JPH05240640A - Optical distance measuring device - Google Patents

Optical distance measuring device

Info

Publication number
JPH05240640A
JPH05240640A JP7620692A JP7620692A JPH05240640A JP H05240640 A JPH05240640 A JP H05240640A JP 7620692 A JP7620692 A JP 7620692A JP 7620692 A JP7620692 A JP 7620692A JP H05240640 A JPH05240640 A JP H05240640A
Authority
JP
Japan
Prior art keywords
light
target object
light receiving
reflected
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7620692A
Other languages
Japanese (ja)
Inventor
Hayami Hosokawa
速美 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP7620692A priority Critical patent/JPH05240640A/en
Publication of JPH05240640A publication Critical patent/JPH05240640A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To perform measurement accurately without being affected by surface state of a target object and miniaturize the shape of a device and improve measurement accuracy as compared with a trigonometrical distance measuring system by detecting distance to the target object according to change in light spot size while the target object and a light-reception element are not in image- forming relationship in an optical distance measuring device. CONSTITUTION:A light which irradiated from a light emitting element 1 and is reflected by a target object M is received by a light reception element 3. At this time, the size of light spot on the light reception element changes according to the distance to the target object M and the quantity of received light at each region differs since the light reception element 3 is divided into at least three regions. The distance to the target object M can be detected based on it.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、受光及び受光素子を用
いて光学的に物体の有無あるいは物体までの距離を検出
する距離測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distance measuring device for optically detecting the presence or absence of an object or the distance to an object by using a light receiving element and a light receiving element.

【0002】[0002]

【従来の技術】従来の、この種の光学式距離測定装置と
しては、図12に示すような三角測距方式を用いた光電
センサ装置がある。本センサ装置は、投光用の半導体レ
ーザ等でなる発光素子101及び投光レンズ102と、
受光用の位置検出素子(POSITION・SENSI
NG・DEVICE、以下PSDという)103及び受
光レンズ104と、発光素子101を駆動するレーザ駆
動回路105と、PSD103からの信号を増幅するア
ンプ106などからなる。そして、発光素子101から
対象物体(A,Bなど)に投光し、その光スポットの反
射光を受光レンズ104によりPSD103上に結像さ
せ、対象物体の位置変化によるPSD103上の光スポ
ットの位置変化、すなわち、重心位置の変化として検出
するようになっている。
2. Description of the Related Art As a conventional optical distance measuring device of this type, there is a photoelectric sensor device using a triangular distance measuring method as shown in FIG. This sensor device includes a light emitting element 101 and a light projecting lens 102, which are semiconductor lasers for projecting light.
Position detector for light reception (POSITION / SENSI)
NG / DEVICE (hereinafter referred to as PSD) 103, a light receiving lens 104, a laser drive circuit 105 that drives the light emitting element 101, an amplifier 106 that amplifies a signal from the PSD 103, and the like. Then, the light emitting element 101 projects the light onto a target object (A, B, etc.), and the reflected light of the light spot is imaged on the PSD 103 by the light receiving lens 104, and the position of the light spot on the PSD 103 due to the position change of the target object. A change, that is, a change in the position of the center of gravity is detected.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この従
来装置においては、対象物体とPSD103とは結像関
係にあるため、対象物体の表面状態(例えば色変化や表
面段差など)によって、光スポットの重心位置が変化
し、誤差が生じ易い。また、三角測距方式を用いるた
め、測定距離が長くなるほど、投光レンズと受光レンズ
の間隔を大きくとらなければ精度が劣化するため、装置
の全体形状が大型化するといった問題がある。
However, in this conventional apparatus, since the target object and the PSD 103 are in an image-forming relationship, the center of gravity of the light spot depends on the surface state of the target object (for example, color change or surface step). The position changes and errors easily occur. Further, since the triangulation method is used, the accuracy is deteriorated unless the distance between the light projecting lens and the light receiving lens is increased as the measuring distance becomes longer, which causes a problem that the entire shape of the apparatus becomes large.

【0004】本発明は、このような従来の問題点に着目
してなされたもので、対象物体と受光素子とは結像関係
になく、光スポットサイズの変化から対象物体までの距
離を検出するようにしたことにより、対象物体の表面状
態の影響を受けずに正確な測定が可能となり、また、三
角測距方式に比べて装置形状を小形化、測定精度の向上
が図れる光学式距離測定装置を提供することを目的とす
る。
The present invention has been made by paying attention to such a conventional problem. The object and the light receiving element are not in an image forming relationship, and the distance to the object is detected from the change of the light spot size. By doing so, it is possible to perform accurate measurement without being affected by the surface condition of the target object, and to reduce the size of the device compared to the triangulation method, and to improve the measurement accuracy. The purpose is to provide.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明の光学式距離測定装置は、発光素子と、この発
光素子から出射され対象物体によって反射された反射光
を受光する少なくとも3つの領域に分割された受光素子
とを備え、前記受光素子の少なくとも3つの領域の各受
光量に基づいて対象物体までの距離を検出するものであ
る。
In order to achieve the above object, an optical distance measuring apparatus of the present invention comprises a light emitting element and at least three light-receiving elements that receive reflected light emitted from the light emitting element and reflected by a target object. The light receiving element is divided into areas, and the distance to the target object is detected based on the amount of light received in each of at least three areas of the light receiving element.

