JPH05238830A - Sintered aluminum nitride and its production - Google Patents

Sintered aluminum nitride and its production

Info

Publication number
JPH05238830A
JPH05238830A JP4035245A JP3524592A JPH05238830A JP H05238830 A JPH05238830 A JP H05238830A JP 4035245 A JP4035245 A JP 4035245A JP 3524592 A JP3524592 A JP 3524592A JP H05238830 A JPH05238830 A JP H05238830A
Authority
JP
Japan
Prior art keywords
sintered body
aluminum nitride
grain boundary
sintering
boundary phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4035245A
Other languages
Japanese (ja)
Other versions
JP3472585B2 (en
Inventor
Michiyasu Komatsu
通泰 小松
Miho Nakamura
美保 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP03524592A priority Critical patent/JP3472585B2/en
Publication of JPH05238830A publication Critical patent/JPH05238830A/en
Application granted granted Critical
Publication of JP3472585B2 publication Critical patent/JP3472585B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain sintered aluminum nitride having high strength, thermal conductivity and heat-radiation performance by heating a formed material composed of AlN powder and a grain boundary forming component under prescribed condition and solidifying the product by cooling at a prescribed cooling rate. CONSTITUTION:A sintered AlN having high strength and thermal conductivity and a grain boundary size and maximum pore diameter of <=1mum can be produced by adding 1-7.5wt.% of a grain boundary forming component (rare earth element and/or alkaline earth metal element) to AlN powder, forming and degreasing the obtained raw material mixture, sintering at 1700-2000 deg.C and solidifying the formed liquid phase formed from the grain boundary component by cooling the sintered compact at a cooling rate of <100 deg.C/h until the temperature is lowered to the freezing temperature of the liquid phase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒化アルミニウム焼結体
およびその製造方法に係り、高強度で熱伝導率が高く放
熱特性に優れた窒化アルミニウム焼結体およびその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum nitride sintered body and a method for manufacturing the same, and more particularly to an aluminum nitride sintered body having high strength, high thermal conductivity and excellent heat dissipation characteristics, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来の金属材料と比較して強度、耐熱
性、耐食性、耐摩耗性、軽量性などの諸特性に優れたセ
ラミックス焼結体が、半導体、電子機器材料、エンジン
用部材、高速切削工具用材料、ノズル、ベアリングな
ど、従来の金属材料の及ばない苛酷な温度、応力、摩耗
条件下で使用される機械部品、構造材や装飾品材料とし
て広く利用されている。
2. Description of the Related Art Sintered ceramics, which are superior in properties such as strength, heat resistance, corrosion resistance, wear resistance, and lightness to conventional metal materials, are used in semiconductors, electronic equipment materials, engine parts, high speed It is widely used as a material for cutting tools, nozzles, bearings, and other mechanical parts, structural materials, and ornamental materials used under severe temperature, stress, and wear conditions that conventional metal materials do not have.

【0003】特に窒化アルミニウム(AlN)焼結体は
高熱伝導性を有する絶縁体であり、シリコン(Si)に
近い熱膨張係数を有することから高集積化した半導体装
置の放熱板や基板として、その用途を拡大している。
Particularly, an aluminum nitride (AlN) sintered body is an insulator having a high thermal conductivity and has a coefficient of thermal expansion close to that of silicon (Si), so that it is used as a heat sink or a substrate of a highly integrated semiconductor device. Expanding applications.

【0004】従来、上記窒化アルミニウム焼結体は一般
的に下記の製造方法によって量産されている。すなわ
ち、セラミックス原料としての窒化アルミニウム粉末に
焼結助剤と、有機バインダと、必要に応じて各種添加剤
や溶媒、分散剤とを添加して原料混合体を調製し、得ら
れた原料混合体をロール成形法やドクターブレード法に
よって成形し、薄板状ないしシート状の成形体とした
り、原料混合体をプレス成形して厚板状ないし大型の成
形体を形成する。次に得られた成形体は、空気または窒
素ガス雰囲気において400〜500℃に加熱され脱脂
処理され、有機バインダとして添加された炭化水素成分
等が成形体から排除脱脂される。そして脱脂された成形
体は窒素ガス雰囲気等で高温度に加熱され緻密化焼結さ
れて窒化アルミニウム焼結体が形成される。
Conventionally, the aluminum nitride sintered body is generally mass-produced by the following manufacturing method. That is, a sintering aid, an organic binder, and if necessary, various additives, solvents, and dispersants are added to aluminum nitride powder as a ceramic raw material to prepare a raw material mixture, and the obtained raw material mixture is obtained. Is molded by a roll molding method or a doctor blade method to form a thin plate-shaped or sheet-shaped molded body, or the raw material mixture is press-molded to form a thick plate-shaped or large molded body. Next, the obtained molded body is heated to 400 to 500 ° C. in an air or nitrogen gas atmosphere to be degreased, and the hydrocarbon component and the like added as an organic binder is removed and degreased from the molded body. The degreased compact is heated to a high temperature in a nitrogen gas atmosphere or the like and densified and sintered to form an aluminum nitride sintered compact.

【0005】上記焼結操作は、一般に図3に示すよう
に、例えば黒鉛(グラファイト)製の炉材を貼設した焼
成炉1の炉床2上に箱状の焼成容器3を配置し、この焼
成容器3内に1個または複数個の脱脂した窒化アルミニ
ウム成形体4を収容した状態で加熱し、所定の焼結温度
1700〜2000℃に4〜8時間保持した後に、焼成
炉1の加熱用電源をOFFにして焼結体を炉冷して実施
していた。
In the above-mentioned sintering operation, generally, as shown in FIG. 3, a box-shaped firing container 3 is arranged on a hearth 2 of a firing furnace 1 on which a furnace material made of graphite is attached. For heating the firing furnace 1 after heating in a state where one or more degreased aluminum nitride compacts 4 are accommodated in the firing container 3 and holding at a predetermined sintering temperature of 1700 to 2000 ° C. for 4 to 8 hours. The power was turned off and the sintered body was cooled in the furnace to carry out.

【0006】上記窒化アルミニウム成形体4を収容保持
する焼成容器3や炉床2は、高温焼結時に成形体と反応
して焼結体の特性を低下させることを防止するために、
また不純物による焼結体の汚染を防止するために、成形
体と同一材料である高純度の窒化アルミニウム(Al
N)焼結体や窒化硼素(BN)焼結体で形成される。
The firing container 3 and the hearth 2 for holding and holding the above-mentioned aluminum nitride compact 4 prevent the reaction of the compact with the compact during high-temperature sintering to deteriorate the characteristics of the sintered compact.
In order to prevent the contamination of the sintered body by impurities, high-purity aluminum nitride (Al
N) Sintered body or boron nitride (BN) sintered body.

