JPH05243519A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPH05243519A
JPH05243519A JP4042701A JP4270192A JPH05243519A JP H05243519 A JPH05243519 A JP H05243519A JP 4042701 A JP4042701 A JP 4042701A JP 4270192 A JP4270192 A JP 4270192A JP H05243519 A JPH05243519 A JP H05243519A
Authority
JP
Japan
Prior art keywords
film
electrode
capacitor
oxide film
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4042701A
Other languages
Japanese (ja)
Inventor
Takashi Arima
▲高▼志 有馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4042701A priority Critical patent/JPH05243519A/en
Publication of JPH05243519A publication Critical patent/JPH05243519A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To increase a capacity value of a stacked capacitor and, besides, to stabilize and improve a yield by preventing mutual short circuit of lower electrodes of adjacent stacked capacitors. CONSTITUTION:A first stacked capacitor composed of a first lower electrode 6, a first dielectric film 17 and a first upper electrode 9 and a second stacked capacitor composed of a second lower electrode 8, a second dielectric film 18 and a second upper electrode 10 are made to overlap each other on a field oxide film 2 through an interlayer insulation film 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体メモリ装置に係わ
り、特にスタックドキャパシタを有する半導体メモリ装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor memory device, and more particularly to a semiconductor memory device having a stacked capacitor.

【0002】[0002]

【従来の技術】キャパシタはダイナミックRAMを有す
る半導体メモリ装置に不可欠であり、回路の要請により
ある程度以上の容量値を必要とする。キャパシタのMO
S容量は容量絶縁膜(誘電体膜)を一定とすると、電極
となる部分の面積に比例する。そのため、ある容量値を
確保するためには、一定以上の面積を持つ電極を形成し
なければならない。また近年の半導体装置の高集積化に
伴う微細化によるセルサイズの縮小により、セル面積の
大部分を占めるキャパシタ部の工夫がなされてきた。そ
して従来のプレーナ型キャパシタから始まり、近年、基
板に溝を掘りその内にキャパシタを形成して電極面積を
増やすトレンチキャパシタが出現した。しかし、トレン
チキャパシタは半導体基板に溝を掘るため半導体基板表
面に結晶欠陥を発生させるという問題がある。そのため
最近ではワード線となるゲート配線上に層間絶縁膜を介
してキャパシタの電極を構成する多結晶シリコン膜を堆
積しトランスファーゲートの上部を利用し、これにより
電極の必要面積を確保するスタックドキャパシタ構造が
一般的となっている。
2. Description of the Related Art A capacitor is indispensable for a semiconductor memory device having a dynamic RAM, and requires a capacitance value above a certain level depending on the requirements of the circuit. MO of capacitor
When the capacitance insulating film (dielectric film) is constant, the S capacitance is proportional to the area of the portion that will be an electrode. Therefore, in order to secure a certain capacitance value, it is necessary to form an electrode having a certain area or more. Further, due to the reduction in cell size due to the miniaturization accompanying the recent trend of higher integration of semiconductor devices, the capacitor portion occupying most of the cell area has been devised. Then, starting from the conventional planar type capacitor, in recent years, a trench capacitor in which a groove is formed in a substrate and a capacitor is formed in the groove to increase an electrode area has appeared. However, the trench capacitor has a problem that a crystal defect is generated on the surface of the semiconductor substrate because a trench is formed in the semiconductor substrate. For this reason, recently, a stacked capacitor is formed in which a polycrystalline silicon film forming a capacitor electrode is deposited on a gate wiring that becomes a word line via an interlayer insulating film and the upper portion of a transfer gate is used to secure a necessary electrode area. The structure is common.