【0006】また、本装置は、発光素子から出射され対
象物体によって反射された反射光を集光する2つの集光
手段を有し、少なくとも3つの領域に分割された受光素
子が一方の集光手段によって集光される反射光を集光点
より前方で受光する素子と、他方の集光手段によって集
光される反射光を集光点より後方で受光する素子からな
り、この受光素子の各受光量に基づいて対象物体までの
距離を検出するものであってもよい。また、対象物体の
検知範囲が異なる複数の受光系を有したものであっても
よい。
Further, the present apparatus has two condensing means for condensing the reflected light emitted from the light emitting element and reflected by the target object, and the light receiving element divided into at least three regions condenses one of them. Each of the light receiving elements is composed of an element for receiving the reflected light condensed by the means before the condensing point and an element for receiving the reflected light condensed by the other condensing means behind the condensing point. The distance to the target object may be detected based on the amount of received light. Further, it may have a plurality of light receiving systems having different detection ranges of the target object.

【0007】また、受光素子が、中央部分、その両側部
分、及びその両外側部分からなる5つの領域に分割され
ており、各受光量から対象物体の距離情報を出力する演
算回路を複数有し、いずれかの演算回路の出力に基づい
て対象物体の距離を検出するものであってもよい。ま
た、受光素子が少なくとも2本の分割線によって、中央
部分とそれ以外の部分の少なくとも3つの領域に分割さ
れ、中央部分の帯状領域の長さ方向を、発光素子、対象
物体、及び受光素子を含む平面と略平行としたものであ
っても、中央部分の帯状領域の幅を、一方の端部から他
方の端部に向けて漸増させたものであってもよい。ま
た、発光素子として微小発光領域を持つ素子を用いても
よい。
Further, the light receiving element is divided into five regions, which are a central portion, both side portions thereof, and both outer side portions thereof, and has a plurality of arithmetic circuits for outputting distance information of the target object from each received light amount. Alternatively, the distance of the target object may be detected based on the output of any one of the arithmetic circuits. Further, the light receiving element is divided into at least three regions of the central portion and the other portion by at least two dividing lines, and the light emitting element, the target object, and the light receiving element are arranged in the longitudinal direction of the belt-shaped region of the central portion. The width may be set to be substantially parallel to the included plane, or the width of the belt-shaped region in the central portion may be gradually increased from one end portion to the other end portion. Alternatively, an element having a minute light emitting region may be used as the light emitting element.

【0008】[0008]

【作用】上記の構成によれば、発光素子から出射され対
象物体によって反射された反射光を受光素子にて受光す
る。このとき、対象物体までの距離に応じて受光素子上
の光スポットの大きさは変化し、受光素子は少なくとも
3つの領域に分割されているので、各領域の受光量に差
が生じる。これに基づいて対象物体までの距離を検出す
ることができる。
According to the above structure, the light receiving element receives the reflected light emitted from the light emitting element and reflected by the target object. At this time, the size of the light spot on the light receiving element changes according to the distance to the target object, and since the light receiving element is divided into at least three regions, there is a difference in the amount of light received in each region. The distance to the target object can be detected based on this.

【0009】[0009]

【実施例】本発明の第1実施例による光学式距離測定装
置の光学系を図1に示す。本実施例は、請求項1,2の
発明に対応するもので、発光素子1と、この発光素子1
による出射光を投光する投光レンズ2と、その光路上に
位置する対象物体M1,M2,M3など(総称してM)
によって反射された反射光を受光する受光レンズ4及び
受光素子(PSD)3とを備える。受光素子3は反射光
の集光点(焦点)位置よりも前方に配されている。ま
た、受光素子3は、図2に示されるように、少なくとも
3つの帯状領域3a,3b,3cに分割されている。そ
の分割構成は、各帯状領域の境界方向が、発光素子1、
対象物体M、及び受光素子3を含む平面と略平行とされ
ている(請求項7の発明に相当)。さらに、受光素子3
には各領域の受光量に対応した検出信号P0を出力する
演算回路6が接続されており、中央部分の領域3aは演
算回路6のマイナス端子に、両外側部分の領域3b,3
cは演算回路6のプラス端子に接続されている。
1 shows the optical system of an optical distance measuring device according to a first embodiment of the present invention. The present embodiment corresponds to the inventions of claims 1 and 2, and includes a light emitting element 1 and the light emitting element 1.
And a target object M1, M2, M3 located on its optical path, etc. (collectively M)
A light receiving lens 4 and a light receiving element (PSD) 3 for receiving the reflected light reflected by The light-receiving element 3 is arranged in front of the focal point position of the reflected light. Further, the light receiving element 3 is divided into at least three strip-shaped regions 3a, 3b, 3c as shown in FIG. The divided structure is such that the boundary direction of each strip-shaped region is the light emitting element 1,
It is substantially parallel to the plane including the target object M and the light receiving element 3 (corresponding to the invention of claim 7). Further, the light receiving element 3
Is connected to an arithmetic circuit 6 which outputs a detection signal P0 corresponding to the amount of light received in each area. The central area 3a is the negative terminal of the arithmetic circuit 6 and the outer areas 3b, 3
c is connected to the plus terminal of the arithmetic circuit 6.