【0007】上記のように窒化アルミニウム成形体4と
反応せず熱容量が大きい焼成容器中に成形体4を収容し
て焼結しているため、各窒化アルミニウム成形体4の全
体に熱が均一に作用し、むらの少ない均質な焼結体が得
られる。また焼成炉1の炉材に含まれる炭素等の不純物
が、焼成容器に遮断され焼成時に直接的に成形体4に作
用することがなく、これらの不純物によって焼結体に色
むらや変形が発生したり、焼結体の熱伝導性が低下する
ことが防止される。上記焼成容器3を使用せず、窒化ア
ルミニウム成形体4を直接焼成炉1内に配置して焼成し
た場合には、焼成炉1の炉材から放出された過剰量の炭
素蒸気や不純物によって焼結体表面が著しく損傷され、
かつ焼結体全体の変形量も大きくなり、製品歩留りが急
減してしまう。
As described above, since the compact 4 is housed and sintered in the firing container having a large heat capacity without reacting with the compact aluminum nitride 4, the heat is uniformly distributed over the entire compacts 4 of aluminum nitride. It works, and a homogeneous sintered body with less unevenness is obtained. Further, impurities such as carbon contained in the furnace material of the firing furnace 1 are not blocked by the firing container and do not directly act on the molded body 4 during firing, and these impurities cause uneven coloring and deformation of the sintered body. And the thermal conductivity of the sintered body is prevented from decreasing. When the aluminum nitride compact 4 is placed directly in the firing furnace 1 without using the firing container 3 and fired, sintering is performed by an excessive amount of carbon vapor or impurities released from the furnace material of the firing furnace 1. The body surface is significantly damaged,
Moreover, the amount of deformation of the entire sintered body also increases, resulting in a rapid decrease in product yield.

【0008】上記製造方法において、原料AlN粉末と
して平均粒径が0.3μm以下程度の超微細な原料粉末
を使用する場合は、AlN粉末単独でもかなりの緻密な
焼結体が得られる。しかしながら、原料粉末表面等に付
着した多量の酸素等の不純物が焼結時に、AlN結晶格
子中に固溶したり、格子振動の伝播を妨げるAl−O−
N化合物等の複合酸化物を生成する結果、焼結助剤を使
用しないAlN焼結体の熱伝導率は比較的に低かった。
In the above manufacturing method, when an ultrafine raw material powder having an average particle size of about 0.3 μm or less is used as the raw material AlN powder, a considerably dense sintered body can be obtained by using the AlN powder alone. However, a large amount of impurities such as oxygen adhering to the surface of the raw material powder form a solid solution in the AlN crystal lattice at the time of sintering, or Al-O- which hinders the propagation of lattice vibration.
As a result of producing a complex oxide such as an N compound, the thermal conductivity of the AlN sintered body that did not use a sintering aid was relatively low.

【0009】一方原料粉末として平均粒径0.5μm以
上のAlN粉末を使用する場合は、その原料粉末単独で
は焼結性が良好でないため、ホットプレス法以外には助
剤無添加では緻密な焼結体を得ることが困難であり、量
産性が低い欠点があった。そこで常圧焼結法によって効
率的に焼結体を量産しようとする場合には、焼結体の緻
密化およびAlN原料粉末中の不純物酸素がAlN結晶
粒子内へ固溶することを防止するために、焼結助剤とし
て、酸化イットウリム(Y2 3 )などの希土類酸化物
や酸化カルシウムなどのアルカリ土類金属酸化物等を添
加することが一般に行なわれている。
On the other hand, when AlN powder having an average particle size of 0.5 μm or more is used as the raw material powder, the raw material powder alone does not have good sinterability. It was difficult to obtain a bound body, and there was a drawback that mass productivity was low. Therefore, in order to efficiently mass-produce the sintered body by the atmospheric pressure sintering method, in order to prevent the densification of the sintered body and the impurity oxygen in the AlN raw material powder from forming a solid solution in the AlN crystal grains. In addition, rare earth oxides such as yttrium oxide (Y 2 O 3 ) and alkaline earth metal oxides such as calcium oxide are generally added as sintering aids.

【0010】これらの焼結助剤は、AlN原料粉末に含
まれる不純物酸素と反応してイットリウム−アルミニウ
ム−ガーネット(YAG,3Y2 3 ・5Al
2 3 )、イットリア−アルミナ化合物(YAL,Y2
3 ・Al2 3 )、イットリア−アルミナ−金属化合
物(YAM,2Y2 3 ・Al2 3 )などから成る液
相を形成し、焼結体の緻密化を達成するとともに、この
不純物酸素を粒界相として固定し、高熱伝導率化も達成
するものと考えられている。またこれらの液相は焼結後
においてAlN結晶粒の粒界部にガラス質または結晶質
として凝固して粒界相を形成し、この粒界相がAlN結
晶粒を相互に強固に結合せしめAlN焼結体全体の強度
を高めると考えられている。
These sintering aids react with impurity oxygen contained in the AlN raw material powder and react with yttrium-aluminum-garnet (YAG, 3Y 2 O 3 .5Al).
2 O 3 ), yttria-alumina compound (YAL, Y 2
O 3 · Al 2 O 3 ), a liquid phase composed of yttria-alumina-metal compound (YAM, 2Y 2 O 3 · Al 2 O 3 ) or the like is formed to achieve the densification of the sintered body and the impurities. It is believed that oxygen is fixed as a grain boundary phase to achieve high thermal conductivity. Further, these liquid phases are solidified as glassy or crystalline at the grain boundary portion of AlN crystal grains after sintering to form a grain boundary phase, and this grain boundary phase firmly bonds the AlN crystal grains to each other. It is believed to increase the strength of the sintered body as a whole.

【0011】[0011]

【発明が解決しようとする課題】しかしながら従来の製
造方法においては、原料粉末の平均粒径、焼結助剤の種
類および添加量、脱脂焼結条件等を厳正に管理した場合
においても、焼結体の強度が不足して製品歩留りが低下
したり、所定の熱伝導率が得られず、AlNの最大利用
特性である優れた放熱特性が損われる場合が多かった。
However, in the conventional manufacturing method, even when the average particle size of the raw material powder, the type and addition amount of the sintering aid, the degreasing and sintering conditions, etc. are strictly controlled, the sintering is performed. In many cases, the strength of the body was insufficient, the product yield was lowered, or a predetermined thermal conductivity was not obtained, and the excellent heat dissipation property which was the maximum utilization property of AlN was impaired.

【0012】本発明は上記問題点を解決するためになさ
れたものであり、高強度で熱伝導率が高く放熱特性が優
れた窒化アルミニウム焼結体およびその製造方法を提供
することを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide an aluminum nitride sintered body having high strength, high thermal conductivity, and excellent heat dissipation characteristics, and a method for producing the same. ..

【0013】[0013]

【課題を解決するための手段】本願発明者らは上記目的
を達成するため、まず焼結体の強度や熱伝導率が低下す
る原因を実験により解明することを試みた。すなわち原
料窒化アルミニウム粉末に添加する焼結助剤や添加物の
種類および添加量、不純物の残留量、成形焼結条件、焼
結体の組成等を種々変えて、それらが焼結体特性に及ぼ
す影響や関係について実験検討を進め、以下に示すよう
に知見を得た。
In order to achieve the above object, the inventors of the present application first tried to elucidate the cause of the decrease in strength and thermal conductivity of the sintered body by an experiment. That is, the type and amount of sintering aids and additives to be added to the raw material aluminum nitride powder, the residual amount of impurities, the forming and sintering conditions, the composition of the sintered body, etc. are variously changed to affect the characteristics of the sintered body. We conducted experimental studies on the effects and relationships and obtained the following findings.

