JPH05235582A - Magnetic shielding material - Google Patents

Magnetic shielding material

Info

Publication number
JPH05235582A
JPH05235582A JP4037380A JP3738092A JPH05235582A JP H05235582 A JPH05235582 A JP H05235582A JP 4037380 A JP4037380 A JP 4037380A JP 3738092 A JP3738092 A JP 3738092A JP H05235582 A JPH05235582 A JP H05235582A
Authority
JP
Japan
Prior art keywords
material layer
magnetic
curve
conductive material
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4037380A
Other languages
Japanese (ja)
Inventor
Ichiro Tachibana
一郎 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP4037380A priority Critical patent/JPH05235582A/en
Publication of JPH05235582A publication Critical patent/JPH05235582A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To make it possible to provide a magnetic shielding material which is thin in thickness and low in weight and cost and obtain a larger magnetic shielding effect compared with the case of a magnetic substance material layer alone by laying a conductive material on the magnetic substance material layer or the conductive material layer on the opposite side of the conductive material of the magnetic substance material layer. CONSTITUTION:A magnetic substance material layer 11 is placed into contact with a conductive material layer 12, thereby constituting a magnetic shielding material 13. A 0.35mm thick permalloy sheet is adopted for the magnetic substance layer 11 while a 0.3mm thick phosphor bronze sheet is adopted for the conductive material layer. A conductive material layer 32 is placed into contact with and laid upon the magnetic substance material layer of the magnetic shielding layer the opposite side of the conductive material layer 12, thereby constituting a magnetic shielding material 33. A 0.35mm thick permalloy sheet is the adopted for the magnetic substance sheet 11 while a 0.1mm thick aluminum sheet is adopted for the conductive material layers 12 and 33. The output of a receiver when the magnetic shielding materials 13 and 33 are used, will be lowered by about 18dB than when a single permalloy sheet is adopted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は特に比較的低い周波数
の磁界に対する遮蔽に適する磁気シールド材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic shield material suitable for shielding a magnetic field having a relatively low frequency.

【0002】[0002]

【従来の技術】例えば核磁気共鳴を利用した断層診断装
置においては、比較的強い磁界が発生されているが、そ
の磁界が他へ影響するのを避けるため、磁気シールドを
する必要がある。またX線断層診断装置が他の磁界から
影響を受けないように磁気シールドする必要がある。こ
れらは何れも大きな容積を磁気的に遮蔽することにな
る。その他においても、各種電子機器などにおいても、
磁気シールドを必要とすることがある。
2. Description of the Related Art For example, in a tomographic diagnostic apparatus utilizing nuclear magnetic resonance, a relatively strong magnetic field is generated, but it is necessary to provide a magnetic shield in order to prevent the magnetic field from affecting other parts. Further, it is necessary to magnetically shield the X-ray tomography diagnostic apparatus so as not to be affected by other magnetic fields. All of these magnetically shield a large volume. In addition, in various electronic devices,
May require magnetic shield.

【0003】何れの場合においても、従来において磁気
シールドのためには、通常はパーマロイのような高透磁
率の磁性材料板が用いられていた。磁気シールドの効果
を高めるためには、磁性材料板を何枚も重ねたり、磁性
材料板の厚さを厚くしている。つまり遮蔽効果を2倍に
するには磁性材料板を2枚にするか、2倍の厚さにする
必要があった。
In any case, conventionally, a magnetic material plate having a high magnetic permeability such as permalloy is usually used for the magnetic shield. In order to enhance the effect of the magnetic shield, a number of magnetic material plates are stacked or the thickness of the magnetic material plates is increased. In other words, in order to double the shielding effect, it was necessary to use two magnetic material plates or double the thickness.

【0004】[0004]

【発明が解決しようとする課題】遮蔽しようとする磁界
の周波数が低くなる程、磁気シールド材として高価な磁
性材を必要とし、例えば9kHz 程度の低周波をも磁気遮
蔽するには通常はパーマロイ板が用いられているが、パ
ーマロイ板は高価であり、しかも遮蔽効果を大きくする
ためには大量のパーマロイ板を使用する必要があり、著
しく高価になり、しかも、厚さが厚く、かつ重量も可成
り大となる問題があった。
The lower the frequency of the magnetic field to be shielded, the more expensive a magnetic material is required as a magnetic shield material. For example, a permalloy plate is usually used to magnetically shield a low frequency of about 9 kHz. However, the permalloy plate is expensive, and it is necessary to use a large amount of permalloy plate in order to increase the shielding effect, which is extremely expensive, and the thickness and weight are also large. There was a huge problem.

【0005】[0005]

【課題を解決するための手段】請求項1の発明によれば
磁性材料層と、これに対して重ねられた導電性材料層と
から構成される。請求項2の発明によれば請求項1の発
明の磁性材料層の導電性材料層と反対側にも導電性材料
層が重ねられている。
According to the invention of claim 1, it is composed of a magnetic material layer and a conductive material layer laminated on the magnetic material layer. According to the invention of claim 2, a conductive material layer is laminated on the side opposite to the conductive material layer of the magnetic material layer of the invention of claim 1.