【0010】図2、図3に示すように、対象物体Mまで
の距離によって受光素子3上での光スポットの大きさは
変わる。すなわち、近側からの対象物体M1,M2,M
3に対応して光スポットはS1,S2,S3と大きさが
変化し、従って、各受光量が変化する。図3は対象物体
Mまでの距離と受光素子3による出力電圧の関係を示
す。大きい光スポットS1の方が小さい光スポット例え
ばS3に比べて、中央部分の領域3aに対する両外側部
分の領域3b,3cの受光量の割合が大きくなる。この
結果、光スポットS1,S2,S3の夫々に対応して出
力電圧P1,P2,P3が得られる。この出力電圧より
対象物体Mの距離を検出できる。なお、受光径の小さい
光源(発光素子1)を用いれば、スポット形状の変化が
大きくなり、感度が高くなる。
As shown in FIGS. 2 and 3, the size of the light spot on the light receiving element 3 changes depending on the distance to the target object M. That is, the target objects M1, M2, M from the near side
The size of the light spot changes to S1, S2, and S3 corresponding to 3, and therefore the amount of received light changes. FIG. 3 shows the relationship between the distance to the target object M and the output voltage from the light receiving element 3. The large light spot S1 has a larger ratio of the amount of light received by the regions 3b and 3c of the outer side portions to the region 3a of the central portion than that of the small light spot S3, for example. As a result, output voltages P1, P2, P3 are obtained corresponding to the light spots S1, S2, S3, respectively. The distance of the target object M can be detected from this output voltage. If a light source (light emitting element 1) having a small light receiving diameter is used, the change in spot shape becomes large and the sensitivity becomes high.

【0011】図4は第2実施例を示す。この実施例は、
同じく請求項1,2の発明に対応するもので、レンズ7
を投受光共用とすると共に、発光素子1とレンズ7との
間の光路中にハーフミラー8を配置し、このハーフミラ
ー8により分光された反射光を受光素子3にて受光する
ようにしている。この実施例により装置の小形化が図れ
る。
FIG. 4 shows a second embodiment. This example
Similarly, it corresponds to the invention of claims 1 and 2, and the lens 7
Is used both for projecting and receiving light, and a half mirror 8 is disposed in the optical path between the light emitting element 1 and the lens 7 so that the reflected light split by the half mirror 8 is received by the light receiving element 3. .. According to this embodiment, the device can be downsized.

【0012】図5は第3実施例を示す。この実施例は、
同じく請求項1,2の発明に対応するもので、上記第1
の実施例では投光レンズ2と受光レンズ4、受光素子3
を平行に配置したものを示したが、この第3実施例では
受光レンズ4と受光素子3を傾けて反射光の光軸に直角
に配置している。これにより、受光素子3上での光スポ
ットの歪みを低減でき、感度及び測定範囲の拡大を図る
ことができる。
FIG. 5 shows a third embodiment. This example
Similarly, it corresponds to the invention of claims 1 and 2, and
In this embodiment, the light projecting lens 2, the light receiving lens 4, and the light receiving element 3
In the third embodiment, the light receiving lens 4 and the light receiving element 3 are tilted and arranged at right angles to the optical axis of the reflected light. Thereby, the distortion of the light spot on the light receiving element 3 can be reduced, and the sensitivity and the measurement range can be expanded.

【0013】図6は第4実施例を示す。この実施例は、
請求項4の発明に対応するもので、受光レンズ4の後方
にハーフミラー8を配して、光束を分割し、夫々の光路
に対して受光素子31,32を一方は焦点の前方に、他
方は焦点の後方に配置している。各受光素子31,32
は上述と同様に3分割に分割されている。この構成にお
いて、各受光素子31,32の検出出力の差を取ること
で、差動光学系を形成でき、検出感度を高めることがで
きる。
FIG. 6 shows a fourth embodiment. This example
According to the invention of claim 4, a half mirror 8 is arranged behind the light receiving lens 4 to divide the light flux, and one of the light receiving elements 31 and 32 is provided in front of the focal point and the other is provided for the respective optical paths. Is located behind the focal point. Each light receiving element 31, 32
Is divided into three in the same manner as described above. In this configuration, a differential optical system can be formed and the detection sensitivity can be increased by taking the difference between the detection outputs of the light receiving elements 31 and 32.

【0014】図7は第5実施例を示す。この実施例は、
請求項4の発明に対応するもので、受光レンズ4の後方
に光束を分割するために配したハーフミラー8を、光軸
に対して垂直方向から45度以上傾けることにより、2
つの受光素子31,32を同一平面上に配置し、同一パ
ッケージ内に設けることができるようにしたものであ
る。この構成により調整の容易化が図れる。
FIG. 7 shows a fifth embodiment. This example
According to the invention of claim 4, the half mirror 8 arranged to divide the light beam behind the light receiving lens 4 is tilted by 45 degrees or more from the vertical direction with respect to the optical axis.
The two light receiving elements 31 and 32 are arranged on the same plane so that they can be provided in the same package. This configuration facilitates adjustment.