【0003】図7に従来のスタックドキャパシタ構造を
有する半導体メモリ装置を示す。P型半導体基板1にフ
ィールド酸化膜2を間にして左右にそれぞれのメモリセ
ルのトランスファーゲートトランジスタが形成されてお
り、それぞれのトランジスタに結合したスタックドキャ
パシタはトランジスタとフィールド酸化膜上に延在して
いる。トランジスタはソース、ドレインとなる一対のN
+ 型拡散層4およびゲート電極配線4を有し、キャパシ
タは、多結晶シリコン膜から形成されかつ一方のN+
拡散層4と容量コンタクト部24で接続する下部電極2
6と、その上の誘電体膜27と、その上の多結晶シリコ
ン膜から形成され各メモリセルに共通の電極である上部
電極とからMOS容量を構成している。また、第1絶縁
酸化膜5がゲート電極配線4を被覆し、第2絶縁酸化膜
7がスタックドキャパシタを被覆し、その上をBPSG
膜12で被覆してそこにディジット線が他方のN+ 型拡
散層4と接続するためのコンタクト孔15が形成されて
いる。
FIG. 7 shows a conventional semiconductor memory device having a stacked capacitor structure. Transfer gate transistors of the respective memory cells are formed on the left and right sides of the P-type semiconductor substrate 1 with the field oxide film 2 interposed therebetween, and the stacked capacitors coupled to the respective transistors extend on the transistors and the field oxide film. ing. A transistor is a pair of N that serves as a source and a drain.
The capacitor has a + type diffusion layer 4 and a gate electrode wiring 4, and the capacitor is a lower electrode 2 formed of a polycrystalline silicon film and connected to one N + type diffusion layer 4 by a capacitance contact portion 24.
6, a dielectric film 27 formed thereon, and an upper electrode, which is formed of a polycrystalline silicon film formed thereon and is common to each memory cell, form a MOS capacitor. Further, the first insulating oxide film 5 covers the gate electrode wiring 4, the second insulating oxide film 7 covers the stacked capacitor, and the BPSG is formed on the stacked insulating film.
A contact hole 15 for covering the digit line with the other N + type diffusion layer 4 is formed by covering with the film 12.

【0004】[0004]

【発明が解決しようとする課題】この様な従来技術の半
導体メモリ装置では、微細化に伴うメモリセルサイズの
縮小により、隣接セルとの間隔が狭くなり必要な面積を
得ることが困難となってきている。電極の表面積を増加
させる方法は、従来のスタックドキャパシタ構造では、
下部電極の膜厚を厚くして側壁面積を増加させるのみで
ある。しかしこの方法では、隣接するメモリセルの下部
電極間に深い溝が生じてしまう問題があった。また極力
平面的な面積の増加により電極の面積を増やそうとする
ため、隣接する下部電極間でのショートにより歩留りを
低下させるという問題もあった。
In such a conventional semiconductor memory device, the size of the memory cell is reduced due to the miniaturization, so that the space between adjacent cells is narrowed and it becomes difficult to obtain a necessary area. ing. The method of increasing the surface area of the electrode is as follows in the conventional stacked capacitor structure.
The thickness of the lower electrode is only increased to increase the side wall area. However, this method has a problem that a deep groove is formed between the lower electrodes of the adjacent memory cells. Further, since the area of the electrodes is increased by increasing the planar area as much as possible, there is a problem that the yield is reduced due to a short circuit between adjacent lower electrodes.

【0005】[0005]

【課題を解決するための手段】本発明の特徴は、半導体
基板に形成された第1および第2のトランスファーゲー
トトラジスタと、前記第1および第2のトランスファー
ゲートトラジスタの間に形成されたフィールド絶縁膜
と、前記第1のトランスファーゲートトラジスタに結合
し前記フィールド絶縁膜上に延在する第1のスタックド
キャパシタと、前記第2のトランスファーゲートトラジ
スタに結合し、前記フィールド絶縁膜上で前記第1のス
タックドキャパシタと層間絶縁膜を介して重畳して延在
する第2のスタックドキャパシタとを有する半導体メモ
リ装置にある。
A feature of the present invention is that it is formed between first and second transfer gate transistors formed on a semiconductor substrate and the first and second transfer gate transistors. A field insulating film, a first stacked capacitor coupled to the first transfer gate transistor and extending on the field insulating film, and a second stacked capacitor coupled to the second transfer gate transistor, on the field insulating film. And a semiconductor memory device having the first stacked capacitor and a second stacked capacitor that overlaps and extends via an interlayer insulating film.