【0006】[0006]

【実施例】実施例1 図1Aにこの発明の実施例を示す。磁性材料層11と導
電性材料層12とが対接されて磁気シールド材13が構
成される。磁性材料層11としてこの例では厚さが0.
35mmのパーマロイ板が用いられ、導電性材料層12と
してこの例では厚さが0.3mmのリン青銅板が用いられ
る。
Embodiment 1 FIG. 1A shows an embodiment of the present invention. The magnetic material layer 11 and the conductive material layer 12 are in contact with each other to form a magnetic shield material 13. In this example, the magnetic material layer 11 has a thickness of 0.
A 35 mm permalloy plate is used, and as the conductive material layer 12, a phosphor bronze plate having a thickness of 0.3 mm is used in this example.

【0007】図1Aに示すように、この磁気シールド材
13の一方の側にループアンテナ14をそのループ面を
近接対向させて配し、ループアンテナ14に信号発生器
15から1mWの正弦波信号を供給して、ループアンテ
ナ14から交流磁界を磁気シールド材13の1面、図で
は磁性材料層11側に印加した。磁気シールド材13の
他面側ループアンテナ16をそのループ面を近接対向さ
せて配しループアンテナ16に受信機(実際にはスペク
トラムアナライザ)17を接続して受信出力を測定し
た。磁気シールド材13を介在させることなく、ループ
アンテナ14,16を対向させた時の受信機17の出力
電力P1と磁気シールド材13を介在させた時の受信機
17の出力電力P2との比P1/P2が磁気シールド材
13のシールド効果である。
As shown in FIG. 1A, a loop antenna 14 is arranged on one side of this magnetic shield material 13 with its loop surfaces closely opposed to each other, and a 1 mW sine wave signal is output from the signal generator 15 to the loop antenna 14. The magnetic field was supplied and an alternating magnetic field was applied from the loop antenna 14 to one surface of the magnetic shield material 13, that is, the magnetic material layer 11 side in the figure. The loop antenna 16 on the other surface side of the magnetic shield material 13 was arranged with its loop surface closely opposed to each other, and a receiver (actually a spectrum analyzer) 17 was connected to the loop antenna 16 to measure the reception output. The ratio P1 of the output power P1 of the receiver 17 when the loop antennas 14 and 16 are opposed to each other without the magnetic shield material 13 interposed and the output power P2 of the receiver 17 when the magnetic shield material 13 is interposed. / P2 is the shield effect of the magnetic shield material 13.

【0008】図2の曲線21に前記パーマロイ板及びリ
ン青銅板よりなる磁気シールド材13を介在させた時の
出力P2を示す。図2で横軸は周波数軸であり、つまり
信号発生器15よりの発生正弦波信号の周波数を50kH
z 〜150kHz の範囲で変化させた。なお磁気シールド
材13を介在させない時の受信機出力P1は曲線22と
なり、磁気シールド材13の代りに厚さ0.3mmのリン
青銅板を介在させた時の受信機出力は曲線23となり、
厚さ0.35mmのパーマロイ板1枚を磁気シールド材1
3の代りに介在させた時の受信機出力は曲線24とな
り、そのパーマロイ板を2枚重ねたものを磁気シールド
材13の代りに介在させた時の受信機出力は曲線25と
なった。曲線26はこの受信機17の雑音であり、つま
りこの受信機17は1mWに対し、約−80dBが測定限
界であり、これより微弱な受信信号の測定をすることが
できないレベルを示しこの受信機ではこれより磁気シー
ルドを用いても測定不能である。
A curve 21 in FIG. 2 shows an output P2 when the magnetic shield material 13 made of the permalloy plate and the phosphor bronze plate is interposed. In FIG. 2, the horizontal axis is the frequency axis, that is, the frequency of the sine wave signal generated by the signal generator 15 is 50 kHz.
It was changed in the range of z to 150 kHz. The receiver output P1 without the magnetic shield material 13 is a curve 22, and the receiver output with a 0.3 mm thick phosphor bronze plate in place of the magnetic shield material 13 is a curve 23.
1 permalloy plate with a thickness of 0.35 mm is used as a magnetic shield material 1
The output of the receiver when intervening in place of No. 3 is curve 24, and the output of the receiver when interposing two of the permalloy plates in place of the magnetic shield material 13 is curve 25. The curve 26 represents the noise of the receiver 17, that is, the receiver 17 has a measurement limit of about -80 dB for 1 mW, which indicates a level at which a weaker received signal cannot be measured. With this, it is impossible to measure even if a magnetic shield is used.