【0014】すなわち本発明者らは加熱焼結操作完了直
後における焼結体の冷却速度の大小が、最終的に製造さ
れる焼結体の品質特性に大きな影響を及ぼすことを突き
止めた。
That is, the present inventors have found that the magnitude of the cooling rate of the sintered body immediately after the completion of the heating and sintering operation has a great influence on the quality characteristics of the finally produced sintered body.

【0015】すなわち、従来の製造方法においては、成
形体を所定の焼結温度で一定時間加熱保持して緻密化焼
結を実施した後に、焼成炉の加熱用電源をOFFとし焼
結体を炉冷していたため、焼成炉の形式によって差はあ
るが、焼結体の冷却速度が毎時400〜800℃程度と
極めて大きな値となっており、焼結体の窒化アルミニウ
ム結晶組織が粗雑になる大きな原因であることが確認さ
れた。X線回折図や走査型電子顕微鏡写真等で焼結体の
破面を観察したところ、図2に示すように、直径Db が
5〜10μm程度の粗大な酸化物粒界相5や直径Dp が
50〜100μm程度の粗大な気孔6がAlN結晶粒7
の粒界部に多数形成されていることが判明した。これら
の粒界相5は、焼結助剤として添加したY2 3 などの
希土類化合物が焼結時に窒化アルミニウム原料粉末表面
のアルミニウム酸化物と反応して生成した液相(成分:
YAG,YAL,YAMなど)が冷却時に凝集偏析して
形成されたものである。また粗大な粒界相5の周辺には
液相がなくなった気孔6が形成され、上記粒界相5およ
び気孔6は共に窒化アルミニウム焼結体の熱伝導を妨げ
る抵抗として作用するとともに、気孔6は未焼結部とな
りAlN結晶粒7相互の接合強度が低下し、焼結体全体
としての強度が低下してしまうことが判明した。
That is, in the conventional manufacturing method, the compact is heated and held at a predetermined sintering temperature for a certain period of time for densification and sintering, and then the power source for heating the firing furnace is turned off. Since it was cooled, there was a difference depending on the type of firing furnace, but the cooling rate of the sintered body was an extremely large value of 400 to 800 ° C./hour, and the aluminum nitride crystal structure of the sintered body became coarse. It was confirmed to be the cause. When the fracture surface of the sintered body was observed by an X-ray diffraction diagram or a scanning electron microscope photograph, as shown in FIG. 2, a coarse oxide grain boundary phase 5 having a diameter Db of about 5 to 10 μm and a diameter Dp were found. Coarse pores 6 of about 50-100 μm are AlN crystal grains 7
It was found that a large number of grains were formed at the grain boundary part of the. The grain boundary phase 5 is a liquid phase (component: component of the rare earth compound such as Y 2 O 3 added as a sintering aid, which reacts with the aluminum oxide on the surface of the aluminum nitride raw material powder during sintering.
(YAG, YAL, YAM, etc.) are formed by aggregation and segregation during cooling. Further, pores 6 having no liquid phase are formed around the coarse grain boundary phase 5, and the grain boundary phase 5 and the pores 6 both act as a resistance to prevent heat conduction of the aluminum nitride sintered body, and the pores 6 It was found that the non-sintered portion becomes a non-sintered portion, the joint strength between the AlN crystal grains 7 is reduced, and the strength of the sintered body as a whole is reduced.

【0016】一方、焼成炉の加熱装置に対する通電量を
制御して焼結直後の焼結体の冷却速度を、従来の炉冷に
よる冷却速度より低く設定して得られた焼結体の結晶組
織を観察し、また焼結体の各種特性を測定した。その結
果、図1に示すようにいずれも窒化アルミニウム結晶組
織の粒界相5aの直径Db が小さく、液相の凝集偏析が
なく、微細な粒界相が均一に分布した結晶組織が得られ
た。また気孔6aについても直径Dp が小さく、凝集が
少ない均一分布を有する組織が得られ、高い熱伝導率お
よび高強度を備えるAlN焼結体が得られた。
On the other hand, the crystal structure of the sintered body obtained by controlling the amount of electricity to the heating device of the firing furnace to set the cooling rate of the sintered body immediately after sintering lower than the cooling rate by the conventional furnace cooling. Was observed and various characteristics of the sintered body were measured. As a result, as shown in FIG. 1, the grain boundary phase 5a of the aluminum nitride crystal structure has a small diameter Db, no liquid phase aggregation segregation, and a fine grain boundary phase uniformly distributed crystal structure. .. Further, regarding the pores 6a as well, a structure having a small diameter Dp and a uniform distribution with little aggregation was obtained, and an AlN sintered body having high thermal conductivity and high strength was obtained.

【0017】本発明は上記知見に基づいて完成されたも
のである。すなわち本発明に係るセラミックス焼結体の
製造方法は、窒化アルミニウムに粉末に対して、粒界相
形成成分として希土類元素およびアルカリ土類金属元素
の少なくとも一方を添加した原料混合体を成形脱脂し、
得られた成形体を1700〜2000℃の焼結温度で所
定時間加熱焼結した後に、上記焼結温度から、上記希土
類元素および/またはアルカリ土類金属元素により焼結
時に形成された液相が凝固する温度までに至る焼結体の
冷却速度を毎時100℃以下に設定したことを特徴とす
る。
The present invention has been completed based on the above findings. That is, the method for producing a ceramics sintered body according to the present invention, the powder to aluminum nitride, the raw material mixture obtained by adding at least one of a rare earth element and an alkaline earth metal element as a grain boundary phase forming component, degreasing,
After the obtained molded body is heated and sintered at a sintering temperature of 1700 to 2000 ° C. for a predetermined time, a liquid phase formed at the time of sintering by the rare earth element and / or the alkaline earth metal element is changed from the above sintering temperature. The feature is that the cooling rate of the sintered body up to the solidifying temperature is set to 100 ° C. or less per hour.

【0018】さらに本発明に係る窒化アルミニウム焼結
体は、窒化アルミニウム結晶組織に希土類元素およびア
ルカリ土類金属の少なくとも一方を含む粒界相が形成さ
れ、粒界相の最大径が1μm以下であることを特徴とす
る。
Further, in the aluminum nitride sintered body according to the present invention, a grain boundary phase containing at least one of a rare earth element and an alkaline earth metal is formed in the aluminum nitride crystal structure, and the maximum diameter of the grain boundary phase is 1 μm or less. It is characterized by

【0019】また窒化アルミニウム結晶組織に介在する
気孔の最大径は1μm以下に設定するとよい。
The maximum diameter of the pores existing in the aluminum nitride crystal structure is preferably set to 1 μm or less.