【0006】[0006]

【実施例】以下図面を参照して本発明を説明する。図1
は本発明の一実施例を示す断面図である。P型半導体基
板1にフィールド酸化膜2を間にして左右にそれぞれの
メモリセルのトランスファーゲートトランジスタが形成
されている。各トランジスタはソース、ドレインとなる
一対のN+ 型拡散層4およびソースとドレイン間のチャ
ンネル領域上にゲート絶縁膜を介して形成された第1層
目の多結晶シリコン層から成るゲート電極配線4を有し
ている。またフィールド酸化膜2上には他のメモリセル
のゲート電極配線(ワード線)4が2本延在しており、
これらのゲート電極配線は層間絶縁膜である第1絶縁酸
化膜5で被覆されている。左側のトランジスタの一方の
+ 型拡散層4には第2層目の多結晶シリコン層から成
る第1下部電極6が第1容量コンタクト部14を通して
接続され、この第1下部電極6はフィールド酸化膜上か
ら左側のトランジスタのゲート電極配線上にかけて第1
絶縁酸化膜5の表面に披着形成されている。そして第1
下部電極6上に第1誘電体膜17が披着形成されその上
に第3層目の多結晶シリコン層から成る第1上部電極9
を披着形成されており、第1下部電極6、第1誘電体膜
17および第1上部電極9で第1のスタックドキャパシ
タのMOS容量を構成している。第1のスタックドキャ
パシタは層間絶縁膜である第2絶縁酸化膜7で被覆され
ている。一方、右側のトランジスタの一方のN+ 型拡散
層4には第4層目の多結晶シリコン層から成る第2下部
電極8が第2容量コンタクト部13を通して接続され、
この第2下部電極8は第2絶縁酸化膜7を介してフィー
ルド酸化膜上で第1のスタックドキャパシタの第1上部
電極9と重畳してそこから右側のトランジスタのゲート
電極配線上にかけて第2絶縁酸化膜7の表面に披着形成
されている。そして第2下部電極8上に第2誘電体膜1
8が披着形成されその上に第5層目の多結晶シリコン層
から成る第2上部電極10を披着形成されており、第2
下部電極8、第2誘電体膜18および第2上部電極10
で第2のスタックドキャパシタのMOS容量を構成して
いる。また第2上部電極10は第2絶縁酸化膜7に形成
された上部電極接続用コンタクト孔16を通して第1上
部電極9に接続されて各メモリセル共通の上部電極を構
成している。そしてその上を層間絶縁膜であるCVD酸
化膜11およびBPSG膜12で被覆してそこにディジ
ット線が他方のN+ 型拡散層4と接続するためのコンタ
クト孔15が形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. Figure 1
FIG. 4 is a sectional view showing an embodiment of the present invention. Transfer gate transistors of the respective memory cells are formed on the left and right sides of the P-type semiconductor substrate 1 with the field oxide film 2 interposed therebetween. Each transistor has a pair of N + type diffusion layers 4 serving as a source and a drain, and a gate electrode wiring 4 composed of a first-layer polycrystalline silicon layer formed on a channel region between the source and the drain with a gate insulating film interposed therebetween. have. Further, two gate electrode wirings (word lines) 4 of another memory cell extend on the field oxide film 2.
These gate electrode wirings are covered with a first insulating oxide film 5 which is an interlayer insulating film. A first lower electrode 6 made of a second-layer polycrystalline silicon layer is connected to one of the N + -type diffusion layers 4 of the transistor on the left side through a first capacitance contact portion 14, and the first lower electrode 6 is field-oxidized. From the top of the film to the gate electrode wiring of the transistor on the left
It is formed on the surface of the insulating oxide film 5. And the first
A first dielectric film 17 is deposited on the lower electrode 6 and a first upper electrode 9 made of a third-layer polycrystalline silicon layer is formed thereon.
The first lower electrode 6, the first dielectric film 17 and the first upper electrode 9 form the MOS capacitance of the first stacked capacitor. The first stacked capacitor is covered with a second insulating oxide film 7 which is an interlayer insulating film. On the other hand, the second lower electrode 8 made of the fourth-layer polycrystalline silicon layer is connected to one of the N + type diffusion layers 4 of the transistor on the right side through the second capacitance contact portion 13,
The second lower electrode 8 overlaps the first upper electrode 9 of the first stacked capacitor on the field oxide film through the second insulating oxide film 7 and then extends from there to the gate electrode wiring of the transistor on the right side to form a second electrode. It is formed on the surface of the insulating oxide film 7. Then, the second dielectric film 1 is formed on the second lower electrode 8.
8 is deposited on the second upper electrode 10 formed of a fifth layer of polycrystalline silicon layer.
Lower electrode 8, second dielectric film 18 and second upper electrode 10
Constitutes the MOS capacitance of the second stacked capacitor. The second upper electrode 10 is connected to the first upper electrode 9 through the upper electrode connecting contact hole 16 formed in the second insulating oxide film 7 to form an upper electrode common to all memory cells. A CVD oxide film 11 and a BPSG film 12, which are interlayer insulating films, are covered thereover, and a contact hole 15 for connecting the digit line to the other N + type diffusion layer 4 is formed therein.