【0009】従来はパーマロイ板が磁気シールド材とし
て用いられ、曲線24に対し、曲線25は受信機出力が
約3dB(約1/2に)低下しており、パーマロイ板の枚
数に比例して磁気シールド効果が大きくなることが示さ
れている。リン青銅板は非磁性材であり、それ自体の磁
気的遮蔽効果はほぼゼロ(特に低い周波数で)である。
従ってこの考えからすると、この例の磁気シールド材1
3を用いた場合の受信機出力は曲線24とほぼ一致しな
ければならないが、実際には曲線21となり、パーマロ
イ板1枚よりも約18dBも出力が低下し、パーマロイ板
を64枚重ねた場合と同様の磁気遮蔽効果があることが
わかる。曲線24,25に小さい変動があり、曲線21
には可成り大きい変動が生じているのは、受信レベルが
低くて測定できなくなり、受信機17の利得を大きくす
るため雑音が現われることに基づく。 実施例2 磁気シールド材13の代りに、厚さが0.1mmの銅板を
使用した場合の受信機17の出力は図3の曲線27とな
った。この厚さ0.1mmの銅板を導電性材料層12と
し、磁性材料層11として厚さ0.35mmのパーマロイ
板を用いた磁気シールド材13を介在させた場合の受信
機17の出力は曲線28となり、1枚のパーマロイ板の
場合(曲線24)よりも、出力が約13dB低下してお
り、この場合も、単なるパーマロイ板よりも著しく高い
シールド効果が得られることが理解される。 実施例3 磁気シールド材13の代りに厚さが0.8mmのアルミニ
ウム板を介在させた場合の受信機17の出力は図4の曲
線29となった。このアルミニウム板を導電性材料層1
2とし、0.35mmのパーマロイ板を磁性材料層11と
した磁気シールド材13を介在させた場合、受信機17
の出力は曲線31となり、1枚のパーマロイ板(曲線2
4)よりも約22dB低下しており、雑音レベル(曲線2
6)に可成り接近し、著しく大きなシールド効果が得ら
れている。
Conventionally, a permalloy plate has been used as a magnetic shield material, and the curve 25 has a receiver output reduced by about 3 dB (to about 1/2) compared to the curve 24, and the magnetic field is proportional to the number of permalloy plates. It has been shown that the shield effect is increased. The phosphor bronze plate is a non-magnetic material, and its magnetic shielding effect is almost zero (especially at low frequencies).
Therefore, based on this idea, the magnetic shield material 1 of this example
The output of the receiver when 3 is used should be almost the same as the curve 24, but actually it becomes the curve 21, which is about 18 dB lower than that of one permalloy plate, and when 64 permalloy plates are stacked. It can be seen that there is a magnetic shielding effect similar to. There is a small variation in curves 24 and 25,
The reason why there is a considerably large fluctuation in is that the reception level is too low to measure, and noise appears because the gain of the receiver 17 is increased. Example 2 In place of the magnetic shield material 13, a copper plate having a thickness of 0.1 mm is used, and the output of the receiver 17 is a curve 27 in FIG. When the copper plate having a thickness of 0.1 mm is used as the conductive material layer 12 and the magnetic shield material 13 using a permalloy plate having a thickness of 0.35 mm is interposed as the magnetic material layer 11, the output of the receiver 17 is a curve 28. Therefore, the output is reduced by about 13 dB as compared with the case of one permalloy plate (curve 24), and it is understood that in this case as well, a significantly higher shielding effect can be obtained than with a simple permalloy plate. Example 3 The output of the receiver 17 when the aluminum plate having a thickness of 0.8 mm is inserted in place of the magnetic shield material 13 is a curve 29 in FIG. This aluminum plate is used as the conductive material layer 1
2 and a magnetic shield material 13 with a 0.35 mm permalloy plate as a magnetic material layer 11 is interposed, a receiver 17
Output is curve 31 and one permalloy plate (curve 2
4), which is about 22 dB lower than the noise level (curve 2)
It is quite close to 6), and a significantly large shielding effect is obtained.

