JPH05253188A - Optic axial length measuring instrument - Google Patents

Optic axial length measuring instrument

Info

Publication number
JPH05253188A
JPH05253188A JP4058238A JP5823892A JPH05253188A JP H05253188 A JPH05253188 A JP H05253188A JP 4058238 A JP4058238 A JP 4058238A JP 5823892 A JP5823892 A JP 5823892A JP H05253188 A JPH05253188 A JP H05253188A
Authority
JP
Japan
Prior art keywords
state determination
determination index
fundus
eye
focusing state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4058238A
Other languages
Japanese (ja)
Inventor
Akihiko Sekine
明彦 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP4058238A priority Critical patent/JPH05253188A/en
Publication of JPH05253188A publication Critical patent/JPH05253188A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To provide the optic axial length measuring instrument which corrects the refracting power of an eye to be examined and can correctly focus luminous fluxes for measurement to the eye ground. CONSTITUTION:This measuring instrument has an optical system 3 for irradiation which is constituted to focus the luminous fluxes for measurement and to irradiate the eye ground 28 with the focused flux, a photodetecting optical system 4 which has a diaphragm installed in the position approximately conjugate with the eye ground 28 in order to remove the luminous fluxes reflected from parts exclusive of the eye ground and introduces the luminous fluxes reflected from the eye ground 28 to a photodetecting part 14 and a visual index projecting member 19 for judging the focusing state in order to judge the state of the luminous fluxes for measurement focused to the eye ground 28. The instrument has a visual index projecting optical system 15 for judging the focusing state which projects the visual index for judging the focusing state to the eye ground 28 and an optical member 8 for correcting the refracting power of the eye to be inspected which displaces the focusing point of the luminous fluxes for measurement in correspondence to the movement of the visual index for judging the focusing state according to the refracting power of the eye 2 to be inspected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、眼球の眼軸長を光学的
に測定する眼軸長測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an axial length measuring device for optically measuring the axial length of an eyeball.

【0002】[0002]

【従来の技術】眼軸長測定装置には、角膜頂点から眼底
までの眼軸長を光学的に測定するものが知られている。
この種の眼軸長測定装置には、干渉現象を利用したも
の、位相差を利用したものが知られている。いずれの眼
軸長測定装置も眼底位置を測定する際には、測定光束を
眼底に照射して眼底からの反射光束を観測している。
2. Description of the Related Art As an axial length measuring device, a device for optically measuring the axial length from the apex of the cornea to the fundus of the eye is known.
As this type of axial length measuring device, a device utilizing an interference phenomenon and a device utilizing a phase difference are known. When measuring the fundus position, any of the eye axial length measuring devices irradiates the fundus with a measurement light beam and observes a light beam reflected from the fundus.

【0003】ここで、眼底からの反射光束の光量が微弱
であると測定精度が劣化する。反射光束の光量増加を図
るには、被検眼に照射する測定光束の光量を増加させる
ことが考えられるが、被検眼に照射する測定光束の光量
は安全の面から上限があるため、従来の眼軸長測定装置
では測定光束を眼底に集束させて照射することにより、
その反射光束の光量の増加を図っている。また、測定光
束は眼底に導かれる際に、角膜、水晶体によって散乱さ
れ、眼底で散乱された測定光束は反射光束として外部に
導かれる際に水晶体によって散乱され、眼底からの反射
光束を受光部に導く受光光学系には、水晶体、角膜その
他の視器構成要素からの散乱光束が入射し、特に、白内
障患者等の眼軸長の測定の場合には、水晶体の混濁によ
って測定光束、反射光束がその水晶体を通過するために
大きく散乱され、眼底からの反射光束の光量が微弱とな
るため、その受光光学系に眼底と略共役位置に眼底から
の反射光束を受光部に導き、眼底以外からの反射光束を
除去する絞りを設け、眼底からの反射光束を極力抽出す
るようにしている。
Here, if the quantity of light reflected from the fundus of the eye is weak, the measurement accuracy deteriorates. In order to increase the amount of the reflected light flux, it is possible to increase the amount of the measurement light beam with which the eye to be inspected is irradiated.However, the light amount of the measurement light beam with which the eye is inspected has an upper limit from the viewpoint of safety. In the axial length measuring device, by focusing and irradiating the measurement light beam on the fundus,
The amount of the reflected light flux is increased. When the measurement light beam is guided to the fundus, it is scattered by the cornea and the crystalline lens, and the measurement light beam scattered by the fundus is scattered by the crystalline lens when it is guided to the outside as a reflected light beam, and the reflected light beam from the fundus is received by the light receiving unit. A scattered light flux from the crystalline lens, cornea, and other components of the visual system enters the light receiving optical system that guides it.In particular, when measuring the axial length of a patient such as a cataract patient, the measured luminous flux and the reflected luminous flux due to opacity of the crystalline lens. Since it is largely scattered to pass through the crystalline lens, the light amount of the reflected light flux from the fundus becomes weak, so the reflected light flux from the fundus is guided to the light receiving part at a position substantially conjugate with the fundus in the light receiving optical system, and the light from other than the fundus. A diaphragm for removing the reflected light flux is provided to extract the reflected light flux from the fundus as much as possible.