【0015】図8は第6実施例を示す。この実施例は、
請求項3の発明に対応するもので、対象物体Mからの反
射光を受ける2組の受光レンズ41,42及び受光素子
31,32を設け、一方の受光素子31は焦点よりも前
方に、他方の受光素子32は焦点よりも後方に設けてい
る。これにより図6の実施例と同様の効果が得られ、か
つ、光量の減衰が少なくなるので、測定距離の拡大が図
れる。
FIG. 8 shows a sixth embodiment. This example
According to the invention of claim 3, two sets of light receiving lenses 41, 42 and light receiving elements 31, 32 for receiving the reflected light from the target object M are provided, and one light receiving element 31 is in front of the focus and the other. The light receiving element 32 of is provided behind the focal point. As a result, the same effect as that of the embodiment of FIG. 6 is obtained, and the attenuation of the light quantity is reduced, so that the measurement distance can be expanded.

【0016】図9は受光素子3の他の実施例を示す。こ
の例は、請求項6の発明に対応するもので、受光素子3
が5分割されたもので、中央部分の領域3aと、その両
側部分の領域3b,3c、さらにその両外側部分の領域
3d,3eからなる。そして、中央部分の領域3aに対
する、その一方側部分とその外側部分の領域3b,3
d、及び他方側部分とその外側部分の領域3c,3eの
受光量の割合から、対象物体の距離情報を出力する演算
回路61を備え、また、中央部分とその両側部分の領域
3a,3b,3cに対する、各外側部分の領域3d,3
eの受光量の割合から、対象物体の距離情報を出力する
演算回路62を備えている。演算回路61,62の各プ
ラス端子に与えられる出力をP′,P″とし、演算回路
61,62の検出出力をP10,P20とすると、
(P′/和信号)もしくは(P″/和信号)が或るしき
い値レベルよりも大きいときは、出力P20を、小さい
ときは出力P10を距離信号として用いることで、感度
の劣化なしに、測定レンジの拡大を図ることができる。
FIG. 9 shows another embodiment of the light receiving element 3. This example corresponds to the invention of claim 6, and the light receiving element 3
Is divided into five, and is composed of a central region 3a, regions 3b and 3c on both sides thereof, and regions 3d and 3e on both outer sides thereof. Then, with respect to the region 3a of the central portion, the regions 3b, 3 of the one side portion and the outside portion thereof.
d, and an arithmetic circuit 61 that outputs distance information of the target object from the ratio of the amount of light received in the regions 3c and 3e of the other side portion and the outer side portion thereof, and the central portion and the regions 3a and 3b of both side portions thereof. Regions 3d and 3 of each outer part with respect to 3c
An arithmetic circuit 62 for outputting distance information of the target object from the ratio of the amount of received light of e is provided. If the outputs given to the plus terminals of the arithmetic circuits 61 and 62 are P ′ and P ″ and the detection outputs of the arithmetic circuits 61 and 62 are P10 and P20,
When (P ′ / sum signal) or (P ″ / sum signal) is larger than a certain threshold level, the output P20 is used as the distance signal, and when it is small, the output P10 is used as the distance signal without deterioration of sensitivity. The measurement range can be expanded.

【0017】図10は本装置の第7実施例を示す。この
実施例は、請求項5の発明に対応するもので、対象物体
Mからの反射光を受ける受光系を複数個として、測定領
域の分担、つまり異なる測定領域を補う合う関係とする
ことにより、全体として測定レンジの拡大を図ったもの
である。すなわち、図示実施例では、左右の受光系にお
いて、受光素子31,32は受光レンズ41,42の焦
点位置よりいずれも前方にあるが、相対的に互いに異な
った位置にある。この例の他に、一方のレンズの焦点距
離が他方に対して異なっても、あるいは一方の受光素子
の分割構成が他方に対して異なっていても、同様の効果
が得られる。また、受光系は3個以上あってもよく、そ
の場合、より一層の測定レンジの拡大を図ることができ
る。
FIG. 10 shows a seventh embodiment of this device. This embodiment corresponds to the invention of claim 5, in which a plurality of light receiving systems for receiving the reflected light from the target object M are provided and the measurement areas are shared, that is, different measurement areas are complemented by each other. This is intended to expand the measurement range as a whole. That is, in the illustrated embodiment, in the left and right light receiving systems, the light receiving elements 31 and 32 are located in front of the focal positions of the light receiving lenses 41 and 42, but at positions relatively different from each other. Besides this example, the same effect can be obtained even if the focal length of one lens is different from that of the other lens, or if the division configuration of one light receiving element is different from that of the other. Further, there may be three or more light receiving systems, and in that case, the measurement range can be further expanded.

【0018】図11(a)(b)は受光素子のさらに他
の実施例を示す。この例は、請求項8の発明に対応する
もので、各々の受光素子3は、3分割の受光領域のう
ち、中央部分の帯状領域の幅が、境界線11,12で示
されるように、一方の端部から他方の端部に向けて漸増
している。いずれの受光素子3も図1に示す状態で使用
されるとき、遠方の対象物体ほど受光領域の右方に光ス
ポットが形成されることから、(a)のように、右方ほ
ど中央部分の帯状領域幅が広くなっている場合、感度の
向上が図れる。一方、(b)のように、右方ほど中央部
分の帯状領域幅が狭くなっている場合、測定レンジの拡
大が図れる。
FIGS. 11A and 11B show still another embodiment of the light receiving element. This example corresponds to the invention of claim 8, and in each of the light receiving elements 3, the width of the band-shaped region in the central portion among the light receiving regions divided into three is as shown by the boundary lines 11 and 12, It gradually increases from one end to the other. When any of the light receiving elements 3 is used in the state shown in FIG. 1, since a light spot is formed on the right side of the light receiving region as the target object is farther away, as shown in FIG. When the width of the band-shaped region is wide, the sensitivity can be improved. On the other hand, as shown in (b), when the width of the belt-shaped region in the central portion becomes narrower toward the right, the measurement range can be expanded.