【0010】上述の各実施例において、送信側と受信側
とを入れかえてもシールド効果は同一であった。また磁
性材料層11と導電性材料層12との間に1〜2mmの間
隔を設けても、受信機17の出力は変化しなかった。
0.1mmの銅板を2枚重ねたものを導電性材料層12と
し、1枚の0.35mmのパーマロイ板を磁性材料層11
とした場合、受信機17の出力は実施例2の曲線28と
ほぼ同一であった。0.35mmのパーマロイ板2枚を重
ねたものを磁性材料層11とし、0.3mmのリン青銅板
1枚を導電性材料層12としたものは、受信機17の出
力は実施例1の曲線21とほぼ同一であった。これらよ
り磁性材料層11の厚さはパーマロイの場合は0.35
mm以上にしてもシールド効果はあまり向上しない、また
導電性材料層12の厚さは銅の場合0.1mm以上にして
もシールド効果は向上しないことが理解される。 実施例4 次に請求項2の発明の実施例を説明する。図1Bに示す
様に図1Aに示した磁気シールド材の磁性材料層11の
導電性材料層12と反対側の面と接して導電性材料層3
2が重ねられて、磁気シールド材33が構成される。磁
性材料層11としてこの例では、厚さが0.35mmのパ
ーマロイ板が用いられ、導電性材料層12,32として
夫々厚さが0.1mmのアルミニウム板が用いられてい
る。この磁気シールド材33の磁気シールド効果を図5
の曲線34に示す。この曲線は図1Aについて説明した
と同様な測定法で測定した。ただし信号周波数は30kH
z 〜50kHz 変化させ、受信機17として1mWに対し
て−100dBが測定限界のものを使用した。又図5で基
準レベル即ち0dBはループアンテナ14,16間になに
も介在させない場合の受信機出力(図2の曲線22)で
ある。なお、以下の実施例ではすべての測定法で測定し
た場合の受信機出力を図6〜図10に示す。図5の曲線
34から0.35mmのパーマロイ板1枚に対して37dB
程度も大きく、受信機出力が低下し、著しく大きなシー
ルド効果が得られることが理解される。
In each of the above-mentioned embodiments, the shielding effect is the same even if the transmitting side and the receiving side are replaced. Further, even if a gap of 1 to 2 mm was provided between the magnetic material layer 11 and the conductive material layer 12, the output of the receiver 17 did not change.
A stack of two 0.1 mm copper plates was used as the conductive material layer 12, and one 0.35 mm permalloy plate was used as the magnetic material layer 11.
Then, the output of the receiver 17 was almost the same as the curve 28 of the second embodiment. In the case where two 0.35 mm permalloy plates are stacked as the magnetic material layer 11 and one 0.3 mm phosphor bronze plate is used as the conductive material layer 12, the output of the receiver 17 is the curve of the first embodiment. It was almost the same as 21. From these, the thickness of the magnetic material layer 11 is 0.35 in the case of permalloy.
It is understood that the shielding effect is not improved so much when the thickness is more than 0.1 mm, and the shielding effect is not improved when the thickness of the conductive material layer 12 is copper is more than 0.1 mm. Embodiment 4 Next, an embodiment of the invention of claim 2 will be described. As shown in FIG. 1B, the conductive material layer 3 is in contact with the surface of the magnetic material layer 11 of the magnetic shield material shown in FIG. 1A opposite to the conductive material layer 12.
The magnetic shield material 33 is formed by stacking the two. In this example, a permalloy plate having a thickness of 0.35 mm is used as the magnetic material layer 11, and an aluminum plate having a thickness of 0.1 mm is used as each of the conductive material layers 12 and 32. The magnetic shield effect of this magnetic shield material 33 is shown in FIG.
Curve 34. This curve was measured by the same measurement method as described with reference to FIG. 1A. However, the signal frequency is 30 kHz
The receiver 17 has a measurement limit of -100 dB with respect to 1 mW. Further, in FIG. 5, the reference level, that is, 0 dB is the receiver output (curve 22 in FIG. 2) when nothing is interposed between the loop antennas 14 and 16. In the following examples, the receiver output when measured by all the measuring methods is shown in FIGS. 37 dB for one 0.35 mm permalloy plate from curve 34 in FIG.
It is understood that the degree is large, the receiver output is reduced, and a significantly large shielding effect is obtained.