【0004】[0004]

【発明が解決しようとする課題】ところで、反射光束の
光量を極力増加させるには、被検眼の屈折力を補正して
眼底に測定光束を適正に集束させることが望まれるが、
反射光束が微弱であるため、測定光束が眼底に集束して
いるか否かを判断するのは容易ではなく、反射光束の光
量増加を図り難いという問題点がある。
By the way, in order to increase the light quantity of the reflected light flux as much as possible, it is desired to correct the refractive power of the eye to be inspected and focus the measurement light flux properly on the fundus.
Since the reflected light flux is weak, it is not easy to determine whether or not the measurement light flux is focused on the fundus, and it is difficult to increase the amount of the reflected light flux.

【0005】本発明は、上記の事情に鑑みて為されたも
ので、その目的とするところは、被検眼の屈折力を補正
して、測定光束を眼底に適正に集束させることのできる
眼軸長測定装置を提供することにある。
The present invention has been made in view of the above circumstances. An object of the present invention is to correct the refractive power of the eye to be inspected and to appropriately focus the measurement light beam on the fundus of the eye. It is to provide a length measuring device.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る請求項1記載の眼軸長測定装置は、測
定光束を眼底に集束させて照射するための照射光学系
と、前記眼底と略共役位置に設置されて前記眼底以外か
らの反射光束を除去する絞りを有し、前記眼底からの反
射光束を受光部に導く受光光学系と、前記眼底への前記
測定光束の集束状態を判断するための集束状態判断指標
投影部材を有して、集束状態判断指標を前記眼底に投影
する集束状態判断指標投影光学系と、前記照射光学系に
設けられて被検眼の屈折力に応じて前記集束状態判断指
標の移動に対応して前記測定光束の集束点を変位させる
被検眼屈折力補正光学部材と、を有することを特徴とす
る。
In order to achieve the above object, an axial length measuring apparatus according to claim 1 of the present invention comprises an irradiation optical system for focusing and irradiating a measurement light beam on the fundus of the eye. A light receiving optical system that is installed at a position substantially conjugate with the fundus and removes a reflected light beam from a portion other than the fundus, guides a reflected light beam from the fundus to a light receiving unit, and a focusing of the measurement light beam to the fundus. Having a focusing state determination index projection member for determining the state, a focusing state determination index projection optical system for projecting a focusing state determination index on the fundus, and the refractive power of the eye to be inspected provided in the irradiation optical system. And an optical member for correcting refractive power of the eye to be inspected for displacing the focus point of the measurement light beam in response to the movement of the focus state determination index.

【0007】[0007]

【作 用】請求項1に記載の眼軸長測定装置によれば、
照射光学系は測定光束を被検眼の眼底に集束させて照射
する。一方、集束状態判断指標投影光学系は、眼底への
測定光束の集束状態を判断するための集束状態判断指標
を眼底に投影する。被検者又は検者は、集束状態判断指
標に基づき測定光束が眼底に適正に集束しているか否か
を判断する。測定光束が眼底に適正に集束していないと
判断される時には、集束状態判断指標を見ながら、測定
光束の集束点が眼底に適正に位置する方向に屈折力補正
光学部材を可動させる。これによって、集束状態判断指
標を良好に視認できる状態にセットすると、測定光束の
集束点が眼底に位置される。
[Operation] According to the axial length measuring device according to claim 1,
The irradiation optical system focuses and irradiates the measurement light beam on the fundus of the eye to be inspected. On the other hand, the focused state determination index projection optical system projects a focused state determination index for determining the focused state of the measurement light beam on the fundus onto the fundus. The subject or the examiner determines whether or not the measurement light beam is properly focused on the fundus based on the focus state determination index. When it is determined that the measurement light flux is not properly focused on the fundus, the refractive power correction optical member is moved in the direction in which the focus point of the measurement light flux is properly positioned on the fundus while looking at the focusing state determination index. With this, when the focusing state determination index is set in a state in which it can be viewed well, the focusing point of the measurement light beam is located at the fundus.

【0008】[0008]

【実施例】図1は本発明の第一の実施例に係る眼軸長測
定装置の外観図であり、図2〜図4はその光学図であ
る。
1 is an external view of an axial length measuring device according to a first embodiment of the present invention, and FIGS. 2 to 4 are optical diagrams thereof.

【0009】図2〜図4において、1は被検眼2の眼軸
長を測定する測定光学系である。測定光学系1は照射光
学系3と、受光光学系4とを備えている。測定光学系1
は反射プリズム5、リレーレンズ6、7、屈折力補正レ
ンズ8、対物レンズ9を備えている。これらの光学要素
5〜9は照射光学系3と受光光学系4とに共用されてい
る。測定光学系1は公知の光学的手段により測定光学系
1の光軸Oが被検眼2の角膜頂点Mに位置するようにア
ライメントされると共に、角膜頂点Mからの光軸方向の
距離(作動距離)Wが設定される。この角膜頂点Mから
作動距離Wにある点の位置を基準位置Kとする。
2 to 4, reference numeral 1 is a measuring optical system for measuring the axial length of the eye 2 to be inspected. The measurement optical system 1 includes an irradiation optical system 3 and a light receiving optical system 4. Measuring optical system 1
Is provided with a reflection prism 5, relay lenses 6 and 7, a refractive power correction lens 8 and an objective lens 9. These optical elements 5 to 9 are shared by the irradiation optical system 3 and the light receiving optical system 4. The measurement optical system 1 is aligned by a known optical means such that the optical axis O of the measurement optical system 1 is located at the corneal vertex M of the eye 2 to be inspected, and the distance from the corneal vertex M in the optical axis direction (working distance). ) W is set. The position of the point at the working distance W from the corneal apex M is set as the reference position K.