【0019】さらには、発光素子として、本出願人の出
願に係る特開平3−237784号公報に示される通り
の、オーミック接触構造を有し、微小発光領域を持つ発
光素子を用いてもよい(請求項9の発明に対応)。この
ような発光素子を用いれば、微小発光領域で高出力が得
られるので、発光光径を小さくでき、対象物体の距離変
化に対する、分割受光素子上での光スポット形状の変化
が大きくなり、測定の感度が向上する。
Further, as the light emitting device, a light emitting device having an ohmic contact structure and having a minute light emitting region as shown in Japanese Patent Application Laid-Open No. 3-237784 filed by the present applicant may be used. (Corresponding to the invention of claim 9). By using such a light emitting element, a high output can be obtained in a minute light emitting region, so that the emitted light diameter can be reduced, and the change of the light spot shape on the divided light receiving element becomes large with respect to the distance change of the target object. The sensitivity of is improved.

【0020】[0020]

【発明の効果】以上のように請求項1乃至9の発明によ
れば、対象物体からの反射光を結像させないで、つまり
デフォーカス位置で受光素子にてスポット受光し、受光
素子の分割された受光領域でのスポット光の受光量変化
を観測するので、対象物体の表面形状や色の影響を受け
ることなく、対象物体までの距離を安定して計測するこ
とができる。また、位置検出素子の代わりに分割受光素
子を用いるので、検出のための回路構成が簡単になる。
また、三角測距方式でないので、発光系の投光レンズと
受光系の受光レンズとの間隔は、測定精度に関係がない
ため間隔を最小限にすることができ、装置の小型化が図
れ、場合によっては、投光レンズと受光レンズを同軸す
なわち両レンズを共用することも可能となる。
As described above, according to the first to ninth aspects of the invention, the reflected light from the target object is not focused, that is, the light receiving element receives the spot at the defocus position, and the light receiving element is divided. Since the change in the amount of received spot light in the light receiving region is observed, the distance to the target object can be stably measured without being affected by the surface shape or color of the target object. Further, since the divided light receiving element is used instead of the position detecting element, the circuit configuration for detection becomes simple.
Also, since it is not a triangulation method, the distance between the light emitting lens of the light emitting system and the light receiving lens of the light receiving system can be minimized because it is not related to the measurement accuracy, and the device can be downsized, In some cases, the light projecting lens and the light receiving lens can be coaxial, that is, both lenses can be shared.

【0021】また、請求項3,4の発明によれば、差動
光学系を構成することができるため、測定精度の向上、
ダイナミックレンンジの拡大が計れる。請求項5の発明
によれば、複数の受光系を設け、異なる測定領域を補う
合う関係としているので、測定範囲の拡大が図れる。請
求項6の発明によれば、信号レベルに応じて演算回路を
切り替え使用することにより、感度の劣化しに測定レン
ジの拡大が図れる。請求項7の発明によれば、分割受光
素子の分割方向を、発光素子、受光素子、対象物体を含
む平面と平行としているので、ダイナミックレンジの拡
大ならびに素子の分割によって段差があっても、該段差
による影響を除去できる。請求項8の発明によれば、受
光素子の分割構成を変更しているので、光学系を変える
ことなく、感度の向上、測定レンジの拡大が図れる。請
求項9の発明によれば、発光光径を小さくでき、受光素
子上でのスポット形状の変化が大きくなるので、測定感
度の向上が図れる。
According to the third and fourth aspects of the invention, since the differential optical system can be constructed, the measurement accuracy is improved,
The dynamic range can be expanded. According to the invention of claim 5, since a plurality of light receiving systems are provided and different measurement areas are complemented to each other, the measurement range can be expanded. According to the invention of claim 6, by switching and using the arithmetic circuit according to the signal level, it is possible to expand the measurement range while degrading the sensitivity. According to the invention of claim 7, since the dividing direction of the divided light receiving element is parallel to the plane including the light emitting element, the light receiving element, and the target object, even if there is a step due to expansion of the dynamic range and division of the element, The influence of the step can be eliminated. According to the eighth aspect of the invention, since the divisional configuration of the light receiving element is changed, the sensitivity can be improved and the measurement range can be expanded without changing the optical system. According to the invention of claim 9, the diameter of the emitted light can be reduced and the change of the spot shape on the light receiving element becomes large, so that the measurement sensitivity can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例による光学式距離測定装置
の光学系を示す図である。
FIG. 1 is a diagram showing an optical system of an optical distance measuring device according to a first embodiment of the present invention.

【図2】本装置の受光素子と検出回路の構成図である。FIG. 2 is a configuration diagram of a light receiving element and a detection circuit of this device.