【0011】図5の曲線35は前記アルミニウム板12
−パーマロイ板11−アルミニウム板32の磁気シール
ド材33の一方のアルミニウム板を除去した場合の受信
機出力を示し、曲線24に対して大きく出力が低下して
いることがわかる。又図4の曲線31と曲線35とを比
較することにより、アルミニウム板の厚さの影響はあま
りないことが理解される。なお曲線34が図2、図3、
図4の曲線21,28,31と比較して変動が少ないの
は測定した受信機のダイナミックレンジが前述したよう
に図5の方が広いためである。 実施例5 磁気シールド材33の磁性材料層11として厚さが0.
35mmのパーマロイ板を使用し、導電性材料層12,3
2として厚さが0.05mmの銅板をそれぞれ使用した。
その場合の受信機出力は図6の曲線36となった。この
場合も0.35mmのパーマロイ板1枚を使用した場合と
比較して著しく大きなシールド効果が得られることが理
解される。この銅板−パーマロイ板−銅板よりなる磁気
シールド材33の一方の銅板を除去した場合の受信機出
力は曲線37となった。これより曲線37は曲線34よ
り大きく出力が減少し曲線36は更に大きく出力が減少
することが理解される。又、図3の曲線28と曲線37
とを比較すると銅板の厚さはシールド効果にさほど影響
していないことがわかる。 実施例6 図1Cに示すように、図1Aに示した磁気シールド材の
導電性材料層12の磁性材料層11と反対の面に磁性材
料層38が重ねられて磁気シールド材39が構成され
る。この場合は磁性材料層11及び38として、それぞ
れ厚さが0.35mmのパーマロイ板を使用し、導電性材
料層12として厚さが0.1mmのアルミニウム板を使用
した。この場合のシールド効果を実施例4について説明
した場合と同様に測定した。その結果、受信機出力は図
7の曲線41となった。これより0.35mmのパーマロ
イ板を2枚だけ用いたときの受信機出力(曲線24)よ
りも曲線41は約3dB低下していることがわかる。つま
り2枚のパーマロイ板の間に薄いアルミニウム板を介在
させることによって0.35mmのパーマロイ板を4枚使
用したと同等の効果が得られることが理解される。 実施例7 図1Cに於て、磁性材料層11及び38として、0.3
5mmのパーマロイ板を使用し導電性材料層として0.0
5mmの銅板を使用した。この場合の受信機出力は図8の
曲線42となった。この場合も曲線25に対して約3dB
磁気シールド効果が向上した。 実施例8 図1Aの構成に於て、磁性材料層として厚さが0.8mm
のステンレス板を用い、導電性材料層12として厚さが
0.05mmの銅板を用いた。そのシールド効果を実施例
4について説明した測定法で測定した。その結果受信機
出力は、図9の曲線43となった。この磁気シールド材
の変りに、厚さが0.8mmのステンレス板を用いてその
シールド効果を測定したところ、図9の曲線44に示す
ようになった。又厚さが0.8mmのステンレス板を2枚
使った場合の磁気シールド効果は図9の曲線45とな
り、ステンレス板1枚より約3dB向上している。これに
対し、曲線43はステンレス板1枚より約19dB出力が
低下し、このステンレス板と銅板とよりなる磁気シール
ド材13も著しく効果があることが理解される。又、曲
線43と図6の曲線37と比較すると、磁性材料層11
としてステンレス板よりパーマロイ板を使用した方が約
5dB程度シールド効果が良いことが理解されるが、曲線
24と曲線44との比較から、磁性材料層に対して、導
電材料層を重ねることにもとずくシールド効果の向上は
ステンレス板でもパーマロイ板でもほぼ同一であること
が理解される。
Curve 35 in FIG. 5 is the aluminum plate 12
-Permalloy plate 11-The receiver output when one aluminum plate of the magnetic shield material 33 of the aluminum plate 32 is removed is shown, and it can be seen that the output is greatly reduced with respect to the curve 24. Further, by comparing the curves 31 and 35 in FIG. 4, it is understood that the thickness of the aluminum plate has little influence. The curve 34 is shown in FIG.
The reason why the fluctuation is smaller than the curves 21, 28 and 31 in FIG. 4 is that the measured dynamic range of the receiver is wider in FIG. 5 as described above. Example 5 The magnetic material layer 11 of the magnetic shield material 33 has a thickness of 0.
Conductive material layers 12, 3 using 35 mm permalloy plate
As the No. 2, a copper plate having a thickness of 0.05 mm was used.
The receiver output in that case is the curve 36 in FIG. It is understood that in this case also, a remarkably large shield effect can be obtained as compared with the case where one 0.35 mm permalloy plate is used. The output of the receiver becomes a curve 37 when one of the copper plates of the magnetic shield material 33 composed of the copper plate-permalloy plate-copper plate is removed. From this, it is understood that the output of the curve 37 is larger than that of the curve 34 and the output of the curve 36 is much smaller than that of the curve 34. Also, curves 28 and 37 in FIG.
Comparing with, it can be seen that the thickness of the copper plate does not significantly affect the shielding effect. Example 6 As shown in FIG. 1C, a magnetic material layer 38 is laminated on the surface of the conductive material layer 12 of the magnetic shield material shown in FIG. 1A opposite to the magnetic material layer 11 to form a magnetic shield material 39. .. In this case, as the magnetic material layers 11 and 38, a permalloy plate having a thickness of 0.35 mm was used, and as the conductive material layer 12, an aluminum plate having a thickness of 0.1 mm was used. The shielding effect in this case was measured in the same manner as described in Example 4. As a result, the receiver output became the curve 41 of FIG. From this, it can be seen that the curve 41 is about 3 dB lower than the receiver output (curve 24) when only two 0.35 mm permalloy plates are used. That is, it is understood that the same effect as when four 0.35 mm permalloy plates are used can be obtained by interposing a thin aluminum plate between the two permalloy plates. Example 7 In FIG. 1C, as the magnetic material layers 11 and 38, 0.3
Using a 5 mm permalloy plate as a conductive material layer 0.0
A 5 mm copper plate was used. The receiver output in this case is the curve 42 in FIG. In this case as well, it is about 3 dB for curve 25
The magnetic shield effect is improved. Example 8 In the configuration of FIG. 1A, the thickness of the magnetic material layer is 0.8 mm.
Of stainless steel, and a copper plate having a thickness of 0.05 mm was used as the conductive material layer 12. The shield effect was measured by the measuring method described in Example 4. As a result, the receiver output is the curve 43 of FIG. Instead of this magnetic shield material, a stainless steel plate having a thickness of 0.8 mm was used to measure the shield effect, and the result was as shown by the curve 44 in FIG. The magnetic shield effect obtained when two stainless steel plates having a thickness of 0.8 mm is shown by the curve 45 in FIG. 9, which is about 3 dB higher than that of one stainless steel plate. On the other hand, the curve 43 has an output lower than that of one stainless plate by about 19 dB, and it is understood that the magnetic shield material 13 made of the stainless plate and the copper plate also has a remarkable effect. Further, comparing the curve 43 with the curve 37 of FIG. 6, the magnetic material layer 11
It is understood that a shield effect of about 5 dB is better when a permalloy plate is used than as a stainless steel plate. However, comparing the curves 24 and 44, it is possible to stack a conductive material layer on a magnetic material layer. It is understood that the improvement of the shield effect is almost the same for both the stainless plate and the permalloy plate.

