JPH05232055A - Humidity detecting device - Google Patents

Humidity detecting device

Info

Publication number
JPH05232055A
JPH05232055A JP3762892A JP3762892A JPH05232055A JP H05232055 A JPH05232055 A JP H05232055A JP 3762892 A JP3762892 A JP 3762892A JP 3762892 A JP3762892 A JP 3762892A JP H05232055 A JPH05232055 A JP H05232055A
Authority
JP
Japan
Prior art keywords
humidity
circuit
resistance value
resistance
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3762892A
Other languages
Japanese (ja)
Other versions
JP3106660B2 (en
Inventor
Chihiro Kawaguchi
千廣 川口
Shigefumi Akagi
重文 赤木
Yasuhiro Izumi
泰博 泉
Riyouichi Makimoto
良一 牧元
Tetsuji Tsuji
哲次 辻
Hiromitsu Tagi
宏光 多木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP04037628A priority Critical patent/JP3106660B2/en
Publication of JPH05232055A publication Critical patent/JPH05232055A/en
Application granted granted Critical
Publication of JP3106660B2 publication Critical patent/JP3106660B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To obtain a humidity signal with good detecting accuracy entirely from the low-humidity side to the high-humidity side by improving a humidity detecting device so that a low-humidity side output or a high-humidity side output is not saturated even if a resistance value of a humidity sensor is changed logarithmically. CONSTITUTION:A humidity detecting circuit 3 is driven with a low impedance, a circuit network of each of a first humidity-sensitive circuit 6 and a second humidity-sensitive circuit 7 is constituted by a humidity sensor and a resistance, and values of the humidity sensors and the resistances are set so that a voltage at connecting point of the first humidity-sensitive circuit 6 and the second humiditysensitive circuit 7 becomes linear at each humidity of several points. An output from the humidity detecting circuit becomes linear from the low- humidity side to the high-humidity side, and a humidity detecting device with good detecting accuracy can be realized. Also, by constituting the circuit networks in which a resistance value of the resistance is changed relative to change in temperature in the first and the second humidity-sensitive circuits, temperature can be compensated in the humidity detecting device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、湿度変化を電圧変化に
変換し、電気信号として出力する湿度検出装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a humidity detecting device which converts a humidity change into a voltage change and outputs it as an electric signal.

【0002】[0002]

【従来の技術】多孔質に高分子電解質を含浸した湿度セ
ンサがある。この種の湿度センサは湿度に対する抵抗値
の変化幅が2.5桁以上と大幅に変わるので感度が良
く、抵抗値の変化幅が大きいから変化を検出し空調機や
加湿機などの機器を制御するには都合がよい。しかし、
最近では空間の快適性がより求められるようになり、マ
イクロコンピュータと湿度検出装置と組合せてより最適
な自動制御が必要となってきた。そこに用いられる湿度
検出装置も、湿度変化の検出だけでなく湿度を精度よく
測定できることが強く求められている。
2. Description of the Related Art There is a humidity sensor having a porous material impregnated with a polymer electrolyte. This type of humidity sensor has high sensitivity because the range of change in resistance value with respect to humidity changes significantly by 2.5 digits or more, and the range of change in resistance value is large, so changes are detected and devices such as air conditioners and humidifiers are controlled. It is convenient to do. But,
Recently, more comfortable space is required, and more optimal automatic control is required in combination with a microcomputer and a humidity detecting device. It is strongly demanded that the humidity detecting device used therein not only detect a change in humidity but also measure humidity accurately.

【0003】図11に従来技術の湿度検出装置の構成の
ブロック図を示した。図12において、60は発振回
路、61は湿度検出回路、64は抵抗、65は湿度セン
サ、eは直列回路に印可される交流の電圧、66は湿度
検出回路61の出力を示す。62は整流回路、63は整
流回路62の出力を示す。
FIG. 11 is a block diagram showing the structure of a conventional humidity detecting device. In FIG. 12, 60 is an oscillation circuit, 61 is a humidity detection circuit, 64 is a resistance, 65 is a humidity sensor, e is an AC voltage applied to the series circuit, and 66 is an output of the humidity detection circuit 61. Reference numeral 62 indicates a rectifier circuit, and 63 indicates the output of the rectifier circuit 62.