【図3】受光素子の出力電圧の特性図である。FIG. 3 is a characteristic diagram of an output voltage of a light receiving element.

【図4】第2実施例による本装置の光学系を示す図であ
る。
FIG. 4 is a diagram showing an optical system of the present device according to a second example.

【図5】第3実施例による本装置の光学系を示す図であ
る。
FIG. 5 is a diagram showing an optical system of the present device according to a third example.

【図6】第4実施例による本装置の光学系を示す図であ
る。
FIG. 6 is a diagram showing an optical system of the present device according to a fourth example.

【図7】第5実施例による本装置の光学系を示す図であ
る。
FIG. 7 is a diagram showing an optical system of the present device according to a fifth example.

【図8】第6実施例による本装置の光学系を示す図であ
る。
FIG. 8 is a diagram showing an optical system of the present device according to a sixth embodiment.

【図9】受光素子と検出回路の他の例を示す構成図であ
る。
FIG. 9 is a configuration diagram showing another example of a light receiving element and a detection circuit.

【図10】第7実施例による本装置の光学系を示す図で
ある。
FIG. 10 is a diagram showing an optical system of the present device according to a seventh example.

【図11】受光素子のさらに他の例を示す構成図であ
る。
FIG. 11 is a configuration diagram showing still another example of the light receiving element.

【図12】従来の光学式距離測定装置の構成図である。FIG. 12 is a configuration diagram of a conventional optical distance measuring device.

【符号の説明】[Explanation of symbols]

1 発光素子 3 受光素子 4 受光レンズ(集光手段) 6 演算回路 M 対象物体 1 Light-Emitting Element 3 Light-Receiving Element 4 Light-Receiving Lens (Condensing Means) 6 Arithmetic Circuit M Target Object