【0007】次に図1の構造を得るための方法の一例を
図2乃至図6の断面図を用いて工程順に説明する。
Next, an example of a method for obtaining the structure of FIG. 1 will be described in the order of steps with reference to the sectional views of FIGS.

【0008】フィールド酸化膜2、N+ 型拡散層3を形
成したP型半導体基板1上にゲート酸化膜を介して第1
層目の多結晶シリコン層によりゲート電極配線4を形成
し、さらに層間絶縁膜となる第1絶縁酸化膜5をCVD
法(Chemical Vapour Deposit
ion)法により膜厚200nm(ナノメータ)に堆積
し、ホトリソグラフィー技術とドライエッチング技術に
より第1容量コンタクト孔14を形成する(図2)。次
に、全面に第2層目の多結晶シリコン層を200nmの
膜厚に堆積し、リンの熱拡散を行ない抵抗値を低くした
後、ホトリソグラフィー技術とドライエッチング技術で
第1下部電極6をパターニング形成する(図3)。次
に、シリコン窒化膜もしくはシリコン窒化膜とシリコン
酸化膜との複合膜を全面に10nmの膜厚成長させ、そ
の上に第3層目の多結晶シリコン層を100nmの膜厚
に堆積し、リンの熱拡散を行ない抵抗値を低くした後、
ホトリソグラフィー技術とドライエッチング技術によ
り、シリコン窒化膜もしくはシリコン窒化膜とシリコン
酸化膜との複合膜からキャパシタの容量絶縁膜である第
1誘電体膜17をパターニング形成し、第3層目の多結
晶シリコン層から第1上部電極9をパターニング形成し
て第1のスタックドキャパシタを構成する(図4)。次
に、第2のスタックドキャパシタとの間の層間絶縁膜と
なる第2絶縁酸化膜7をCVD法により膜厚200nm
(ナノメータ)に堆積し、第1および第2絶縁酸化膜
5,7に第2容量コンタクト孔13を形成する(図
5)。次に、第2絶縁酸化膜7に上部電極接続用コンタ
クト孔16を形成した後、全面に第4層目の多結晶シリ
コン層を200nmの膜厚に堆積し、リンの熱拡散を行
ない抵抗値を低くした後、ホトリソグラフィー技術とド
ライエッチング技術で第2下部電極8をパターニング形
成する。その後、シリコン窒化膜もしくはシリコン窒化
膜とシリコン酸化膜との複合膜を全面に10nmの膜厚
成長させ、その上に第5層目の多結晶シリコン層を10
0nmの膜厚に堆積し、リンの熱拡散を行ない抵抗値を
低くした後、ホトリソグラフィー技術とドライエッチン
グ技術により、シリコン窒化膜もしくはシリコン窒化膜
とシリコン酸化膜との複合膜からキャパシタの容量絶縁
膜である第2誘電体膜18をパターニング形成し、第5
層目の多結晶シリコン層から第2上部電極10をパター
ニング形成して第2のスタックドキャパシタを構成する
(図6)。次に、層間絶縁膜であるCVD酸化膜11お
よびBPSG膜12を堆積し熱処理(リフロー)した後
に、そこにディジット線が他方のN+ 型拡散層4と接続
するためのコンタクト孔15を形成して図1に示す半導
体メモリ装置となる。
A first gate oxide film is formed on the P-type semiconductor substrate 1 on which the field oxide film 2 and the N + type diffusion layer 3 are formed.
The gate electrode wiring 4 is formed of the polycrystalline silicon layer of the second layer, and the first insulating oxide film 5 serving as an interlayer insulating film is further formed by CVD.
Method (Chemical Vapor Deposition
ion) method to deposit a film having a thickness of 200 nm (nanometer), and the first capacitance contact hole 14 is formed by photolithography and dry etching (FIG. 2). Then, a second-layer polycrystalline silicon layer having a thickness of 200 nm is deposited on the entire surface, and thermal diffusion of phosphorus is performed to reduce the resistance value. Then, the first lower electrode 6 is formed by photolithography technique and dry etching technique. Patterning is performed (FIG. 3). Next, a silicon nitride film or a composite film of a silicon nitride film and a silicon oxide film is grown over the entire surface to a film thickness of 10 nm, and a third polycrystalline silicon layer is deposited thereon to a film thickness of 100 nm, and a phosphorus film is formed. After reducing the resistance value by performing heat diffusion of
By photolithography and dry etching techniques, the first dielectric film 17, which is the capacitor insulating film of the capacitor, is patterned and formed from the silicon nitride film or the composite film of the silicon nitride film and the silicon oxide film, and the third-layer polycrystalline film is formed. The first upper electrode 9 is patterned and formed from the silicon layer to form a first stacked capacitor (FIG. 4). Next, a second insulating oxide film 7 serving as an interlayer insulating film between the second stacked capacitor and the second stacked capacitor is formed to a film thickness of 200 nm by the CVD method.
Then, the second capacitor contact hole 13 is formed in the first and second insulating oxide films 5 and 7 (FIG. 5). Next, after forming the contact hole 16 for connecting the upper electrode in the second insulating oxide film 7, a polycrystalline silicon layer of the fourth layer is deposited on the entire surface to a film thickness of 200 nm, and thermal diffusion of phosphorus is carried out to make resistance value After lowering, the second lower electrode 8 is patterned and formed by the photolithography technique and the dry etching technique. After that, a silicon nitride film or a composite film of a silicon nitride film and a silicon oxide film is grown to a thickness of 10 nm on the entire surface, and a fifth-layer polycrystalline silicon layer is formed on top of
After being deposited to a film thickness of 0 nm and reducing the resistance value by performing thermal diffusion of phosphorus, the capacitance insulation of the capacitor from the silicon nitride film or the composite film of the silicon nitride film and the silicon oxide film is performed by the photolithography technique and the dry etching technique. The second dielectric film 18, which is a film, is formed by patterning,
A second stacked electrode is formed by patterning the second upper electrode 10 from the polycrystalline silicon layer of the second layer (FIG. 6). Next, a CVD oxide film 11 and a BPSG film 12 which are interlayer insulating films are deposited and heat-treated (reflow), and then a contact hole 15 for connecting a digit line to the other N + type diffusion layer 4 is formed therein. The semiconductor memory device shown in FIG.