【0010】照射光学系3は可干渉性のほとんどないレ
ーザー光源10、コンデンサレンズ11を有する。レーザー
光源10は赤外波長域の測定光束Pを出射する。その測定
光束Pは図示を略す変調器により強度変調されている。
測定光束Pは図2に示すように反射プリズム5の反射面
5aにより反射され、リレーレンズ6、7を介して屈折力
補正レンズ8に導かれ、屈折力補正レンズ8、対物レン
ズ9により被検眼2の角膜Cに集束して照射される。
The irradiation optical system 3 has a laser light source 10 and a condenser lens 11 which have almost no coherence. The laser light source 10 emits a measurement light beam P in the infrared wavelength range. The measurement light beam P is intensity-modulated by a modulator (not shown).
As shown in FIG. 2, the measurement light beam P is reflected by the reflecting surface of the reflecting prism 5.
It is reflected by 5a, guided to the refractive power correction lens 8 via relay lenses 6 and 7, and is focused and irradiated on the cornea C of the eye 2 to be examined by the refractive power correction lens 8 and the objective lens 9.

【0011】受光光学系4は絞り部材12、コンデンサレ
ンズ13、受光器14を有する。角膜Cにより反射された測
定光束Pは反射光束Rとして対物レンズ9、屈折力補正
レンズ8、リレーレンズ7、6を介して反射プリズム5
の反射面5bに導かれ、この反射面5bにより反射されて絞
り部材12を通過し、受光器14に導かれる。絞り部材12は
測定光束Pが角膜頂点Mに集束するように屈折力補正レ
ンズ8が位置されているときには、対物レンズ9、屈折
力補正レンズ8に関し、角膜頂点Mと光学的に共役であ
り、角膜C以外の反射光束が受光器14に至るのが阻止さ
れる。受光器14の受光出力は図示を略す演算手段に入力
されている。
The light receiving optical system 4 has a diaphragm member 12, a condenser lens 13, and a light receiver 14. The measurement light beam P reflected by the cornea C is reflected light beam R as a reflected light beam R via the objective lens 9, the refractive power correction lens 8, and the relay lenses 7 and 6.
Is reflected by the reflecting surface 5b, passes through the diaphragm member 12, and is guided to the light receiver 14. The diaphragm member 12 is optically conjugate with the corneal vertex M with respect to the objective lens 9 and the refractive power correction lens 8 when the refractive power correction lens 8 is positioned so that the measurement light beam P is focused on the corneal vertex M. The reflected light flux other than the cornea C is blocked from reaching the light receiver 14. The light reception output of the light receiver 14 is input to a calculation means (not shown).

【0012】演算手段は、変調された測定光束Pが出射
されてから角膜頂点Mにより反射され、受光器14に受光
されるまでの基準パルスをカウントする。これによっ
て、測定光束Pが出射されてから受光器14に受光される
までの時間(位相差)が求められ、基準位置Kから角膜
頂点Mまでの距離と時間と変調周波数との間には一定の
関係があるので、角膜頂点Mから基準位置Kまでの距離
が求められる(この位相差によって基準位置Kから角膜
頂点Mまでの距離を求める信号処理、演算手段について
は特願平1−251286号を参照)。
The calculating means counts the reference pulses from the emission of the modulated measuring light beam P to the reflection of the corneal apex M until the light is received by the light receiver 14. As a result, the time (phase difference) from the emission of the measurement light beam P to the light reception by the light receiver 14 is obtained, and the distance from the reference position K to the corneal apex M and the time and the modulation frequency are constant. Therefore, the distance from the corneal apex M to the reference position K can be obtained (for signal processing and arithmetic means for obtaining the distance from the reference position K to the corneal apex M by this phase difference, Japanese Patent Application No. 1-251286). See).

【0013】なお、被検眼2に対する光軸Oのアライメ
ントの際には後述する集束状態判断指標が固視標として
用いられる。
When the optical axis O is aligned with the eye 2 to be inspected, a focusing state determination index described later is used as a fixation target.

【0014】測定光学系1は集束状態判断指標投影光学
系15を有する。この集束状態判断指標投影光学系15は光
源16、コンデンサレンズ17、スプリットプリズム18、集
束状態判断指標投影光学部材19、リレーレンズ20、瞳絞
り21を有する。光源16は可視光束Qを出射する。その可
視光束Qはコンデンサレンズ17により集光されてスプリ
ットプリズム18に導かれる。スプリットプリズム18は図
5に示すようにプリズム18aとプリズム18bとにより構成
されている。プリズム18aは可視光束Qを左側に向けて
偏向させる機能を果たす。プリズム18bは可視光束Qを
右側に向けて偏向させる機能を果たす。図3には左側に
偏向された可視光束Qが実線で示され、右側に偏向され
た可視光束Qが破線で示されている。両可視光束Qは集
束状態判断指標投影光学部材19に導かれる。集束状態判
断指標投影光学部材19は図6に示すように矩形状開口22
を有する。
The measurement optical system 1 has a focusing state determination index projection optical system 15. The focusing state determination index projection optical system 15 includes a light source 16, a condenser lens 17, a split prism 18, a focusing state determination index projection optical member 19, a relay lens 20, and a pupil diaphragm 21. The light source 16 emits a visible light beam Q. The visible light flux Q is condensed by the condenser lens 17 and guided to the split prism 18. The split prism 18 is composed of a prism 18a and a prism 18b as shown in FIG. The prism 18a has a function of deflecting the visible light beam Q toward the left side. The prism 18b has a function of deflecting the visible light beam Q toward the right side. In FIG. 3, the visible light beam Q deflected to the left is shown by a solid line, and the visible light beam Q deflected to the right is shown by a broken line. Both visible light beams Q are guided to the focused state determination index projection optical member 19. The focusing state determination index projection optical member 19 has a rectangular opening 22 as shown in FIG.
Have.

