電圧を印加した場合の第1の液晶セルに封入された
液晶分子の傾斜方向と、電圧を印加した場合の第2の液
晶セルに封入された液晶分子の傾斜方向とが、互いに反
対となる様に構成されており、前記液晶セル部に対し
て、光学的に負の一軸性結晶と見なされる光学的位相補
償手段を積層させたことを特徴とする2層型液晶ディス
プレイ装置。
1. A two-layer liquid crystal display having a liquid crystal cell section composed of a first liquid crystal cell and a second liquid crystal cell, wherein liquid crystal molecules enclosed in the first liquid crystal cell when a voltage is applied. And the inclination direction of the liquid crystal molecules enclosed in the second liquid crystal cell when a voltage is applied are configured to be opposite to each other. A two-layer liquid crystal display device, wherein optical phase compensating means regarded as negative uniaxial crystal is laminated.
【請求項2】 第1の液晶セルと第2の液晶セルとから
なる液晶セル部を有する2層型液晶ディスプレイであっ
て、電圧を印加した場合の第1の液晶セルに封入された
液晶分子の傾斜方向と、電圧を印加した場合の第2の液
晶セルに封入された液晶分子の傾斜方向とが、互いに反
対となる様に構成されており、前記第1の液晶セル又は
第2の液晶セルの基板が、光学的に負の一軸性結晶と見
なされる光学的位相補償手段となっていることを特徴と
する2層型液晶ディスプレイ装置。
2. A two-layer type liquid crystal display having a liquid crystal cell section consisting of a first liquid crystal cell and a second liquid crystal cell, wherein liquid crystal molecules sealed in the first liquid crystal cell when a voltage is applied. And the liquid crystal molecules enclosed in the second liquid crystal cell when a voltage is applied are arranged so that the tilt directions are opposite to each other, and the first liquid crystal cell or the second liquid crystal is formed. A two-layer liquid crystal display device, wherein a substrate of the cell serves as an optical phase compensating means which is optically regarded as a negative uniaxial crystal.
【請求項3】 対向する一対の電極を有する第1の透明
基板と該透明基板間に封入された第1の液晶素材とから
なる第1の液晶セルと、対向する一対の電極を有する第
2の透明基板と該透明基板間に封入された第2の液晶素
材とからなる第2の液晶セルと、光学的に負の一軸性結
晶と見なされる光学的位相補償手段である光学的位相補
償フィルムとからなっており、前記第1及び第2の液晶
素材が負の誘電率異方性を有する液晶であり、電圧を印
加した場合の第1の液晶セルに封入された第1の液晶分
子の傾斜方向と、電圧を印加した場合の第2の液晶セル
に封入された第2の液晶分子の傾斜方向とが、互いに反
対となる様に構成されていることを特徴とする2層型液
晶ディスプレイ装置。
3. A first liquid crystal cell composed of a first transparent substrate having a pair of electrodes facing each other and a first liquid crystal material enclosed between the transparent substrates, and a second liquid crystal cell having a pair of electrodes facing each other. Second liquid crystal cell consisting of the transparent substrate and the second liquid crystal material enclosed between the transparent substrates, and an optical phase compensating film which is an optical phase compensating means optically regarded as a negative uniaxial crystal. And the first and second liquid crystal materials are liquid crystals having a negative dielectric anisotropy, and the first liquid crystal molecules enclosed in the first liquid crystal cell when a voltage is applied are A two-layer liquid crystal display, characterized in that the tilt direction and the tilt direction of the second liquid crystal molecule enclosed in the second liquid crystal cell when a voltage is applied are opposite to each other. apparatus.
【請求項4】 第1の液晶セルと第2の液晶セルとから
なる液晶セル部を有する2層型液晶ディスプレイであっ
て、電圧を印加した場合の第1の液晶セルに封入された
液晶分子の傾斜方向と、電圧を印加した場合の第2の液
晶セルに封入された液晶分子の傾斜方向とが、互いに反
対となる様に構成されており、前記液晶セル部に対し
て、一組の光学的に正の一軸性結晶を光軸を互いに直交
させると共に、これらの光軸と前記液晶セルの基板とが
平行になる様にした光学的位相補償手段を積層したこと
を特徴とする2層型液晶ディスプレイ装置。
4. A two-layer type liquid crystal display having a liquid crystal cell section composed of a first liquid crystal cell and a second liquid crystal cell, wherein liquid crystal molecules sealed in the first liquid crystal cell when a voltage is applied. And the inclination direction of the liquid crystal molecules enclosed in the second liquid crystal cell when a voltage is applied are opposite to each other. Optically uniaxial crystals having optical axes orthogonal to each other and optical phase compensating means laminated such that these optical axes are parallel to the substrate of the liquid crystal cell are laminated. Type liquid crystal display device.
JP3061373A 1991-02-28 1991-02-28 Two-layer type liquid crystal display device Pending JPH05257138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3061373A JPH05257138A (en) 1991-02-28 1991-02-28 Two-layer type liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3061373A JPH05257138A (en) 1991-02-28 1991-02-28 Two-layer type liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH05257138A true JPH05257138A (en) 1993-10-08

Family

ID=13169313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3061373A Pending JPH05257138A (en) 1991-02-28 1991-02-28 Two-layer type liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH05257138A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6115095A (en) * 1997-10-24 2000-09-05 Nec Corporation In-plane switching type liquid crystal display having a compensation layer with the principal optical axis extending perpendicularly to the substrate
KR100769389B1 (en) * 2005-06-17 2007-10-22 가시오게산키 가부시키가이샤 Liquid crystal display device which can control viewing angle and electronic device using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6115095A (en) * 1997-10-24 2000-09-05 Nec Corporation In-plane switching type liquid crystal display having a compensation layer with the principal optical axis extending perpendicularly to the substrate
KR100769389B1 (en) * 2005-06-17 2007-10-22 가시오게산키 가부시키가이샤 Liquid crystal display device which can control viewing angle and electronic device using same

Similar Documents

Publication Publication Date Title
JP3071204B2 (en) Liquid crystal display device
CN101925848A (en) Liquid crystal display
CN102549485A (en) Liquid-crystal display device
KR950029815A (en) Color liquid crystal display device
US11327357B2 (en) Liquid crystal display device
JPH05210084A (en) Liquid crystal display device
JP2003015134A (en) Liquid crystal display device
TWI801602B (en) Liquid crystal panel and liquid crystal display device
JPH0545520A (en) Polarizing plate and liquid crystal display device
JPH0915586A (en) Liquid crystal display device
JP3776844B2 (en) Liquid crystal display
KR20190049571A (en) Transmittance-variable device
JPH10123506A (en) Liquid crystal display device
JPH05257138A (en) Two-layer type liquid crystal display device
JPH0424613A (en) Two-layer type liquid crystal display device
JP2605064B2 (en) Liquid crystal display device
JPH01304422A (en) Liquid crystal device
JP3403280B2 (en) Liquid crystal display
JPH0756156A (en) Liquid crystal display element
JP3118054B2 (en) Liquid crystal display device
KR920002626Y1 (en) Color lcd
JPS5823013A (en) Multilayered liquid-crystal display device
JPH04109217A (en) Liquid crystal device
JPH10133195A (en) Liquid crystal display device
JPH02272431A (en) Liquid crystal device