【0009】[0009]

【発明の効果】以上説明した様に本発明は、隣接したメ
モリセルのスタックドキャパシタがフィールド絶縁膜上
で層間絶縁膜を介して重畳しているため、同じセルサイ
ズで同じ電極膜厚の場合、従来技術に比べて電極面積が
約1.4倍程度増加する事が可能であり、結果として大
きな容量値を確保することが出来るという効果を有す
る。また、隣接したメモリセルのスタックドキャパシタ
がフィールド絶縁膜上で層間絶縁膜を介して重畳してい
るため、隣接スタックドキャパシタの下部電極どうしが
ショートする危険性が無くなり歩留りが安定するという
効果も有する。
As described above, according to the present invention, when the stacked capacitors of the adjacent memory cells are superposed on the field insulating film via the interlayer insulating film, the same cell size and the same electrode film thickness are used. The electrode area can be increased by about 1.4 times as compared with the conventional technique, and as a result, a large capacitance value can be secured. In addition, since the stacked capacitors of the adjacent memory cells overlap each other on the field insulating film via the interlayer insulating film, there is no risk that the lower electrodes of the adjacent stacked capacitors are short-circuited and the yield is stable. Have.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の半導体メモリ装置を示す断
面図。
FIG. 1 is a sectional view showing a semiconductor memory device according to an embodiment of the present invention.

【図2】図1の半導体メモリ装置を製造する工程を示す
断面図。
FIG. 2 is a cross-sectional view showing a process of manufacturing the semiconductor memory device of FIG.