【0015】左側に偏向された可視光束Qは矩形状開口
22を通過してリレーレンズ20の上側半分に導かれ、上側
集束状態判断指標投影光束Q′を形成する。右側に偏向
された可視光束Qは矩形状開口22を通過してリレーレン
ズ20の下側半分に導かれ、下側集束状態判断指標投影光
束Q″を形成する。上側集束状態判断指標投影光束Q′
と下側集束状態判断指標投影光束Q″とは屈折されて瞳
絞り21に導かれる。瞳絞り21は対物レンズ9に関して瞳
孔23と光学的に共役な位置に設けられている。瞳絞り21
は有害反射光束が受光光学系4に入射するのを防止する
役割を果たす。この瞳絞り21は図7に示すように上側集
束状態判断指標投影光束Q′の通過を許容する上側開口
24と下側集束状態判断指標投影光束Q″の通過を許容す
る下側開口25とを有する。その各集束状態判断指標投影
光束Q′、Q″は瞳絞り21を通過した後、ダイクロイッ
クミラー26に導かれる。ダイクロイックミラー26は対物
レンズ9と屈折力補正レンズ8との間に設けられて、可
視波長域の光を反射し、赤外波長域の光を透過させる役
割を果たす。
The visible light beam Q deflected to the left has a rectangular aperture.
After passing through 22, it is guided to the upper half of the relay lens 20 and forms an upper focused state determination index projection light beam Q ′. The visible light beam Q deflected to the right passes through the rectangular aperture 22 and is guided to the lower half of the relay lens 20 to form a lower focusing state determination index projection beam Q ″. Upper focusing state determination index projection beam Q ′
And the lower focused state determination index projection light beam Q ″ are refracted and guided to the pupil diaphragm 21. The pupil diaphragm 21 is provided at a position optically conjugate with the pupil 23 with respect to the objective lens 9.
Serves to prevent the harmful reflected light flux from entering the light receiving optical system 4. As shown in FIG. 7, the pupil stop 21 is an upper aperture that allows the upper focusing state determination index projection light beam Q'to pass.
24 and a lower opening 25 that allows passage of the lower focusing state determination index projection light beam Q ″. The respective focusing state determination index projection light beams Q ′ and Q ″ pass through the pupil stop 21 and then the dichroic mirror 26. Be led to. The dichroic mirror 26 is provided between the objective lens 9 and the refractive power correction lens 8 and plays a role of reflecting light in the visible wavelength range and transmitting light in the infrared wavelength range.

【0016】集束状態判断指標投影光束Q′、Q″は光
軸Oの点Zで集束される。対物レンズ9は点Zに焦点を
有する。集束状態判断指標投影光束Q′、Q″は対物レ
ンズ9により平行光束に変換されて被検眼2に導かれ、
水晶体27によって屈折されて眼底28に導かれ、後述する
集束状態判断指標を形成する。
The focused state determination index projection light beams Q'and Q "are focused at a point Z on the optical axis O. The objective lens 9 has a focal point at the point Z. The focused state determination index projection light beams Q'and Q" are objectives. It is converted into a parallel light flux by the lens 9 and guided to the eye 2 to be inspected,
It is refracted by the crystalline lens 27 and guided to the fundus 28 to form a focusing state determination index described later.

【0017】集束状態判断指標投影光学部材19は集束状
態判断指標投影光学系15の光軸O′に沿って可動され
る。集束状態判断指標投影光学部材19は屈折力補正レン
ズ8と連結されている。眼底28と集束状態判断指標投影
光学部材19とは、集束状態判断指標投影光学部材19が基
準位置にあるときでかつ被検眼2が正視眼のときに、対
物レンズ2に関し光学的に共役位置にあり、図10に示す
ように上側集束状態判断指標29と下側集束状態判断指標
30とはピントが合った状態でかつ合致して眼底28に結像
される。なお、角膜頂点Mの位置を検出するときには、
集束状態判断指標投影光学部材19と屈折力補正レンズ8
との連動関係を絶って、集束状態判断指標投影光学部材
19を基準位置に固定し、集束状態判断指標は用いない。
The focus state determination index projection optical member 19 is movable along the optical axis O'of the focus state determination index projection optical system 15. The focusing state determination index projection optical member 19 is connected to the refractive power correction lens 8. The fundus 28 and the focusing state determination index projection optical member 19 are located at an optically conjugate position with respect to the objective lens 2 when the focusing state determination index projection optical member 19 is at the reference position and the eye 2 is an emmetropic eye. Yes, as shown in FIG. 10, the upper focusing state determination index 29 and the lower focusing state determination index
An image is formed on the fundus 28 in a state of being in focus and in alignment with 30. When detecting the position of the apex M of the cornea,
Focusing state determination index projection optical member 19 and refractive power correction lens 8
Focusing state determination index projection optical member
Fix 19 at the reference position and do not use the focusing state judgment index.