【0004】以上のように構成された湿度検出装置の動
作について説明する。湿度センサ65は直流電圧を印可
すると分極する。そこで、発振回路60で交流電圧を発
生させ、この交流電圧が湿度検出回路61に加えられ
る。湿度検出回路62は、抵抗64と湿度センサ65と
の直列回路で構成されている。湿度の検出方法は、湿度
変化に応じ湿度センサ65の抵抗値が変化すると、電流
が変化する。その電流の変化を抵抗64の電圧降下の変
化として検出している。抵抗64の抵抗値をR、湿度セ
ンサ65の抵抗値をRH、印可電圧eの値を簡単のため
に1とすれば、湿度検出回路61の出力66は、式1の
分圧比の関係に置き換えて示すことができる。
The operation of the humidity detecting device constructed as above will be described. The humidity sensor 65 is polarized when a DC voltage is applied. Therefore, the oscillation circuit 60 generates an AC voltage, and this AC voltage is applied to the humidity detection circuit 61. The humidity detection circuit 62 is composed of a series circuit of a resistor 64 and a humidity sensor 65. In the humidity detection method, when the resistance value of the humidity sensor 65 changes according to the change in humidity, the current changes. The change in the current is detected as the change in the voltage drop of the resistor 64. If the resistance value of the resistor 64 is R, the resistance value of the humidity sensor 65 is RH, and the value of the applied voltage e is 1 for the sake of simplicity, the output 66 of the humidity detection circuit 61 is replaced with the relationship of the voltage division ratio of Expression 1. Can be shown.

【0005】 出力66=RH/(R+RH)・・・・・・・・式1 更に、湿度検出回路61の出力66は整流回路62を介
して直流の電圧に変換し検出信号として63に出力して
いる。
Output 66 = RH / (R + RH) ... Equation 1 Furthermore, the output 66 of the humidity detection circuit 61 is converted into a DC voltage via the rectification circuit 62 and output to 63 as a detection signal. ing.

【0006】[0006]

【発明が解決しようとする課題】図12は、多孔質に高
分子電解質を含浸した湿度センサ特性の一例で、湿度と
抵抗値の関係を示した。抵抗値変化は対数的に大きく変
化し、直線的な変化でない。以下説明に用いるため、多
孔質に高分子電解質を含浸した湿度センサを湿度センサ
と称す。図12において、68は10℃、67は25
℃、69は40℃の場合を示した。
FIG. 12 shows an example of the characteristics of a humidity sensor in which a porous material is impregnated with a polymer electrolyte, and shows the relationship between humidity and resistance value. The resistance change changes logarithmically and is not a linear change. For use in the following description, a humidity sensor in which a porous material is impregnated with a polymer electrolyte is referred to as a humidity sensor. In FIG. 12, 68 is 10 ° C. and 67 is 25 ° C.
C. and 69 indicate the case of 40.degree.

【0007】この湿度センサを従来技術の湿度検出回路
61に用いると、式1の関係から図13に示すような出
力特性になる。但し、温度が25℃の場合を例示した。
図13において、特性70は抵抗64の値Rを2kオー
ムに固定した場合で、湿度数十%以上の多湿度側が良く
計測できる。反面、湿度数十%以下の低湿度側で計測で
きない欠点がある。低湿度側で計測できなくなるのは、
湿度センサ65の抵抗値RHが抵抗64の値Rよりあま
りにも大きくなり、式1の分圧比は1に近づくため湿度
センサー65の抵抗値RHが変化に対しても、抵抗64
に端子電圧の変化として表れない。特性72は抵抗64
の値Rを20kオームに固定した場合で、湿度数十%付
近が良く計測できる。しかし、低湿多湿側で出力の変化
幅が減り、分解能が低下する欠点がある。低湿多湿側で
出力の変化幅が減るのは、湿度センサ65の抵抗値RH
と抵抗64の値Rとの差が大きくなり、湿度センサ65
の抵抗値変化に対して抵抗64に生じる端子電圧の変化
が少なくなるためである。特性71は抵抗64の値Rを
200kオームに固定した場合で、低湿度側が計測でき
るが多湿度側が計測できない欠点がある。多湿度側が計
測できないのは、湿度センサ65の抵抗値RHが抵抗6
4の値Rよりあまりにも小さくなり、式1の分圧比は0
に近づくため湿度センサーの抵抗値変化に対して、抵抗
64に端子電圧の変化が生じないからである。従って、
湿度を精度よく計測するためには、湿度変化に対して出
力66ができるだけ直線的な関係になる抵抗64の値R
を選定することが必要になる。
When this humidity sensor is used in the conventional humidity detecting circuit 61, the output characteristic shown in FIG. However, the case where the temperature is 25 ° C. is illustrated.
In FIG. 13, a characteristic 70 is a case where the value R of the resistor 64 is fixed to 2 k ohms, and good measurement can be made on the high humidity side where the humidity is several tens% or more. On the other hand, it has the drawback that it cannot be measured on the low humidity side, where the humidity is tens of percent or less. What can not be measured on the low humidity side is
The resistance value RH of the humidity sensor 65 becomes much larger than the value R of the resistance 64, and the voltage division ratio of the expression 1 approaches 1, so that even if the resistance value RH of the humidity sensor 65 changes,
Does not appear as a change in the terminal voltage. Characteristic 72 is resistance 64
When the value R of is fixed to 20 k ohm, the humidity can be measured well in the vicinity of several tens of percent. However, there is a drawback that the range of change in output is reduced on the low humidity and high humidity side and the resolution is reduced. The change width of the output decreases on the low humidity and high humidity side because the resistance value RH of the humidity sensor 65 decreases.
And the value R of the resistor 64 increases, the humidity sensor 65
This is because the change in the terminal voltage generated in the resistor 64 with respect to the change in the resistance value is reduced. Characteristic 71 is a case where the value R of the resistor 64 is fixed at 200 k ohms, and there is a drawback that the low humidity side can be measured but the high humidity side cannot be measured. The high humidity side cannot be measured because the resistance value RH of the humidity sensor 65 is the resistance 6
4 is much smaller than the value R of 4, and the partial pressure ratio of Equation 1 is 0.
This is because the terminal voltage of the resistor 64 does not change with respect to the change of the resistance value of the humidity sensor. Therefore,
In order to measure humidity accurately, the value R of the resistor 64 is such that the output 66 has a linear relationship as much as possible with changes in humidity.
Will need to be selected.