【0020】さらに粒界相を構成する希土類元素および
アルカリ土類金属の少なくとも一方の焼結体に対する含
有量は1〜7.5重量%に設定するとよい。
Further, the content of at least one of the rare earth element and the alkaline earth metal forming the grain boundary phase in the sintered body is preferably set to 1 to 7.5% by weight.

【0021】本発明方法において使用され、焼結体の主
成分となる窒化アルミニウム(AlN)粉末としては、焼
結性および熱伝導性を考慮して不純物酸素含有量が7重
量%以下、好ましくは3重量%以下に抑制され平均粒径
が0.05〜5μm程度、好ましくは3μm以下のもの
を使用する。
The aluminum nitride (AlN) powder used in the method of the present invention, which is the main component of the sintered body, has an impurity oxygen content of 7% by weight or less, preferably in consideration of sinterability and thermal conductivity. The average particle size is suppressed to 3% by weight or less and the average particle size is about 0.05 to 5 μm, preferably 3 μm or less.

【0022】希土類元素およびアルカリ土類金属は焼結
助剤として窒化アルミニウム原料粉末に添加される。焼
結助剤の具体例としては希土類元素(Y,La,Sc,
Pr,Ce,Nd,Dy,Gdなど)の酸化物、窒化
物、アルカリ土類金属(Ca,Ba,Srなど)の酸化
物、もしくは焼結操作によりこれらの化合物となる物質
(炭酸塩等)が単独で、または2種以上混合して使用さ
れ、特に酸化イットリウム(Y2 3 )や酸化カルシウ
ム(CaO)が好ましい。これらの焼結助剤は、窒化ア
ルミニウムの原料粉末表面のアルミニウム酸化物相と反
応して複合酸化物(Al5 3 12,AlYO3 ,Al
2 4 9 など)の液相を形成し、この液相が焼結体の
高密度化(緻密化)をもたらす。例えばY2 3 を焼結
助剤として用いた場合、アルミン酸イットリウムが生成
し液相焼結が進行すると考えられる。これらの焼結助剤
を添加して常圧焼結すると、焼結性の向上(緻密化)の
みではなく、熱伝導率も向上できる。すなわち焼結時に
AlN中に固溶していた不純物酸素がY2 3 と反応し
て結晶粒界の酸化物相として偏析するため、格子欠陥の
少ない焼結体が得られ、熱伝導率が向上する。
The rare earth element and the alkaline earth metal are added to the aluminum nitride raw material powder as a sintering aid. Specific examples of the sintering aid include rare earth elements (Y, La, Sc,
Pr, Ce, Nd, Dy, Gd, etc.) oxides, nitrides, oxides of alkaline earth metals (Ca, Ba, Sr, etc.), or substances (carbonates, etc.) that become these compounds by the sintering operation. Are used alone or in combination of two or more, and yttrium oxide (Y 2 O 3 ) and calcium oxide (CaO) are particularly preferable. These sintering aids react with the aluminum oxide phase on the surface of the raw material powder of aluminum nitride to react with the complex oxides (Al 5 Y 3 O 12 , AlYO 3 , Al
2 Y 4 O 9 and the like), and this liquid phase causes the sintered body to have a higher density (densification). For example, when Y 2 O 3 is used as a sintering aid, it is considered that yttrium aluminate is produced and liquid phase sintering proceeds. When these sintering aids are added and pressureless sintering is performed, not only the sinterability is improved (densification), but also the thermal conductivity can be improved. That is, since the impurity oxygen dissolved in AlN at the time of sintering reacts with Y 2 O 3 and segregates as an oxide phase of crystal grain boundaries, a sintered body with few lattice defects can be obtained and the thermal conductivity can be improved. improves.

【0023】上記焼結助剤の添加量は1〜7.5重量%
の範囲で調整される。添加量が1重量%未満の場合は、
焼結性の改善効果が充分に発揮されず、焼結体が緻密化
されず低強度の焼結体が形成されたり、AlN結晶中に
酸素が固溶し、高い熱伝導率を有する焼結体が形成でき
ない。一方添加量が7.5wt%を超える過量となる
と、過量の粒界相が焼結体中に残存したり、熱処理によ
り除去される粒界相の体積が大きいため、焼結体中に空
孔(気孔)が残ったりして収縮率が増大し、変形を生じ
易くなる。
The amount of the sintering aid added is 1 to 7.5% by weight.
Adjusted in the range of. If the addition amount is less than 1% by weight,
Sintering with high thermal conductivity due to insufficient effect of improving sinterability, densification of sintered body to form low-strength sintered body, and solid solution of oxygen in AlN crystal. The body cannot be formed. On the other hand, if the added amount exceeds 7.5 wt%, an excessive amount of the grain boundary phase remains in the sintered body, or the volume of the grain boundary phase removed by the heat treatment is large, so that voids are formed in the sintered body. (Porosity) remains and the contraction rate increases, and deformation easily occurs.

【0024】窒化アルミニウム結晶組織に形成される粒
界相および気孔の大きさは焼結体の伝熱特性および強度
特性に大きく影響するため、本発明に係る焼結体におい
ては粒界相の最大径は1μm以下に設定される一方、気
孔の最大径は1μm以下に設定される。粒界相の最大径
が1μmを超えるように液相の凝集偏析が著しくなる
と、AlN結晶粒子相互の液相による結合作用が低下し
焼結体全体としての強度が低下し易くなると同時に粗大
な粒界相は熱伝導の妨げとなり、焼結体の熱伝導率を低
下させる。
Since the grain boundary phase and the size of the pores formed in the aluminum nitride crystal structure have a great influence on the heat transfer characteristics and strength characteristics of the sintered body, the maximum grain boundary phase of the sintered body according to the present invention. The diameter is set to 1 μm or less, while the maximum diameter of the pores is set to 1 μm or less. If the cohesive segregation of the liquid phase becomes remarkable such that the maximum diameter of the grain boundary phase exceeds 1 μm, the binding action of the AlN crystal grains due to the liquid phase decreases, and the strength of the sintered body as a whole tends to decrease, and at the same time, the coarse particles The boundary phase hinders heat conduction and reduces the heat conductivity of the sintered body.

【0025】一方、気孔についても同様にその最大径が
1μmを超えるように粗大となると伝熱抵抗が高くなり
焼結体の熱伝導率が低下するとともに焼結体の強度低下
が著しくなる。
On the other hand, similarly, when the pores become coarse so that the maximum diameter exceeds 1 μm, the heat transfer resistance is increased, the thermal conductivity of the sintered body is lowered, and the strength of the sintered body is remarkably lowered.

【0026】上記のように窒化アルミニウム結晶組織に
形成される粒界相の最大径を1μm以下に、また気孔の
最大径を1μm以下にするためには、焼結操作完了直後
における焼結体の冷却速度を毎時100℃以下調節する
ことが必要である。上記冷却速度を毎時100℃を超え
るように設定した場合には、焼結体に生成した液相が粒
界部に凝集偏析し易く、粗大な粒界相および気孔が形成
されてしまう。
As described above, in order to set the maximum diameter of the grain boundary phase formed in the aluminum nitride crystal structure to 1 μm or less and the maximum diameter of the pores to 1 μm or less, the sintered body immediately after the completion of the sintering operation is It is necessary to adjust the cooling rate to 100 ° C. or less per hour. When the cooling rate is set to exceed 100 ° C. per hour, the liquid phase generated in the sintered body is likely to aggregate and segregate at the grain boundary portion, and a coarse grain boundary phase and pores are formed.