【0018】被検眼2が近視の場合には、図8に示すよ
うに集束状態判断指標投影光学部材19が基準位置にある
ときに眼底28の前側でピントが合って合致することにな
り、被検眼2が遠視の場合には、図9に示すように集束
状態判断指標投影光学部材19が基準位置にあるときに眼
底28の後側でピントが合って合致することになり、眼底
28においては上側集束状態判断指標29と下側集束状態判
断指標30とが図11、図12に示すように分離することにな
り、被検者はこの集束状態判断指標29、30の分離・非分
離を見ることができる。白内障患者の場合には、水晶体
の混濁によって集束状態判断指標29、30を明瞭に視認す
ることが困難であるが、この分離・非分離を確認するこ
とが可能である。屈折力補正レンズ8は光軸Oに沿って
可動可能である。集束状態判断指標投影光学部材19は眼
底28の位置を検出するときには屈折力補正レンズ8の可
動に連動して光軸O′に沿って可動される。
When the eye 2 to be inspected is nearsighted, as shown in FIG. 8, when the focusing state determination index projection optical member 19 is at the reference position, the eye 2 will be in focus and matched on the front side of the fundus 28. When the optometry 2 is hyperopia, when the focusing state determination index projection optical member 19 is at the reference position as shown in FIG.
In 28, the upper focusing state determination index 29 and the lower focusing state determination index 30 are separated as shown in FIGS. 11 and 12, and the subject separates the focusing state determination indexes 29 and 30 from each other. You can see the separation. In the case of a cataract patient, it is difficult to clearly see the focusing state determination indexes 29 and 30 due to the opacity of the lens, but this separation / non-separation can be confirmed. The refractive power correction lens 8 is movable along the optical axis O. The focusing state determination index projection optical member 19 is moved along the optical axis O ′ in conjunction with the movement of the refractive power correction lens 8 when detecting the position of the fundus 28.

【0019】屈折力補正レンズ8とリレーレンズ7との
間にはダイクロイックミラー31が設けられている。この
ダイクロイックミラー31は可視波長域の光を反射し、赤
外波長域の光を透過する役割を果たす。眼底28の像と集
束状態判断指標29、30とを形成する反射光束は、ダイク
ロイックミラー31により反射され、結像レンズ32に導か
れて受像素子33に結像される。その受像素子33の出力は
映像信号に処理されて、モニター34に入力される。その
モニター34には眼底像35と共に集束状態判断指標29、30
が表示される。
A dichroic mirror 31 is provided between the refractive power correction lens 8 and the relay lens 7. The dichroic mirror 31 plays a role of reflecting light in the visible wavelength range and transmitting light in the infrared wavelength range. The reflected light flux forming the image of the fundus 28 and the focus state determination indexes 29, 30 is reflected by the dichroic mirror 31, guided to the imaging lens 32, and imaged on the image receiving element 33. The output of the image receiving element 33 is processed into a video signal and input to the monitor 34. The monitor 34 and the fundus image 35 together with the focusing state determination indicators 29, 30
Is displayed.

【0020】屈折力補正レンズ8を光軸Oに沿って可動
させ、測定光束Pが点Z′で集束する位置から点Zで集
束する位置に移動させる。すると、測定光束Pは図4に
示すように対物レンズ9から被検眼2に向けて平行光束
として出射される。被検眼2が正視眼のときにはその測
定光束の集束点は眼底28に位置することになる。被検眼
2が近視の場合には測定光束Pの集束点は眼底28よりも
手前側に位置する。この場合には、被検者は点Zが対物
レンズ9から遠ざかる方向に移動するように屈折力補正
レンズ8を可動させる。この屈折力補正レンズ8の可動
には図1に示すつまみ36を用いる。すると、集束状態判
断指標29、30がスプリットして見えている状態から合致
して見える状態となる。一方、測定光束Pは対物レンズ
9から被検眼2に向けて出射される際に発散光束となる
ので、測定光束Pの集束点が眼底28に位置することにな
る。
The refractive power correction lens 8 is moved along the optical axis O, and is moved from the position where the measurement light beam P is focused at the point Z'to the position where it is focused at the point Z. Then, the measurement light beam P is emitted as a parallel light beam from the objective lens 9 toward the subject's eye 2 as shown in FIG. When the eye 2 to be inspected is an emmetropic eye, the focal point of the measurement light beam is located at the fundus 28. When the eye 2 to be inspected is nearsighted, the focal point of the measurement light beam P is located on the front side of the fundus 28. In this case, the subject moves the refractive power correction lens 8 so that the point Z moves in the direction away from the objective lens 9. The knob 36 shown in FIG. 1 is used to move the refractive power correction lens 8. Then, the focused state determination indexes 29 and 30 are changed from the split visible state to the consistent visible state. On the other hand, the measurement light beam P becomes a divergent light beam when emitted from the objective lens 9 toward the eye 2 to be inspected, so that the focal point of the measurement light beam P is located at the fundus 28.