【0012】図1Bに示した磁気シールド材料層に於
て、磁性材料層11として厚さが0.8mmのステンレス
板を用い、導電性材料層12及び32として厚さが0.
05mmの銅板を用いた。この場合の受信機出力は図9の
曲線46となった。これより曲線43に対してシールド
効果が更に大きく向上していることが理解される。又曲
線43と曲線46との差、図6の曲線37と曲線36と
の差から図1Aに示した磁気シールド材13に対して図
1Bに示した磁気シールド材33は磁性材料層11の材
料にあまりかかわりなく、大きなシールド効果が得られ
ることが理解される。
In the magnetic shield material layer shown in FIG. 1B, a stainless steel plate having a thickness of 0.8 mm is used as the magnetic material layer 11, and the conductive material layers 12 and 32 have a thickness of 0.
A 05 mm copper plate was used. The receiver output in this case is the curve 46 in FIG. From this, it is understood that the shield effect is further improved with respect to the curve 43. Further, from the difference between the curve 43 and the curve 46, and the difference between the curve 37 and the curve 36 in FIG. 6, the magnetic shield material 33 shown in FIG. 1B is the material of the magnetic material layer 11 in contrast to the magnetic shield material 13 shown in FIG. 1A. It is understood that a large shielding effect can be obtained regardless of the above.

【0013】図1Cに示した磁気シールド材39に於
て、磁性材料層11及び38として厚さが0.8mmのス
テンレス板をそれぞれ用い、導電性材料層12として厚
さが0.05mmの銅板を用いた。この場合の受信機出力
は図9の曲線47となった。これより曲線45に対して
約3dBシールド効果が向上していることがわかった。 実施例9 図1Dに示すように図1Cに示した磁気シールド材39
の磁性材料層38の外側に導電性材料層48が重ねられ
て磁気シールド材49とされる。その磁性材料層11及
び38としてそれぞれ0.35mmのパーマロイ板を用
い、導電性材料層12,48としてそれぞれ0.05mm
の銅板を用いた。この場合の受信機出力は図10の曲線
51となり、図6の曲線37よりも5dB程度シールド効
果が向上している。 実施例10 図1Eに示す様に図1Dに示した磁気シールド材49の
磁性材料層11の外側に導電性材料層32を重ねて磁気
シールド材52を構成する。この磁気シールド材52に
於て導電性材料層12,32,48として0.05mmの
銅板を用い、磁性材料層11,38として0.35mmの
パーマロイ板を用いた。この時の受信機出力は図10の
曲線53となった。これより曲線51に対してかなりシ
ールド効果が向上しており、図6の曲線36とほぼ同等
であることがわかる。これら曲線36,53は測定限界
につまり雑音レベルに近いため両者の区別がほぼ出来な
いものと思われる。更に曲線36及び53から磁気シー
ルド材として両外側の面は導電性材料層であると特に大
きなシールド効果が得られることが理解される。 実施例11 図1Bの構成において、磁性材料層11として0.35
mmのパーマロイ板を用い、そのパーマロイ板の両面に銅
メッキを厚さが15μm程度になるように施して、導電
性材料層12,32とした。その場合の受信機出力は図
11中の曲線54となった。この場合は測定周波数を9
kHz 〜150kHz 変化させた。その他は図5〜図10と
同一である。この実施例においても、極めて大きな磁気
シールドが得られることが理解される。9kHz 近くで磁
気シールドが低下しているように見えるが、これは測定
系の雑音が現れ、雑音と区別がつかなくなっている。 実施例12 図1Aの構成において磁性材料層11として0.35mm
のパーマロイ板を用い、導電性材料層12として15μ
mのアルミニウム箔を用いた。受信機出力は図12の曲
線55となり、大きな磁気シールド効果が得られてい
る。
In the magnetic shield material 39 shown in FIG. 1C, 0.8 mm thick stainless steel plates are used as the magnetic material layers 11 and 38, and a 0.05 mm thick copper plate is used as the conductive material layer 12. Was used. The receiver output in this case is curve 47 in FIG. From this, it was found that the shield effect was improved by about 3 dB with respect to the curve 45. Example 9 As shown in FIG. 1D, the magnetic shield material 39 shown in FIG. 1C is used.
A conductive material layer 48 is laminated on the outer side of the magnetic material layer 38 to form a magnetic shield material 49. A 0.35 mm permalloy plate is used for each of the magnetic material layers 11 and 38, and 0.05 mm for each of the conductive material layers 12 and 48.
The copper plate of was used. The receiver output in this case becomes the curve 51 in FIG. 10, and the shield effect is improved by about 5 dB as compared with the curve 37 in FIG. Example 10 As shown in FIG. 1E, a conductive material layer 32 is laminated on the outside of the magnetic material layer 11 of the magnetic shield material 49 shown in FIG. 1D to form a magnetic shield material 52. In this magnetic shield material 52, 0.05 mm copper plates were used as the conductive material layers 12, 32 and 48, and 0.35 mm permalloy plates were used as the magnetic material layers 11 and 38. The receiver output at this time is the curve 53 in FIG. From this, it can be seen that the shield effect is considerably improved with respect to the curve 51, and is substantially equivalent to the curve 36 of FIG. Since these curves 36 and 53 are close to the measurement limit, that is, close to the noise level, it is considered that they cannot be distinguished from each other. Further, it can be understood from the curves 36 and 53 that a particularly large shield effect can be obtained when the both outer surfaces of the magnetic shield material are conductive material layers. Example 11 In the configuration of FIG. 1B, 0.35 is used as the magnetic material layer 11.
A permalloy plate having a thickness of mm was used, and copper plating was applied to both surfaces of the permalloy plate so that the thickness was about 15 μm to form the conductive material layers 12 and 32. The receiver output in that case is the curve 54 in FIG. In this case, the measurement frequency is 9
The frequency was changed from kHz to 150 kHz. Others are the same as those in FIGS. It is understood that in this embodiment too, a very large magnetic shield can be obtained. It seems that the magnetic shield is lowered near 9 kHz, but this is indistinguishable from noise due to the noise of the measurement system. Example 12 0.35 mm as the magnetic material layer 11 in the configuration of FIG. 1A
15μ as the conductive material layer 12 using the permalloy plate of
m aluminum foil was used. The output of the receiver is the curve 55 in FIG. 12, and a large magnetic shield effect is obtained.