【0027】上記冷却速度を調節する温度範囲は、所定
の焼結温度(1700〜2000℃)から、前記の焼結
助剤の反応によって生じる液相が凝固するまでの温度
(液相凝固点)までで充分である。前記のような焼結助
剤を使用した場合の液相凝固点は概略1650〜150
0℃程度である。こうして少なくとも焼結温度から液相
凝固点に至るまでの焼結体の冷却速度を毎時100℃以
下に制御することにより、微細な粒界相がAlN結晶粒
周囲に均一に分布し、気孔の形成が少ない焼結体が得ら
れる。
The temperature range for adjusting the cooling rate is from a predetermined sintering temperature (1700 to 2000 ° C.) to a temperature (liquid phase freezing point) until the liquid phase produced by the reaction of the sintering aid solidifies. Is enough. The liquidus freezing point when the above-mentioned sintering aid is used is approximately 1650 to 150.
It is about 0 ° C. In this way, by controlling the cooling rate of the sintered body from at least the sintering temperature to the liquidus solidification point at 100 ° C. or less per hour, the fine grain boundary phase is uniformly distributed around the AlN crystal grains, and pores are formed. A small amount of sintered body can be obtained.

【0028】次に上記窒化アルミニウム焼結体を製造す
る場合の概略工程について説明する。すなわち窒化アル
ミニウムに所定量の焼結助剤、有機バインダ等の必要な
添加剤を加えて原料混合体を調製し、次に得られた原料
混合体を成形して所定形状の成形体を得る。原料混合体
の成形法としては、汎用の金型プレス法、静水圧プレス
法、あるいはドクターブレード法、ロール成形法のよう
なシート成形法などが適用できる。
Next, a schematic process for producing the aluminum nitride sintered body will be described. That is, a predetermined amount of a sintering aid, a necessary additive such as an organic binder, and the like are added to aluminum nitride to prepare a raw material mixture, and then the obtained raw material mixture is molded to obtain a molded product having a predetermined shape. As a forming method of the raw material mixture, a general-purpose die pressing method, a hydrostatic pressing method, or a sheet forming method such as a doctor blade method or a roll forming method can be applied.

【0029】上記成形操作に引き続いて、成形体を非酸
化性雰囲気中、例えば窒素ガス雰囲気中で温度400〜
500℃で1〜2時間加熱して、予め添加していた有機
バインダを充分に除去する。
Subsequent to the above molding operation, the molded body is heated in a non-oxidizing atmosphere, for example, in a nitrogen gas atmosphere at a temperature of 400 to 400 ° C.
By heating at 500 ° C. for 1 to 2 hours, the previously added organic binder is sufficiently removed.

【0030】次に脱脂処理された成形体は、焼成容器内
に収容して焼成炉内において多段に積層され、この配置
状態で複数の成形体は一括して所定温度で焼結される。
焼結操作は、窒素ガスなどの非酸化性雰囲気で成形体を
温度1700〜2000℃に2〜10時間程度加熱して
実施される。焼結雰囲気は、窒素ガス、または窒素ガス
を含む還元性雰囲気で行なう。還元性ガスとしてはH2
ガス、COガスを使用してもよい。なお、焼結は真空
(僅かな還元雰囲気を含む)、減圧、加圧および常圧を
含む雰囲気で行なってもよい。焼結温度が1750℃未
満と低温状態で焼成すると、原料粉末の粒径、含有酸素
量によって異なるが、緻密な焼結体が得にくい一方、2
000℃より高温度で焼成すると、焼成炉内におけるA
lN自体の蒸気圧が高くなり緻密化が困難になるおそれ
があるため、焼結温度は上記範囲に設定される。
Next, the degreased compacts are housed in a firing container and stacked in multiple layers in a firing furnace. In this arrangement, a plurality of compacts are sintered together at a predetermined temperature.
The sintering operation is performed by heating the compact at a temperature of 1700 to 2000 ° C. for about 2 to 10 hours in a non-oxidizing atmosphere such as nitrogen gas. The sintering atmosphere is nitrogen gas or a reducing atmosphere containing nitrogen gas. H 2 as reducing gas
Gas or CO gas may be used. The sintering may be performed in an atmosphere including vacuum (including a slight reducing atmosphere), reduced pressure, increased pressure and normal pressure. When firing at a low sintering temperature of less than 1750 ° C., it is difficult to obtain a dense sintered body, although it depends on the particle size of the raw material powder and the oxygen content.
When firing at a temperature higher than 000 ° C, A in the firing furnace
Since the vapor pressure of 1N itself becomes high and densification may become difficult, the sintering temperature is set within the above range.

【0031】上記焼結操作において緻密な焼結体を得る
ためにも、また焼結体の熱伝導率を向上させるために
も、ある程度の焼結助剤の添加は必要である。しかしな
がら、焼結助剤はAlNや不純物酸素と反応してAl5
3 12,AlYO3 ,Al2 4 9 などの酸化物を
形成して粒界相に析出する。これら粒界相の酸化物は熱
伝導を妨げる作用を有することが確認されている。した
がって過剰量の粒界相が形成されないように焼結助剤の
添加量は厳正に管理する必要がある。
In order to obtain a dense sintered body in the above-mentioned sintering operation and to improve the thermal conductivity of the sintered body, it is necessary to add a sintering aid to some extent. However, the sintering aid reacts with AlN and impurity oxygen to cause Al 5
Oxides such as Y 3 O 12 , AlYO 3 and Al 2 Y 4 O 9 are formed and precipitated in the grain boundary phase. It has been confirmed that these oxides in the grain boundary phase have a function of hindering heat conduction. Therefore, it is necessary to strictly control the addition amount of the sintering aid so that an excessive amount of grain boundary phase is not formed.

【0032】上記製法によって製造された窒化アルミニ
ウム焼結体は、いずれも多結晶体として非常に高い20
0w/m・k(25℃)に近い熱伝導率を有し、また曲
げ強度等の機械的特性にも優れている。
The aluminum nitride sintered bodies manufactured by the above-mentioned manufacturing method are all very high as a polycrystalline body.
It has a thermal conductivity close to 0 w / m · k (25 ° C) and is also excellent in mechanical properties such as bending strength.