【0021】被検眼2が遠視の場合には、測定光束Pの
集束点は眼底28よりも奥側に位置することになる。この
場合には、被検者は点Zが対物レンズ9に近づくように
屈折力補正レンズ8を可動させる。すると、集束状態判
断指標29、30がスプリットして見えている状態から合致
して見える状態となる。一方、測定光束Pは対物レンズ
9から被検眼2に向けて出射される際に若干集束光束と
なるので、測定光束Pの集束点が眼底28に位置する。
When the eye 2 to be inspected is hyperopic, the focal point of the measurement light beam P is located on the inner side of the fundus 28. In this case, the subject moves the refractive power correction lens 8 so that the point Z approaches the objective lens 9. Then, the focused state determination indexes 29 and 30 are changed from the split visible state to the consistent visible state. On the other hand, the measurement light beam P slightly becomes a focused light beam when it is emitted from the objective lens 9 toward the eye 2 to be inspected, so that the focus point of the measurement light beam P is located on the fundus 28.

【0022】眼底28において反射された測定光束は反射
光束として水晶体27、対物レンズ9、ダイクロイックミ
ラー26、屈折力補正レンズ8、ダイクロイックミラー3
1、リレーレンズ7、6を介してプリズム5に導かれ、
その反射面5bで反射されて絞り部材12に導かれる。眼底
28からの反射光束を検出するときには、眼底28と絞り部
材12とは対物レンズ9、屈折力補正レンズ8に関して略
共役である。絞り部材12は眼底28以外からの反射光束を
除去し、眼底28からの反射光束を受光器14に導く。その
受光器14の受光出力に基づき基準位置Kから眼底28まで
の距離が求められ、基準位置Kから角膜頂点Mまでの距
離と、基準位置Kから眼底28までの距離とにより眼軸長
が求められる。
The measurement light beam reflected by the fundus 28 is a reflected light beam and is a lens 27, an objective lens 9, a dichroic mirror 26, a refractive power correction lens 8, and a dichroic mirror 3.
1, led to the prism 5 via the relay lenses 7 and 6,
It is reflected by the reflecting surface 5b and guided to the diaphragm member 12. Fundus
When detecting the reflected light flux from 28, the fundus 28 and the diaphragm member 12 are substantially conjugate with respect to the objective lens 9 and the refractive power correction lens 8. The diaphragm member 12 removes the reflected light flux from other than the fundus 28 and guides the reflected light flux from the fundus 28 to the light receiver 14. The distance from the reference position K to the fundus 28 is obtained based on the light reception output of the light receiver 14, and the axial length is obtained from the distance from the reference position K to the corneal vertex M and the distance from the reference position K to the fundus 28. Be done.

【0023】白内障患者の場合でも軽度の場合には、モ
ニター34の集束状態判断指標29、30を確認しながら、検
者がつまみ36を操作して屈折力補正レンズ8を移動させ
ることにより、眼底28に測定光束Pの集束点を位置させ
ることができる。
In the case of mild cataract patients, the examiner operates the knob 36 to move the refractive power correction lens 8 while checking the focusing index 29, 30 of the monitor 34, and the fundus The focal point of the measurement light beam P can be located at 28.

【0024】図13は集束状態判断指標投影光学部材19と
屈折力補正レンズ8とを自動的に駆動する構成としたも
ので、操作部37はスイッチ38〜41を有する。スイッチ38
は光源16をオンする機能を有し、スイッチ39はレーザー
光源10をオンする機能を有する。操作部37の出力は制御
演算部42に入力される。制御演算部42はレーザー光源1
0、光源16のオン・オフ制御、受光器14の出力に基づき
眼軸長を演算する機能、集束状態判断指標投影光学部材
19の駆動制御、屈折力補正レンズ8の駆動制御を行なう
機能を有する。43はその集束状態判断指標投影光学部材
19を駆動する集束状態判断指標投影光学部材駆動部、44
はその屈折力補正レンズ8を駆動する屈折力補正レンズ
駆動部である。スイッチ40を操作すると、集束状態判断
指標投影光学部材駆動部43、屈折力補正レンズ駆動部44
が駆動され、屈折力補正レンズ8の移動と共にそれに対
応して集束状態判断指標投影光学部材19が駆動される。
被検者が応答部45を操作すると、その応答に基づいて屈
折力補正レンズ8、集束状態判断指標投影光学部材19の
可動が停止される。
FIG. 13 shows a structure in which the focusing state determination index projection optical member 19 and the refractive power correction lens 8 are automatically driven, and the operation unit 37 has switches 38 to 41. Switch 38
Has a function of turning on the light source 16, and the switch 39 has a function of turning on the laser light source 10. The output of the operation unit 37 is input to the control calculation unit 42. The control calculation unit 42 is the laser light source 1
0, ON / OFF control of the light source 16, a function of calculating the axial length based on the output of the light receiver 14, a focusing state determination index projection optical member
It has a function of performing drive control of 19 and drive control of the refractive power correction lens 8. 43 is the focusing state determination index projection optical member
Focusing state determination index projection optical member driving unit for driving 19
Is a refractive power correction lens drive unit for driving the refractive power correction lens 8. When the switch 40 is operated, the focusing state determination index projection optical member drive unit 43 and the refractive power correction lens drive unit 44
Is driven, and the focusing state determination index projection optical member 19 is driven correspondingly with the movement of the refractive power correction lens 8.
When the subject operates the response unit 45, the refractive power correction lens 8 and the focusing state determination index projection optical member 19 are stopped based on the response.

【0025】以上、実施例について説明したが、本発明
はこれに限らず以下のものを含むものである。
Although the embodiment has been described above, the present invention is not limited to this, and includes the following.