【図3】図1の半導体メモリ装置を製造する工程を示す
断面図。
FIG. 3 is a cross-sectional view showing a process of manufacturing the semiconductor memory device of FIG.

【図4】図1の半導体メモリ装置を製造する工程を示す
断面図。
FIG. 4 is a cross-sectional view showing a process of manufacturing the semiconductor memory device of FIG.

【図5】図1の半導体メモリ装置を製造する工程を示す
断面図。
FIG. 5 is a cross-sectional view showing a process of manufacturing the semiconductor memory device of FIG.

【図6】図1の半導体メモリ装置を製造する工程を示す
断面図。
FIG. 6 is a cross-sectional view showing a process of manufacturing the semiconductor memory device of FIG.

【図7】従来技術の半導体メモリ装置を製造する工程を
示す断面図。
FIG. 7 is a cross-sectional view showing a process of manufacturing a conventional semiconductor memory device.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 フィールド酸化膜 3 N+ 型拡散層 4 ゲート電極配線 5 第1絶縁酸化膜 6 第1下部電極 7 第2絶縁酸化膜 8 第2下部電極 9 第1上部電極 10 第2上部電極 11 CVD酸化膜 12 BPSG膜 13 第2容量コンタクト孔 14 第1容量コンタクト孔 15 ディジット線を接続するコンタクト孔 16 上部電極接続用コンタクト孔 17 第1誘電体膜 18 第2誘電体膜 24 容量コンタクト孔 26 下部電極 27 誘電体膜 29 上部電極1 semiconductor substrate 2 field oxide film 3 N + type diffusion layer 4 gate electrode wiring 5 first insulating oxide film 6 first lower electrode 7 second insulating oxide film 8 second lower electrode 9 first upper electrode 10 second upper electrode 11 CVD oxide film 12 BPSG film 13 Second capacitance contact hole 14 First capacitance contact hole 15 Contact hole for connecting digit line 16 Upper electrode connection contact hole 17 First dielectric film 18 Second dielectric film 24 Capacitance contact hole 26 Lower electrode 27 Dielectric film 29 Upper electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板に形成された第1および第2
のトランスファーゲートトラジスタと、前記第1および
第2のトランスファーゲートトラジスタの間に形成され
たフィールド絶縁膜と、前記第1のトランスファーゲー
トトラジスタに結合し前記フィールド絶縁膜上に延在す
る第1のスタックドキャパシタと、前記第2のトランス
ファーゲートトラジスタに結合し、前記フィールド絶縁
膜上で前記第1のスタックドキャパシタと層間絶縁膜を
介して重畳して延在する第2のスタックドキャパシタと
を有することを特徴とする半導体メモリ装置。
1. A first and a second formed on a semiconductor substrate.
Transfer gate transistor, a field insulating film formed between the first and second transfer gate transistors, and a first insulating film which is coupled to the first transfer gate transistor and extends on the field insulating film. A second stacked gate coupled to the first stacked capacitor and the second transfer gate transistor and extending on the field insulating film so as to overlap with the first stacked capacitor via an interlayer insulating film. A semiconductor memory device having a capacitor.
JP4042701A 1992-02-28 1992-02-28 Semiconductor memory device Withdrawn JPH05243519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4042701A JPH05243519A (en) 1992-02-28 1992-02-28 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4042701A JPH05243519A (en) 1992-02-28 1992-02-28 Semiconductor memory device

Publications (1)

Publication Number Publication Date
JPH05243519A true JPH05243519A (en) 1993-09-21