【0033】[0033]

【作用】上記構成に係る窒化アルミニウム焼結体および
その製造方法によれば、焼結処理完了直後における焼結
体の冷却速度を毎時100℃以下と小さく設定している
ため、炉冷のような急速冷却を実施した場合と異なり、
焼結時に生成した液相の凝集偏析が少なく、微細な粒界
相が均一に分布した結晶組織が得られる。また結晶組織
に形成される気孔も小形化すると同時に減少させること
ができる。したがって、粗大な粒界相や気孔によって熱
伝達や緻密化が阻害されることが少なく、高強度で高い
熱伝導率を有する窒化アルミニウム焼結体が得られる。
According to the aluminum nitride sintered body and the method of manufacturing the same having the above-described structure, the cooling rate of the sintered body immediately after the completion of the sintering process is set to a low value of 100 ° C. or less per hour, so that it is possible to cool the furnace like a furnace. Unlike the case of performing rapid cooling,
Agglomeration and segregation of the liquid phase generated during sintering are small, and a crystal structure in which fine grain boundary phases are uniformly distributed can be obtained. Further, the pores formed in the crystal structure can be made small and at the same time reduced. Therefore, it is possible to obtain a high-strength and high-thermal-conductivity aluminum nitride sintered body in which heat transfer and densification are not impeded by the coarse grain boundary phase and pores.

【0034】[0034]

【実施例】次に下記の実施例を参照して本発明に係る窒
化アルミニウム焼結体およびその製造方法による効果を
より具体的に説明する。
EXAMPLES Next, the effects of the aluminum nitride sintered body and the method for producing the same according to the present invention will be described more specifically with reference to the following examples.

【0035】実施例1〜3 不純物として酸素を1.0重量%含有し、平均粒径1.
5μmの窒化アルミニウム粉末に対して、焼結助剤とし
てのY2 3 (酸化イットリウム)を5重量%添加し、
エチルアルコール中で30時間湿式混合した後に乾燥し
て原料粉末混合体を調製した。次に乾燥して得た原料粉
末混合体をプレス成形機の成形用金型内に充填して12
00kg/cm2 の加圧力にて圧縮成形して円板状放熱板の
成形体を多数調製し、引き続き各成形体を空気中で温度
375℃で2時間加熱して脱脂処理した。
Examples 1 to 3 contain 1.0% by weight of oxygen as an impurity and have an average particle size of 1.
5% by weight of Y 2 O 3 (yttrium oxide) as a sintering aid was added to 5 μm of aluminum nitride powder,
A raw material powder mixture was prepared by wet-mixing in ethyl alcohol for 30 hours and then drying. Next, the raw material powder mixture obtained by drying is filled in a molding die of a press molding machine and
A large number of disk-shaped radiator plate molded bodies were prepared by compression molding under a pressure of 00 kg / cm 2 , and subsequently each molded body was heated in air at a temperature of 375 ° C. for 2 hours for degreasing treatment.

【0036】次に前記工程で脱脂処理した複数の成形体
を、図3に示すように2個ずつまとめて高純度AlN製
焼成容器3内に収容し、この4個の焼成容器3をN2
スを封入した焼成炉内に2段に積層配置した。そして焼
成炉1内の温度を1815℃まで高めた状態で4時間保
持し、緻密化焼結を実施した後に、焼成炉に付設した加
熱装置への通電量を減少させて焼成炉内温度が1500
℃まで降下するまでの間における焼結体の冷却速度がそ
れぞれ100℃/hr(実施例1)、50℃/hr(実施例
2)、25℃/hr(実施例3)、となるように調整して
焼結体を冷却した。その結果、それぞれ直径100mm、
厚さ3.0mmである実施例1〜3に係るAlNセラミッ
クス焼結体を8個ずつ調製した。
[0036] The next several moldings degreased in the step, together two by two, as shown in FIG. 3 is accommodated in a high-purity AlN made firing vessel 3, the four firing container 3 N 2 Two layers were stacked in a firing furnace filled with gas. Then, the temperature in the firing furnace 1 is maintained at 1815 ° C. for 4 hours, and densification and sintering are performed. Then, the energization amount to the heating device attached to the firing furnace is reduced to 1500 ° C.
The cooling rates of the sintered body until the temperature falls to 100 ° C. are 100 ° C./hr (Example 1), 50 ° C./hr (Example 2), and 25 ° C./hr (Example 3), respectively. The sintered body was adjusted and cooled. As a result, each has a diameter of 100 mm,
Eight AlN ceramics sintered bodies according to Examples 1 to 3 each having a thickness of 3.0 mm were prepared.

【0037】比較例1 一方、緻密化焼結完了直後に、加熱装置電源をOFFに
し、従来の炉冷による冷却速度(約500℃/hr)で焼
結体を冷却した点以外は実施例1と同一条件で焼結処理
して同一寸法を有する比較例1に係るAlN焼結体を調
製した。
Comparative Example 1 On the other hand, immediately after the completion of the densification sintering, the heating apparatus power supply was turned off, and the sintered body was cooled at the conventional cooling rate by the furnace cooling (about 500 ° C./hr). An AlN sintered body according to Comparative Example 1 having the same dimensions was prepared by performing a sintering process under the same conditions as described above.

【0038】比較例2 また、緻密化焼結完了直後における焼結体の冷却速度を
250℃/hrと過大に設定した以外は実施例1と同一条
件で焼結処理して同一寸法を有する比較例2に係るAl
N焼結体を調製した。
Comparative Example 2 Further , a comparison was made by sintering under the same conditions as in Example 1 except that the cooling rate of the sintered body immediately after the completion of the densification sintering was set to an excessively high 250 ° C./hr. Al according to Example 2
An N sintered body was prepared.

【0039】そして得られた実施例1〜3および比較例
1〜2に係る各窒化アルミニウム焼結体の特性を評価す
るため、各焼結体表面部をX線解折法によって分析し、
さらに各焼結体の破面を走査型電子顕微鏡によって観察
することによって、粒界相の最大径、気孔の最大径を測
定するとともに、窒化アルミニウム結晶組織における粒
界相の凝集の有無および気孔の凝集の有無を観察した。
さらに各焼結体の熱伝導率および曲げ強度の平均値を測
定し、下記表1右欄に示す結果を得た。
Then, in order to evaluate the characteristics of the respective aluminum nitride sintered bodies according to the obtained Examples 1 to 3 and Comparative Examples 1 and 2, the surface portions of the respective sintered bodies were analyzed by the X-ray analysis method,
Furthermore, by observing the fracture surface of each sintered body with a scanning electron microscope, the maximum diameter of the grain boundary phase and the maximum diameter of the pores are measured, and the presence or absence of aggregation of the grain boundary phase in the aluminum nitride crystal structure and the pores The presence or absence of aggregation was observed.
Further, the average values of the thermal conductivity and the bending strength of each sintered body were measured, and the results shown in the right column of Table 1 below were obtained.

【0040】[0040]

【表1】 [Table 1]

【0041】表1に示す結果から明らかなように、実施
例1〜3に係る窒化アルミニウム焼結体においては、比
較例1〜2と比較して緻密化焼結完了直後における焼結
体の冷却速度を従来法より低く設定しているため、結晶
組織内において液相の凝集偏析が少なく、また気孔の凝
集もなかった。顕微鏡観察したところ、結晶組織はいず
れも図1に示すように粒界相5aの最大径Db が1μm
未満と小さく、また気孔6aの最大径Dp も1μm未満
と微小であった。そして微細な粒界相が均一に分布した
結晶組織であるため、高密度(高強度)で高熱伝導度を
有する放熱性の高い焼結体が得られた。
As is clear from the results shown in Table 1, in the aluminum nitride sintered bodies according to Examples 1 to 3, cooling of the sintered bodies immediately after the completion of densification sintering was compared with Comparative Examples 1 and 2. Since the speed was set lower than that of the conventional method, there was little aggregation and segregation of the liquid phase within the crystal structure and no aggregation of pores. As a result of microscopic observation, as shown in FIG. 1, the crystal structure shows that the maximum diameter Db of the grain boundary phase 5a is 1 μm.
The maximum diameter Dp of the pores 6a was as small as less than 1 μm. Further, because of the crystal structure in which the fine grain boundary phases are uniformly distributed, a sintered body having a high density (high strength) and high thermal conductivity and high heat dissipation was obtained.