【0014】図1Bの構成において、磁性材料層11と
して0.35mmのパーマロイ板を用い、導電性材料層1
2,32としてそれぞれ15μmのアルミニウム箔を用
いた。受信機出力は図12の曲線56となった。曲線5
5より更に大きなシールド効果が得られる。なお曲線5
7は測定系の雑音であり、測定限界を示している。上述
の説明から明らかな様に磁性材料層と導電性材料層との
重ね合せを更に多くしてもよいこと。又導電性材料層と
しては、かなり薄いもの、例えば金属メッキ層でも良
い。導電性材料としては先に述べた金属板以外の良導電
性金属材料層や導電性樹脂材層、導電性接着材層等でも
良い。同様に磁性材料層としても先に述べたもの以外の
ものを使用してもよい。
In the structure of FIG. 1B, a 0.35 mm permalloy plate is used as the magnetic material layer 11, and the conductive material layer 1 is used.
Aluminum foils of 15 μm were used as 2 and 32, respectively. The receiver output was curve 56 in FIG. Curve 5
A shield effect greater than 5 can be obtained. Curve 5
Reference numeral 7 is the noise of the measurement system, which indicates the measurement limit. As is apparent from the above description, the number of superposed magnetic material layers and conductive material layers may be increased. The conductive material layer may be a fairly thin layer, for example, a metal plating layer. The conductive material may be a good conductive metal material layer other than the above-mentioned metal plate, a conductive resin material layer, a conductive adhesive material layer, or the like. Similarly, a magnetic material layer other than those described above may be used.

【0015】[0015]

【発明の効果】以上述べた様にこの発明によれば、磁性
材料層と金属材料層を重ね合せることによって、磁性材
料層のみで得られる磁気シールド効果よりも著しく大き
な磁気シールド効果が得られる。特に両外側を導電性材
料層とすると特に大きな磁気シールド効果が得られる。
As described above, according to the present invention, by superposing the magnetic material layer and the metal material layer, a magnetic shield effect significantly larger than the magnetic shield effect obtained by only the magnetic material layer is obtained. In particular, when the conductive material layers are formed on both outer sides, a particularly large magnetic shield effect can be obtained.

【0016】従ってこの発明による磁気シールド材料を
用いれば、従来よりもかなり薄く、軽量にかつ安価に磁
気シールドをすることが出来、大きな容積を磁気シール
ドする場合に頗る便利である。又この発明の磁気シール
ド材によればかなり低周波、例えば9kHz の磁界に対し
ても有効にシールドすることができることが確認され
た。
Therefore, by using the magnetic shield material according to the present invention, it is possible to make the magnetic shield much thinner, lighter and cheaper than the conventional one, which is very convenient when magnetically shielding a large volume. It was also confirmed that the magnetic shield material of the present invention can effectively shield a magnetic field at a considerably low frequency, for example, 9 kHz.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による磁気シールド材の各種実施例を
示す断面図。
FIG. 1 is a sectional view showing various examples of a magnetic shield material according to the present invention.

【図2】実施例1の効果を示す図。FIG. 2 is a diagram showing an effect of the first embodiment.

【図3】実施例2の効果を示す図。FIG. 3 is a diagram showing the effect of Example 2;

【図4】実施例3の効果を示す図。FIG. 4 is a diagram showing an effect of Example 3;

【図5】実施例4の効果を示す図。FIG. 5 is a diagram showing an effect of Example 4;

【図6】実施例5の効果を示す図。FIG. 6 is a diagram showing the effect of Example 5;

【図7】実施例6の効果を示す図。FIG. 7 is a diagram showing the effect of Example 6;

【図8】実施例7の効果を示す図。FIG. 8 is a diagram showing an effect of Example 7.