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 発光素子と、この発光素子から出射され
対象物体によって反射された反射光を受光する少なくと
も3つの領域に分割された受光素子とを備え、前記受光
素子の少なくとも3つの領域の各受光量に基づいて対象
物体までの距離を検出することを特徴とした光学式距離
測定装置。
1. A light emitting device, and a light receiving device divided into at least three regions for receiving reflected light emitted from the light emitting device and reflected by a target object, and each of the at least three regions of the light receiving device. An optical distance measuring device characterized by detecting the distance to a target object based on the amount of received light.
【請求項2】 発光素子と、この発光素子から出射され
対象物体によって反射された反射光を集光する集光手段
と、この集光手段によって集光される反射光を受光す
る、少なくとも3つの領域に分割された受光素子とを備
え、前記受光素子の少なくとも3つの領域の各受光量に
基づいて対象物体までの距離を検出することを特徴とし
た光学式距離測定装置。
2. A light emitting element, a condensing means for condensing the reflected light emitted from the light emitting element and reflected by a target object, and at least three light receiving means for receiving the reflected light condensed by the condensing means. An optical distance measuring device, comprising: a light receiving element divided into areas, and detecting a distance to a target object based on each amount of received light in at least three areas of the light receiving element.
【請求項3】 発光素子と、この発光素子から出射され
対象物体によって反射された反射光を集光する2つの集
光手段と、この2つの集光手段のうち一方の集光手段に
よって集光される反射光を集光点より前方で受光する少
なくとも3つの領域に分割された受光素子と、他方の集
光手段によって集光される反射光を集光点より後方で受
光する、少なくとも3つの領域に分割された受光素子と
を備え、前記受光素子の少なくとも3つの領域の各受光
量に基づいて対象物体までの距離を検出することを特徴
とした光学式距離測定装置。
3. A light emitting element, two light collecting means for collecting reflected light emitted from the light emitting element and reflected by a target object, and light collecting means for collecting light by one of the two light collecting means. A light receiving element divided into at least three regions for receiving reflected light in front of the converging point, and at least three light receiving elements for receiving reflected light condensed by the other condensing means behind the converging point. An optical distance measuring device, comprising: a light receiving element divided into areas, and detecting a distance to a target object based on each amount of received light in at least three areas of the light receiving element.
【請求項4】 発光素子と、この発光素子から出射され
対象物体によって反射された反射光を2つの光束に分
離、集光する集光手段と、この集光手段によって分離、
集光される2つの光束のうち一方の光束を集光点より前
方で受光する、少なくとも3つの領域に分割された第1
の受光素子と、前記集光手段によって分離、集光される
2つの光束のうち他方の光束を集光点より後方で受光す
る、少なくとも3つの領域に分割された第2の受光素子
とを備え、前記第1の受光素子及び第2の受光素子の分
割された領域の各受光量に基づいて対象物体の距離を検
出することを特徴とした光学式距離測定装置。
4. A light emitting element, a condensing means for separating and condensing the reflected light emitted from the light emitting element and reflected by a target object into two light fluxes, and a converging means for separating the light.
The first divided into at least three regions for receiving one of the two condensed light beams in front of the converging point
And a second light receiving element divided into at least three regions for receiving the other light beam of the two light beams separated and condensed by the light condensing means, at least three regions. An optical distance measuring device characterized by detecting the distance to a target object based on the amount of light received in each of the divided regions of the first light receiving element and the second light receiving element.
【請求項5】 発光素子と、この発光素子から出射され
対象物体によって反射された反射光を集光する集光手段
及びこの集光手段によって集光される反射光を受光する
少なくとも3つの領域に分割された受光素子から成る、
前記対象物体の検知範囲の異なる複数の受光系とを備
え、前記受光系の受光素子の少なくとも3つの領域の各
受光量に基づいて対象物体の距離を検出することを特徴
とした光学式距離測定装置。
5. A light emitting element, a condensing means for condensing the reflected light emitted from the light emitting element and reflected by a target object, and at least three regions for receiving the reflected light condensed by the condensing means. Consisting of divided light receiving elements,
An optical distance measuring device, comprising: a plurality of light receiving systems having different detection ranges of the target object, and detecting the distance of the target object based on each light receiving amount of at least three regions of the light receiving element of the light receiving system. apparatus.
【請求項6】 発光素子と、この発光素子から出射され
対象物体によって反射された反射光を受光する受光素子
とを備え、前記受光素子は、中央部分、その両側部分、
及びその両外側部分からなる5つの領域に分割されてお
り、中央部分、一方側部分とその外側部分、及び他方側
部分とその外側部分の3つの領域の各受光量から対象物
体の距離情報を出力する演算回路と、中央部分とその両
側部分、一方の外側部分、他方の外側部分の3つの領域
の各受光量から対象物体の距離情報を出力する演算回路
とを備え、前記いずれかの演算回路の出力に基づいて対
象物体の距離を検出することを特徴とした光学式距離測
定装置。
6. A light emitting device, and a light receiving device for receiving reflected light emitted from the light emitting device and reflected by a target object, wherein the light receiving device comprises a central portion, both side portions thereof,
It is divided into five areas consisting of the outer side portion and both outer side portions, and the distance information of the target object is obtained from the respective light receiving amounts of the central portion, the one side portion and the outer side portion, and the other side portion and the outer side portion. An arithmetic circuit for outputting, and an arithmetic circuit for outputting distance information of a target object from respective light receiving amounts of three regions of a central portion and both side portions thereof, one outer portion, and the other outer portion are provided. An optical distance measuring device characterized by detecting the distance of a target object based on the output of a circuit.
【請求項7】 受光素子は少なくとも2本の分割線によ
って、中央部分とそれ以外の部分の少なくとも3つの領
域に分割され、中央部分の帯状領域の長さ方向が、発光
素子、対象物体、及び受光素子を含む平面と略平行であ
ることを特徴とした請求項1乃至6に記載の光学式距離
測定装置。
7. The light-receiving element is divided by at least two dividing lines into at least three regions of a central portion and the other portion, and the longitudinal direction of the belt-shaped region of the central portion is such that the light-emitting element, the target object, and The optical distance measuring device according to claim 1, wherein the optical distance measuring device is substantially parallel to a plane including the light receiving element.
【請求項8】 受光素子は少なくとも2本の分割線によ
って、中央部分とそれ以外の少なくとも3つの帯状領域
に分割され、中央部分の帯状領域の幅が、一方の端部か
ら他方の端部に向けて漸増していることを特徴とした請
求項1乃至6に記載の光学式距離測定装置。
8. The light receiving element is divided into at least three strip-shaped regions other than the central portion by at least two dividing lines, and the width of the strip-shaped region of the central portion is from one end to the other end. The optical distance measuring device according to any one of claims 1 to 6, wherein the optical distance measuring device is gradually increased.
【請求項9】 発光素子として微小発光領域を持つ素子
を用いることを特徴とした請求項1乃至6に記載の光学
式距離測定装置。
9. The optical distance measuring device according to claim 1, wherein an element having a minute light emitting region is used as the light emitting element.
JP7620692A 1992-02-26 1992-02-26 Optical distance measuring device Withdrawn JPH05240640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7620692A JPH05240640A (en) 1992-02-26 1992-02-26 Optical distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7620692A JPH05240640A (en) 1992-02-26 1992-02-26 Optical distance measuring device

Publications (1)

Publication Number Publication Date
JPH05240640A true JPH05240640A (en) 1993-09-17

Family

ID=13598696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7620692A Withdrawn JPH05240640A (en) 1992-02-26 1992-02-26 Optical distance measuring device

Country Status (1)