【0042】一方、比較例1および2のように焼結体の
冷却速度を大きく設定し、急激に冷却した場合には、図
2に示すように最大径Db が15μmとなるような粗大
な粒界相5が形成さ、また最大径Dp が4μmと大きな
気孔6が各所に観察され、焼結性が低下して強度および
熱伝導率も低下した。
On the other hand, when the cooling rate of the sintered body is set high as in Comparative Examples 1 and 2 and is rapidly cooled, coarse particles having a maximum diameter Db of 15 μm as shown in FIG. Boundary phase 5 was formed, and large pores 6 having a maximum diameter Dp of 4 μm were observed in various places, and the sinterability was lowered and the strength and thermal conductivity were also lowered.

【0043】[0043]

【発明の効果】以上説明の通り本発明に係る窒化アルミ
ニウム焼結体およびその製造方法によれば、焼結処理完
了直後における焼結体の冷却速度を毎時100℃以下と
小さく設定しているため、炉冷のような急速冷却を実施
した場合と異なり、焼結時に生成した液相の凝集偏析が
少なく、微細な粒界相が均一に分布した結晶組織が得ら
れる。また結晶組織に形成される気孔も小形化すると同
時に減少させることができる。したがって、粗大な粒界
相や気孔によって熱伝達や緻密化が阻害されることが少
なく、高強度で高い熱伝導率を有する窒化アルミニウム
焼結体が得られる。
As described above, according to the aluminum nitride sintered body and the method for manufacturing the same according to the present invention, the cooling rate of the sintered body immediately after the completion of the sintering process is set to a small value of 100 ° C. or less per hour. Unlike the case of performing rapid cooling such as furnace cooling, the liquid phase generated during sintering has less aggregate segregation and a crystal structure in which fine grain boundary phases are uniformly distributed can be obtained. Further, the pores formed in the crystal structure can be made small and at the same time reduced. Therefore, it is possible to obtain a high-strength and high-thermal-conductivity aluminum nitride sintered body in which heat transfer and densification are not impeded by the coarse grain boundary phase and pores.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る窒化アルミニウム焼結体の結晶組
織を模式的に示す図。
FIG. 1 is a diagram schematically showing a crystal structure of an aluminum nitride sintered body according to the present invention.

【図2】従来の窒化アルミニウム焼結体の結晶組織を模
式的に示す図。
FIG. 2 is a diagram schematically showing a crystal structure of a conventional aluminum nitride sintered body.

【図3】焼成容器内に複数の成形体を収容し同時に焼成
する状態を示す焼成炉の断面図。
FIG. 3 is a sectional view of a firing furnace showing a state in which a plurality of molded bodies are housed in a firing container and fired simultaneously.

【符号の説明】[Explanation of symbols]

1 焼成炉 2 炉床 3 焼成容器 4 成形体 5,5a 粒界相 6,6a 空孔(気孔) 7,7a AlN結晶粒 1 Firing Furnace 2 Hearth 3 Firing Container 4 Formed Body 5,5a Grain Boundary Phase 6,6a Void (Pore) 7,7a AlN Crystal Grain

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 窒化アルミニウム結晶組織に希土類元素
およびアルカリ土類金属の少なくとも一方を含む粒界相
が形成され、粒界相の最大径が1μm以下であることを
特徴とする窒化アルミニウム焼結体。
1. An aluminum nitride sintered body characterized in that a grain boundary phase containing at least one of a rare earth element and an alkaline earth metal is formed in an aluminum nitride crystal structure, and the maximum diameter of the grain boundary phase is 1 μm or less. ..
【請求項2】 窒化アルミニウム結晶組織に介在する気
孔の最大径が1μm以下であることを特徴とする請求項
1記載の窒化アルミニウム焼結体。
2. The aluminum nitride sintered body according to claim 1, wherein the pores present in the aluminum nitride crystal structure have a maximum diameter of 1 μm or less.
【請求項3】 粒界相を構成する希土類元素およびアル
カリ土類金属の少なくとも一方の焼結体に対する含有量
が1〜7.5重量%であることを特徴とする請求項1記
載の窒化アルミニウム焼結体。
3. The aluminum nitride according to claim 1, wherein the content of at least one of the rare earth element and the alkaline earth metal forming the grain boundary phase in the sintered body is 1 to 7.5% by weight. Sintered body.
【請求項4】 窒化アルミニウムに粉末に対して、粒界
相形成成分として希土類元素およびアルカリ土類金属元
素の少なくとも一方を添加した原料混合体を成形脱脂
し、得られた成形体を1700〜2000℃の焼結温度
で所定時間加熱焼結した後に、上記焼結温度から、上記
希土類元素および/またはアルカリ土類金属元素により
焼結時に形成された液相が凝固する温度までに至る焼結
体の冷却速度を毎時100℃以下に設定したことを特徴
とする窒化アルミニウム焼結体の製造方法。
4. A raw material mixture obtained by adding at least one of a rare earth element and an alkaline earth metal element to aluminum powder as a grain boundary phase forming component is molded and degreased to obtain a molded body of 1700 to 2000. A sintered body which reaches a temperature from the above sintering temperature to a temperature at which a liquid phase formed at the time of sintering is solidified by the above rare earth element and / or alkaline earth metal element after being heated and sintered at a sintering temperature of ° C for a predetermined time. Is set to 100 ° C. or less per hour, and a method for manufacturing an aluminum nitride sintered body.
JP03524592A 1992-02-21 1992-02-21 Aluminum nitride sintered body Expired - Lifetime JP3472585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03524592A JP3472585B2 (en) 1992-02-21 1992-02-21 Aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03524592A JP3472585B2 (en) 1992-02-21 1992-02-21 Aluminum nitride sintered body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001141167A Division JP2001354479A (en) 2001-05-11 2001-05-11 Aluminum nitride sintered compact and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH05238830A true JPH05238830A (en) 1993-09-17
JP3472585B2 JP3472585B2 (en) 2003-12-02