Family

ID=12643361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4042701A Withdrawn JPH05243519A (en) 1992-02-28 1992-02-28 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPH05243519A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6853052B2 (en) 2002-03-26 2005-02-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a buffer layer against stress
US7147740B2 (en) 2002-05-17 2006-12-12 Semiconductor Energy Laboratory Co., Ltd. Method of transferring a laminate and method of manufacturing a semiconductor device
US7245331B2 (en) 2003-01-15 2007-07-17 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method for manufacturing display device using the peeling method
US7361573B2 (en) 2001-08-10 2008-04-22 Semiconductor Energy Laboratory Co., Ltd. Method of peeling off and method of manufacturing semiconductor device
US9202987B2 (en) 2001-07-16 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and peeling off method and method of manufacturing semiconductor device
US9281403B2 (en) 2001-08-22 2016-03-08 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method of manufacturing semiconductor device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9202987B2 (en) 2001-07-16 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and peeling off method and method of manufacturing semiconductor device
US10586816B2 (en) 2001-07-16 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and peeling off method and method of manufacturing semiconductor device
US9608004B2 (en) 2001-07-16 2017-03-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and peeling off method and method of manufacturing semiconductor device
US7361573B2 (en) 2001-08-10 2008-04-22 Semiconductor Energy Laboratory Co., Ltd. Method of peeling off and method of manufacturing semiconductor device
US11296131B2 (en) 2001-08-22 2022-04-05 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method of manufacturing semiconductor device
US10529748B2 (en) 2001-08-22 2020-01-07 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method of manufacturing semiconductor device
US9842994B2 (en) 2001-08-22 2017-12-12 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method of manufacturing semiconductor device
US9755148B2 (en) 2001-08-22 2017-09-05 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method of manufacturing semiconductor device
US9281403B2 (en) 2001-08-22 2016-03-08 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method of manufacturing semiconductor device
US6853052B2 (en) 2002-03-26 2005-02-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a buffer layer against stress
US7208355B2 (en) 2002-03-26 2007-04-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for preparing the same
US8368071B2 (en) 2002-03-26 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including a thin film transistor and capacitor
US9070773B2 (en) 2002-03-26 2015-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including a thin film transistor and a capacitor
US8945331B2 (en) 2002-05-17 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Method of transferring a laminate and method of manufacturing a semiconductor device
US7147740B2 (en) 2002-05-17 2006-12-12 Semiconductor Energy Laboratory Co., Ltd. Method of transferring a laminate and method of manufacturing a semiconductor device
US7714950B2 (en) 2003-01-15 2010-05-11 Semiconductor Energy Laboratory Co., Ltd Peeling method and method for manufacturing display device using the peeling method
US9299879B2 (en) 2003-01-15 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method for manufacturing display device using the peeling method
US9013650B2 (en) 2003-01-15 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method for manufacturing display device using the peeling method
US8830413B2 (en) 2003-01-15 2014-09-09 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method for manufacturing display device using the peeling method
US8508682B2 (en) 2003-01-15 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method for manufacturing display device using the peeling method
US8228454B2 (en) 2003-01-15 2012-07-24 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method for manufacturing display device using the peeling method
US7245331B2 (en) 2003-01-15 2007-07-17 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method for manufacturing display device using the peeling method

Similar Documents

Publication Publication Date Title
JP2504606B2 (en) Semiconductor memory device and manufacturing method thereof
US4970564A (en) Semiconductor memory device having stacked capacitor cells
KR100491458B1 (en) Semiconductor device
JP2616569B2 (en) Method for manufacturing semiconductor integrated circuit device
JP2682455B2 (en) Semiconductor memory device and method of manufacturing the same
US5420449A (en) Capacitor for a semiconductor device
US5396094A (en) Semiconductor memory device with a capacitor having a protection layer
US5498561A (en) Method of fabricating memory cell for semiconductor integrated circuit
JP3397809B2 (en) Method for manufacturing semiconductor memory cell
JPH0645552A (en) Semiconductor device and its manufacture
JPH08204012A (en) Semiconductor device and its production
JP2680376B2 (en) Semiconductor memory device and method of manufacturing the same
JPH05243519A (en) Semiconductor memory device
JP3200974B2 (en) Method for manufacturing semiconductor memory device
JP2859363B2 (en) Semiconductor device and manufacturing method thereof
JPH0691219B2 (en) Semiconductor memory device
JP3202501B2 (en) Semiconductor memory device and method of manufacturing the same
JPH0321062A (en) Semiconductor storage device
US5329146A (en) DRAM having trench type capacitor extending through field oxide
JP2503661B2 (en) Semiconductor memory device and manufacturing method thereof
JP2950550B2 (en) Method for manufacturing semiconductor memory device
JPH08236721A (en) Semiconductor device and method of its fabrication
JP2671466B2 (en) Semiconductor device and manufacturing method thereof
JPH03259566A (en) Manufacture of memory device
JP2891242B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518