【0026】これらの実施例では、集束状態判断指標投
影光学部材19の背後を照明して、集束状態判断指標を眼
底28に形成することにしたが、例えばレーザ光を二次元
スキャナ走査して、集束状態判断指標を眼底28に形成す
る構成とすることもできる。
In these embodiments, the back side of the focusing state determination index projection optical member 19 is illuminated to form the focusing state determination index on the fundus 28. The focusing state determination index may be formed on the fundus 28.

【0027】また、集束状態判断指標がぼやけていて
も、被検者が視認できるマークを集束状態判断指標の中
心に設けておき、このマークを被検者が注視したときに
測定光束Pが被検眼2の視軸と一致するように測定光学
系1と集束状態判断指標投影光学系15とを同軸に構成す
れば、より一層正確に眼軸長を測定することができる。
Further, even if the focus state determination index is blurred, a mark visible to the subject is provided in the center of the focus state determination index, and when the subject gazes at this mark, the measurement light flux P is covered. If the measurement optical system 1 and the focusing state determination index projection optical system 15 are coaxially arranged so as to coincide with the visual axis of the optometry 2, the axial length can be measured more accurately.

【0028】さらに、集束状態判断指標はスプリットイ
メージによらないものでもよい。
Further, the focus state determination index may not be based on the split image.

【0029】この他、本発明に係わる眼軸長測定装置の
集束状態判断指標投影光学系は、平成2年特許願第1465
31号(発明の名称;測長装置;出願日平成2年6月4
日)の図1、図11に示す光学系、平成3年特許願第82
657号(発明の名称;眼軸長測定方法及びその眼軸長測
定装置;出願日平成3年4月15日)の図1、図9に示す
光学系、平成3年特許願第90877号(発明の名称;眼軸
長測定方法とその装置;出願日平成3年4月22日)の図
11に示す干渉光学系にも適用できる。
In addition, the focusing state determination index projection optical system of the eye axial length measuring apparatus according to the present invention is disclosed in Japanese Patent Application No. 1465 of 1990.
No. 31 (Title of invention; Length measuring device; Application date June 4, 1990)
1), the optical system shown in FIG. 1 and FIG.
Optical system shown in FIGS. 1 and 9 of 657 (name of invention; axial length measuring method and axial length measuring device; filing date: April 15, 1991), 1991 patent application No. 90877 ( Figure of invention title; axial length measurement method and device; filing date April 22, 1991)
It can also be applied to the interference optical system shown in 11.

【0030】[0030]

【効果】請求項1記載の眼軸長測定装置によれば、被検
眼の屈折力を補正して、測定光束を眼底に適正に集束さ
せることができる。
According to the axial length measuring apparatus of the first aspect, it is possible to correct the refractive power of the eye to be inspected and properly focus the measurement light beam on the fundus.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る眼軸長測定装置の外観図であ
る。
FIG. 1 is an external view of an axial length measuring device according to the present invention.

【図2】 本発明に係わる眼軸長測定装置を用いて角膜
頂点の位置を検出するための光学図である。
FIG. 2 is an optical diagram for detecting the position of a corneal apex using the apparatus for measuring an axial length according to the present invention.

【図3】 本発明に係わる眼軸長測定装置を用いて集束
状態判断指標を眼底に投影する状態を説明するための光
学図である。
FIG. 3 is an optical diagram for explaining a state in which a focusing state determination index is projected on the fundus using the axial length measuring device according to the present invention.

【図4】 本発明に係わる眼軸長測定装置を用いて眼底
の位置を検出するための光学図である。
FIG. 4 is an optical diagram for detecting the position of the fundus of the eye by using the axial length measuring device according to the present invention.

【図5】 スプリットプリズムの斜視図である。FIG. 5 is a perspective view of a split prism.

【図6】 集束状態判断指標投影光学部材の平面図であ
る。
FIG. 6 is a plan view of a focusing state determination index projection optical member.

【図7】 瞳絞りの平面図である。FIG. 7 is a plan view of a pupil stop.

【図8】 被検眼が近視の場合の集束状態判断指標の結
像点を示す図である。
FIG. 8 is a diagram showing an image formation point of a focus state determination index when the eye to be inspected is myopic.

【図9】 被検眼が遠視の場合の集束状態判断指標の結
像点を示す図である。
FIG. 9 is a diagram showing an imaging point of a focus state determination index when the eye to be inspected is hyperopic.

【図10】 集束状態判断指標の合致状態を示す説明図
である。
FIG. 10 is an explanatory diagram showing a matching state of a focusing state determination index.

【図11】 被検眼が近視の場合の集束状態判断指標の
分離状態を示す図である。
FIG. 11 is a diagram showing a separation state of a focus state determination index when the eye to be inspected has myopia.

【図12】 被検眼が遠視の場合の集束状態判断指標の
分離状態を示す図である。
FIG. 12 is a diagram showing a separated state of a focus state determination index when the eye to be inspected is hyperopic.

【図13】 屈折力補正レンズと集束状態判断指標投影
光学部材とを制御するための制御回路図である。
FIG. 13 is a control circuit diagram for controlling the refractive power correction lens and the focusing state determination index projection optical member.