Family

ID=12436456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03524592A Expired - Lifetime JP3472585B2 (en) 1992-02-21 1992-02-21 Aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JP3472585B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199324A (en) * 1998-01-05 1999-07-27 Fuji Electric Co Ltd Aluminum nitride sintered product and its production
JP2001097780A (en) * 1999-09-30 2001-04-10 Toshiba Corp Sintered aluminum nitride, and board using the same for semiconductor device
JP2001348275A (en) * 2000-06-02 2001-12-18 Toshiba Corp Aluminum nitride substrate and laser diode element using the same
JP2003095736A (en) * 2001-09-19 2003-04-03 Kyocera Corp Dielectric ceramic, production method therefor, and dielectric resonator obtained by using the same
US6689498B2 (en) * 2000-12-04 2004-02-10 Kabushiki Kaisha Toshiba Aluminum nitride substrate and thin film substrate therewith, and manufacturing method thereof
WO2005049525A1 (en) * 2003-11-21 2005-06-02 Kabushiki Kaisha Toshiba High thermally conductive aluminum nitride sintered product
JP2005187235A (en) * 2003-12-24 2005-07-14 Toshiba Corp Highly heat-conductive aluminum nitride sintered compact
WO2005092789A1 (en) * 2004-03-29 2005-10-06 Denki Kagaku Kogyo Kabushiki Kaisha Aluminum nitride powder and aluminum nitride sintered compact
US7319080B2 (en) * 2002-09-20 2008-01-15 Tokuyama Corporation Aluminum nitride sintered compact
JPWO2006135016A1 (en) * 2005-06-15 2009-01-08 株式会社トクヤマ Aluminum nitride sintered body, slurry, green body, and degreased body
WO2019021919A1 (en) * 2017-07-24 2019-01-31 昭和電工株式会社 Aluminum nitride sintered compact and method for producing same
JPWO2018030308A1 (en) * 2016-08-09 2019-06-13 国立大学法人大阪大学 Friction stir welding tool member made of silicon nitride sintered body and friction stir welding apparatus using the same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199324A (en) * 1998-01-05 1999-07-27 Fuji Electric Co Ltd Aluminum nitride sintered product and its production
JP2001097780A (en) * 1999-09-30 2001-04-10 Toshiba Corp Sintered aluminum nitride, and board using the same for semiconductor device
JP2001348275A (en) * 2000-06-02 2001-12-18 Toshiba Corp Aluminum nitride substrate and laser diode element using the same
US6689498B2 (en) * 2000-12-04 2004-02-10 Kabushiki Kaisha Toshiba Aluminum nitride substrate and thin film substrate therewith, and manufacturing method thereof
JP2003095736A (en) * 2001-09-19 2003-04-03 Kyocera Corp Dielectric ceramic, production method therefor, and dielectric resonator obtained by using the same
US7319080B2 (en) * 2002-09-20 2008-01-15 Tokuyama Corporation Aluminum nitride sintered compact
US7479467B2 (en) 2003-11-21 2009-01-20 Kabushiki Kaisha Toshiba High thermally conductive aluminum nitride sintered product
WO2005049525A1 (en) * 2003-11-21 2005-06-02 Kabushiki Kaisha Toshiba High thermally conductive aluminum nitride sintered product
US7662736B2 (en) 2003-11-21 2010-02-16 Kabushiki Kaisha Toshiba High thermally conductive aluminum nitride sintered product
JP2005187235A (en) * 2003-12-24 2005-07-14 Toshiba Corp Highly heat-conductive aluminum nitride sintered compact
JP4564257B2 (en) * 2003-12-24 2010-10-20 株式会社東芝 High thermal conductivity aluminum nitride sintered body
US7553469B2 (en) 2004-03-29 2009-06-30 Denki Kagaku Kogyo Kabushiki Kaisha Aluminum nitride powder and aluminum nitride sintered compact
JPWO2005092789A1 (en) * 2004-03-29 2008-02-14 電気化学工業株式会社 Aluminum nitride powder and aluminum nitride sintered body
US7737065B2 (en) 2004-03-29 2010-06-15 Denki Kagaku Kogyo Kabushiki Kaisha Process for producing aluminum nitride sintered compacts
WO2005092789A1 (en) * 2004-03-29 2005-10-06 Denki Kagaku Kogyo Kabushiki Kaisha Aluminum nitride powder and aluminum nitride sintered compact
JP4939932B2 (en) * 2004-03-29 2012-05-30 電気化学工業株式会社 Aluminum nitride powder and method for producing the same
KR101160109B1 (en) * 2004-03-29 2012-06-26 덴끼 가가꾸 고교 가부시키가이샤 Aluminum nitride powder and aluminum nitride sintered compact
JPWO2006135016A1 (en) * 2005-06-15 2009-01-08 株式会社トクヤマ Aluminum nitride sintered body, slurry, green body, and degreased body
JPWO2018030308A1 (en) * 2016-08-09 2019-06-13 国立大学法人大阪大学 Friction stir welding tool member made of silicon nitride sintered body and friction stir welding apparatus using the same
US11097374B2 (en) 2016-08-09 2021-08-24 Osaka University Friction stir welding tool member made of silicon nitride sintered body, and friction stir welding apparatus using the same
WO2019021919A1 (en) * 2017-07-24 2019-01-31 昭和電工株式会社 Aluminum nitride sintered compact and method for producing same
JPWO2019021919A1 (en) * 2017-07-24 2019-11-14 昭和電工株式会社 Aluminum nitride sintered body and method for producing the same
KR20200010469A (en) * 2017-07-24 2020-01-30 쇼와 덴코 가부시키가이샤 Aluminum nitride sintered body and its manufacturing method
US10787392B2 (en) 2017-07-24 2020-09-29 Showa Denko K.K. Aluminum nitride sintered compact and method for producing same

Also Published As

Publication number Publication date
JP3472585B2 (en) 2003-12-02

Similar Documents

Publication Publication Date Title
JP5444384B2 (en) High thermal conductivity aluminum nitride sintered body
KR101751531B1 (en) Method for producing silicon nitride substrate
JP3100871B2 (en) Aluminum nitride sintered body
JP2000034172A (en) Highly thermoconductive silicon nitride sintered compact and its production
WO2022156637A1 (en) Method for preparing silicon nitride ceramic material
JP3472585B2 (en) Aluminum nitride sintered body
JPH06135771A (en) High heat conductivity silicon nitride sintered compact and its production
JP2001354479A (en) Aluminum nitride sintered compact and its manufacturing method
JPH07172921A (en) Aluminum nitride sintered material and its production
JPH06329474A (en) Sintered aluminum nitride and its production
JP4301617B2 (en) Method for manufacturing aluminum nitride sintered body for DBC circuit board and method for manufacturing DBC circuit board
JP4564257B2 (en) High thermal conductivity aluminum nitride sintered body
JP3141505B2 (en) Aluminum nitride sintered body and method for producing the same
JP3929335B2 (en) Aluminum nitride sintered body and method for producing the same
JP4702978B2 (en) Aluminum nitride sintered body
JP2003201179A (en) Aluminum nitride sintered compact and production method therefor
JPH08157262A (en) Aluminum nitride sintered compact and its production
JP2009179557A (en) Method of producing high thermal conductive silicon nitride sintered body
JP2000302556A (en) Aluminum nitride sintered compact and its production
JPH05229872A (en) Production of ceramic sintered compact
JPH05238832A (en) Production of sintered ceramic and baking vessel to be used therein

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070912

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9