Country Link
JP (1) JPH05240640A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7030402B2 (en) 2002-05-14 2006-04-18 Sharp Kabushiki Kaisha Optical distance measuring device and printing apparatus using the same
JP2009008643A (en) * 2007-06-27 2009-01-15 Oputouea Kk Optical scanning type plane inspecting apparatus
JP2017096973A (en) * 2011-02-15 2017-06-01 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Detector for optically detecting at least one object
US10353049B2 (en) 2013-06-13 2019-07-16 Basf Se Detector for optically detecting an orientation of at least one object
US10412283B2 (en) 2015-09-14 2019-09-10 Trinamix Gmbh Dual aperture 3D camera and method using differing aperture areas
US10775505B2 (en) 2015-01-30 2020-09-15 Trinamix Gmbh Detector for an optical detection of at least one object
US10823818B2 (en) 2013-06-13 2020-11-03 Basf Se Detector for optically detecting at least one object
WO2020261685A1 (en) * 2019-06-25 2020-12-30 パナソニックIpマネジメント株式会社 Optical device
US10890491B2 (en) 2016-10-25 2021-01-12 Trinamix Gmbh Optical detector for an optical detection
US10948567B2 (en) 2016-11-17 2021-03-16 Trinamix Gmbh Detector for optically detecting at least one object
US10955936B2 (en) 2015-07-17 2021-03-23 Trinamix Gmbh Detector for optically detecting at least one object
US11041718B2 (en) 2014-07-08 2021-06-22 Basf Se Detector for determining a position of at least one object
US11060922B2 (en) 2017-04-20 2021-07-13 Trinamix Gmbh Optical detector
US11067692B2 (en) 2017-06-26 2021-07-20 Trinamix Gmbh Detector for determining a position of at least one object
US11125880B2 (en) 2014-12-09 2021-09-21 Basf Se Optical detector
US11211513B2 (en) 2016-07-29 2021-12-28 Trinamix Gmbh Optical sensor and detector for an optical detection
US11428787B2 (en) 2016-10-25 2022-08-30 Trinamix Gmbh Detector for an optical detection of at least one object
US11860292B2 (en) 2016-11-17 2024-01-02 Trinamix Gmbh Detector and methods for authenticating at least one object

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7030402B2 (en) 2002-05-14 2006-04-18 Sharp Kabushiki Kaisha Optical distance measuring device and printing apparatus using the same
JP2009008643A (en) * 2007-06-27 2009-01-15 Oputouea Kk Optical scanning type plane inspecting apparatus
JP2017096973A (en) * 2011-02-15 2017-06-01 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Detector for optically detecting at least one object
US10353049B2 (en) 2013-06-13 2019-07-16 Basf Se Detector for optically detecting an orientation of at least one object
US10823818B2 (en) 2013-06-13 2020-11-03 Basf Se Detector for optically detecting at least one object
US10845459B2 (en) 2013-06-13 2020-11-24 Basf Se Detector for optically detecting at least one object
US11041718B2 (en) 2014-07-08 2021-06-22 Basf Se Detector for determining a position of at least one object
US11125880B2 (en) 2014-12-09 2021-09-21 Basf Se Optical detector
US10775505B2 (en) 2015-01-30 2020-09-15 Trinamix Gmbh Detector for an optical detection of at least one object
US10955936B2 (en) 2015-07-17 2021-03-23 Trinamix Gmbh Detector for optically detecting at least one object
US10412283B2 (en) 2015-09-14 2019-09-10 Trinamix Gmbh Dual aperture 3D camera and method using differing aperture areas
US11211513B2 (en) 2016-07-29 2021-12-28 Trinamix Gmbh Optical sensor and detector for an optical detection
US11428787B2 (en) 2016-10-25 2022-08-30 Trinamix Gmbh Detector for an optical detection of at least one object
US10890491B2 (en) 2016-10-25 2021-01-12 Trinamix Gmbh Optical detector for an optical detection
US10948567B2 (en) 2016-11-17 2021-03-16 Trinamix Gmbh Detector for optically detecting at least one object
US11415661B2 (en) 2016-11-17 2022-08-16 Trinamix Gmbh Detector for optically detecting at least one object
US11635486B2 (en) 2016-11-17 2023-04-25 Trinamix Gmbh Detector for optically detecting at least one object
US11698435B2 (en) 2016-11-17 2023-07-11 Trinamix Gmbh Detector for optically detecting at least one object
US11860292B2 (en) 2016-11-17 2024-01-02 Trinamix Gmbh Detector and methods for authenticating at least one object
US11060922B2 (en) 2017-04-20 2021-07-13 Trinamix Gmbh Optical detector
US11067692B2 (en) 2017-06-26 2021-07-20 Trinamix Gmbh Detector for determining a position of at least one object
WO2020261685A1 (en) * 2019-06-25 2020-12-30 パナソニックIpマネジメント株式会社 Optical device

Similar Documents

Publication Publication Date Title
JPH05240640A (en) Optical distance measuring device
US4782239A (en) Optical position measuring apparatus
US10048376B2 (en) Distance measuring device and photodetector
JPH11326040A (en) Sensor having wide divergence optical system and detector
EP0654690B1 (en) Active-type automatic focusing apparatus
JP2010085395A (en) Optical position angle detector
JP3252293B2 (en) Distance measuring device
JPH11201718A (en) Sensor device and distance measuring equipment
JP2004037461A (en) Device for optically measuring distance
JP3945120B2 (en) Ranging sensor and adjustment method thereof
JPS6227613A (en) Position detector
JPH07286811A (en) Optical device
JPS6153510A (en) Apparatus for detecting position
JP2002335033A (en) Apparatus and method of adjusting laser diode unit and optical unit manufacturing method
JPH05231848A (en) Optical displacement sensor
JPH06281452A (en) Optical distance measuring device
JPH04364414A (en) Distance-measuring device
JP2609606B2 (en) Optical pickup objective lens position detector
JPH10103915A (en) Apparatus for detecting position of face
JP3303118B2 (en) Optical device
JPS63206682A (en) Photoelectric switch
JPS61231409A (en) Optical position measuring apparatus
JPH0269614A (en) Displacement sensor
JPH06281415A (en) Displacement measuring device
JPH06102016A (en) Photoelectric height detecting system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518