【符号の説明】[Explanation of symbols]

2 被検眼 3 照射光学系 4 受光光学系 15 集束状態判断指標投影光学系 28 眼底 P 測定光束 2 Eye to be inspected 3 Irradiation optical system 4 Light receiving optical system 15 Focusing state judgment index projection optical system 28 Fundus P Measurement luminous flux

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 測定光束を眼底に集束させて照射するた
めの照射光学系と、 前記眼底と略共役位置に設置されて前記眼底以外からの
反射光束を除去する絞りを有し、前記眼底からの反射光
束を受光部に導く受光光学系と、 前記眼底への前記測定光束の集束状態を判断するための
集束状態判断指標投影部材を有して、集束状態判断指標
を前記眼底に投影する集束状態判断指標投影光学系と、 前記照射光学系に設けられて被検眼の屈折力に応じて前
記集束状態判断指標の移動に対応して前記測定光束の集
束点を変位させる被検眼屈折力補正光学部材と、 を有することを特徴とする眼軸長測定装置。
1. An irradiation optical system for converging and irradiating a measurement light beam to the fundus, and a diaphragm installed at a position substantially conjugate with the fundus for removing a light beam reflected from other than the fundus. A light receiving optical system that guides the reflected light flux to a light receiving unit, and a focusing state determination index projection member for determining the focusing state of the measurement light beam to the fundus, and a focusing state determination index that projects onto the fundus. A state determination index projection optical system, and an eye to be inspected refractive power correction optical which is provided in the irradiation optical system and displaces a focal point of the measurement light beam in response to movement of the focusing state determination index according to the refractive power of the eye to be inspected. An axial length measuring device comprising: a member;
【請求項2】 前記集束状態判断指標投影部材と前記屈
折力補正光学部材とを駆動する駆動手段を有し、被検者
が前記集束状態判断指標を良好に視認できるとの応答に
応じて前記集束状態判断指標投影部材と前記屈折力補正
光学部材との駆動を停止させることを特徴とする請求項
1に記載の眼軸長測定装置。
2. A driving means for driving the focusing state determination index projection member and the refractive power correction optical member, wherein the subject is capable of satisfactorily visually recognizing the focusing state determination index. The eye axial length measuring device according to claim 1, wherein driving of the focused state determination index projection member and the refractive power correction optical member is stopped.
【請求項3】 前記受光光学系の途中に設けられ前記集
束状態判断指標を含めて眼底像を観察する眼底像観察光
学系と、前記集束状態判断指標投影部材と前記屈折力補
正光学部材とを駆動する駆動手段とを有し、被検者が前
記集束状態判断指標を良好に視認できるか否かを検者が
判断して前記集束状態判断指標投影部材と前記屈折力補
正光学部材との駆動を停止させることを特徴とする請求
項1に記載の眼軸長測定装置。
3. A fundus image observation optical system provided in the middle of the light receiving optical system for observing a fundus image including the focus state determination index, the focus state determination index projection member, and the refractive power correction optical member. A driving unit that drives the focusing state determination index projection member and the refractive power correction optical member by determining whether or not the subject can visually recognize the focusing state determination index in good condition. The axial length measuring device according to claim 1, which is stopped.
JP4058238A 1992-03-16 1992-03-16 Optic axial length measuring instrument Pending JPH05253188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4058238A JPH05253188A (en) 1992-03-16 1992-03-16 Optic axial length measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4058238A JPH05253188A (en) 1992-03-16 1992-03-16 Optic axial length measuring instrument

Publications (1)

Publication Number Publication Date
JPH05253188A true JPH05253188A (en) 1993-10-05

Family

ID=13078524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4058238A Pending JPH05253188A (en) 1992-03-16 1992-03-16 Optic axial length measuring instrument

Country Status (1)

Country Link
JP (1) JPH05253188A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007275375A (en) * 2006-04-07 2007-10-25 Topcon Corp Ophthalmologic device
JP2013526101A (en) * 2010-03-11 2013-06-20 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Portable electronics devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007275375A (en) * 2006-04-07 2007-10-25 Topcon Corp Ophthalmologic device
JP2013526101A (en) * 2010-03-11 2013-06-20 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Portable electronics devices
US8861789B2 (en) 2010-03-11 2014-10-14 Osram Opto Semiconductors Gmbh Portable electronic device

Similar Documents

Publication Publication Date Title
US7533990B2 (en) Ophthalmologic apparatus
JP4492847B2 (en) Eye refractive power measuring device
JP3441159B2 (en) Ophthalmic equipment
US20130050646A1 (en) Fundus photographing apparatus
US7160288B2 (en) Ophthalmic apparatus
JPH1075931A (en) Ophthalmodiaphanoscope
JPS63267331A (en) Non-contact type tonometer
JPH0753151B2 (en) Ophthalmic measuring device
JP2854657B2 (en) Ophthalmic measurement device
JPH0330751A (en) Ophthalmic measuring apparatus
JP2971479B2 (en) Ophthalmic equipment
JP2005342204A (en) Ophthalmologic measuring apparatus
JPH114808A (en) Fundus camera
JP2000245698A (en) Instrument for measuring eye refractivity
JP2001231752A (en) Ophthalmometer
JPH07313466A (en) Fundus oculi photographing system
JPH07171113A (en) Ophthalmologic instrument
US5013146A (en) Opthalmological measurement apparatus
JPH05253188A (en) Optic axial length measuring instrument
EP0189350B1 (en) Automatic eye refractive power measuring apparatus
JP3308465B2 (en) Non-contact tonometer
US6685650B2 (en) Fundus blood flowmeter
JPH09108185A (en) Ophthalmological device
JP2892007B2 (en) Non-contact tonometer
JPH08317905A (en) Eyeground camera