【図9】実施例8の効果を示す図。FIG. 9 is a diagram showing the effect of Example 8;

【図10】実施例9及び実施例10の効果を示す図。FIG. 10 is a diagram showing effects of Example 9 and Example 10.

【図11】実施例11の効果を示す図。FIG. 11 is a diagram showing the effect of Example 11;

【図12】実施例12の効果を示す図。FIG. 12 is a diagram showing the effect of Example 12;

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 磁性材料層と、これに対して重ねられた
導電性材料層とよりなる磁気シールド材。
1. A magnetic shield material comprising a magnetic material layer and a conductive material layer laminated on the magnetic material layer.
【請求項2】 上記磁性材料層の上記導電性材料層と反
対側にも導電性材料層が重ねられていることを特徴とす
る請求項1記載の磁気シールド材。
2. The magnetic shield material according to claim 1, wherein a conductive material layer is also laminated on a side of the magnetic material layer opposite to the conductive material layer.
JP4037380A 1992-02-25 1992-02-25 Magnetic shielding material Pending JPH05235582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4037380A JPH05235582A (en) 1992-02-25 1992-02-25 Magnetic shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4037380A JPH05235582A (en) 1992-02-25 1992-02-25 Magnetic shielding material

Publications (1)

Publication Number Publication Date
JPH05235582A true JPH05235582A (en) 1993-09-10

Family

ID=12495921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4037380A Pending JPH05235582A (en) 1992-02-25 1992-02-25 Magnetic shielding material

Country Status (1)

Country Link
JP (1) JPH05235582A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167787A (en) * 1994-12-13 1996-06-25 Mitsubishi Materials Corp Electromagnetic shielding material
EP0831685A2 (en) * 1996-09-19 1998-03-25 Daido Tokushuko Kabushiki Kaisha Magnetic shield sheet and method for manufacturing thereof, and cable using the sheet
JP2008288328A (en) * 2007-05-16 2008-11-27 Yokogawa Electric Corp Magnetic shield device
US10269726B2 (en) 2016-07-26 2019-04-23 Tdk Corporation Electronic circuit package

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167787A (en) * 1994-12-13 1996-06-25 Mitsubishi Materials Corp Electromagnetic shielding material
EP0831685A2 (en) * 1996-09-19 1998-03-25 Daido Tokushuko Kabushiki Kaisha Magnetic shield sheet and method for manufacturing thereof, and cable using the sheet
EP0831685A3 (en) * 1996-09-19 1998-05-13 Daido Tokushuko Kabushiki Kaisha Magnetic shield sheet and method for manufacturing thereof, and cable using the sheet
JP2008288328A (en) * 2007-05-16 2008-11-27 Yokogawa Electric Corp Magnetic shield device
US10269726B2 (en) 2016-07-26 2019-04-23 Tdk Corporation Electronic circuit package

Similar Documents

Publication Publication Date Title
US6448491B1 (en) Electromagnetic interference suppressing body having low electromagnetic transparency and reflection, and electronic device having the same
Kuhl et al. Condenser transmitters and microphones with solid dielectric for airborne ultrasonics
US6131396A (en) Heat radiation shield, and dewar employing same
US20010019264A1 (en) Method and apparatus for a full-duplex electromagnetic transceiver
Niu et al. A miniaturized low frequency (LF) magnetoelectric receiving antenna with an integrated DC magnetic bias
JPH0358072B2 (en)
JP2005514797A (en) Wall member for magnetic shield room and magnetic shield room
JPH07212079A (en) Electromagnetic wave interference suppressor
Niu et al. Transceiving signals by mechanical resonance: A miniaturized standalone low frequency (LF) magnetoelectric mechanical antenna pair with integrated DC magnetic bias
US5608691A (en) EMAT with integral electrostatic shield
US3898565A (en) Magnetic wave communication system
US3621382A (en) Anistropic thin ferromagnetic film magnetometer
JPH05235582A (en) Magnetic shielding material
Jayasree et al. Analysis of shielding effectiveness of single, double and laminated shields for oblique incidence of EM waves
US11690207B2 (en) Magnetic shield material
RU2712926C1 (en) Thin-film magnetic field of weak magnetic fields
Grimes EMI shielding characteristics of permalloy multilayer thin films
Ma et al. Analysis of magnetic-film-type noise suppressor integrated on transmission lines for on-chip crosstalk evaluation
JPH06125190A (en) Magnetic shield case and electronic device housed in it
US4366517A (en) Magnetic erasing head
JP4843612B2 (en) Soft magnetic film, anti-electromagnetic wave component and electronic device using the same
JPH0227800A (en) Metal vapor-deposited film for shielding electromagnetic wave
JPS6022640Y2 (en) magnetic shield plate
JPH0295347A (en) Magnetic resonance imaging device
JPH0287593A (en) Printed wiring board

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000725