【0008】ここで、直線性を評価する方法として、直
線化率を用いる。直線化率を図14の値を用いて式2で
表す。直線化率は、それぞれの湿度に対して仮想直線7
2からのずれた割合を示し、数字が大きいほどずれも大
きい。但し、図14の73は低湿度(30%)の出力V
hで最大値、図14の74は多湿度(90%)の出力V
lで最小値を表す。図14のEは出力VhとVlとの差
で、ΔEは2点VhとVl間を直線上に結び、この仮想
直線72とのずれ幅を表す。
Here, the linearization rate is used as a method for evaluating linearity. The linearization rate is expressed by Equation 2 using the values in FIG. The linearization rate is a virtual straight line 7 for each humidity.
The ratio deviates from 2, and the larger the number, the larger the deviation. However, 73 in FIG. 14 is the output V at low humidity (30%).
Maximum value at h, 74 of FIG. 14 is output V of high humidity (90%)
l represents the minimum value. E in FIG. 14 is the difference between the outputs Vh and Vl, and ΔE connects the two points Vh and Vl on a straight line, and represents the deviation width from the virtual straight line 72.

【0009】 直線化率=ΔE/E×100・・・・・・・・式2 抵抗64を適当な抵抗値Rに選定した場合の直線化率を
図15に示した。78はRが20kオーム、76はRが
10kオーム、77はRが5kオームの場合である。1
0kオーム程度のところで直線化率の値が、他に比較し
て7〜8%程度まで小さくなっている。ところで、湿度
センサには図12に示すように温度特性がある。温度補
正をするため、抵抗64の代わりに温度によって抵抗値
が変わるサーミスタを用いる。一般に、所定の湿度で、
湿度センサの温度係数に近いサーミスタが用いられる。
図15に、サーミスタを用いた場合のそれぞれの温度
と、湿度に対して出力特性の直線化率を示した。図16
において、80はサーミスタの抵抗値が温度10℃で2
2kオーム、79は25℃で10kオーム、81は40
℃で5kオームになるサーミスタの温度特性の場合が例
示してある。温度によって直線化率の値の広がりが大き
くなり、精度が悪化する。
Linearization rate = ΔE / E × 100 ... Equation 2 FIG. 15 shows the linearization rate when the resistor 64 is selected to have an appropriate resistance value R. 78 is the case where R is 20 k ohms, 76 is the case where R is 10 k ohms, and 77 is the case where R is 5 k ohms. 1
The value of the linearization rate at about 0 k ohm is smaller by about 7 to 8% than the others. By the way, the humidity sensor has a temperature characteristic as shown in FIG. In order to perform temperature correction, a thermistor whose resistance value changes with temperature is used instead of the resistor 64. Generally, at a given humidity,
A thermistor having a temperature coefficient close to that of the humidity sensor is used.
FIG. 15 shows the linearization rate of the output characteristics with respect to each temperature and humidity when the thermistor is used. FIG.
In 80, the resistance value of the thermistor is 2 at a temperature of 10 ° C.
2k ohm, 79 is 10k ohm at 25 ° C, 81 is 40
The case of the temperature characteristic of the thermistor which becomes 5 k ohm at 0 ° C. is illustrated. The spread of the linearization rate value increases depending on the temperature, and the accuracy deteriorates.

【0010】従来技術では、上述のように湿度検出回路
の出力特性の直線性は、直列抵抗の値に依存しているの
で、発振回路の出力インピーダンスが高いと直線性に影
響する。そのため発振回路の出力インピーダンスを小さ
くする必要がある。
In the prior art, since the linearity of the output characteristic of the humidity detecting circuit depends on the value of the series resistance as described above, the linearity is affected if the output impedance of the oscillator circuit is high. Therefore, it is necessary to reduce the output impedance of the oscillator circuit.

【0011】その他、湿度センサとの直列抵抗64をの
値を適当な一つの抵抗値に選定しても、湿度変化に対し
て抵抗値は固定されているから、湿度センサの抵抗値が
対数的に大きく2.5桁以上変化した場合、直線性がな
くなり直線化率の値も大きくなる。すなわち、低湿側、
多湿側で仮想直線からのずれが大きくなるから、出力特
性の分解能が低下する欠点がある。また、温度補正を考
慮したとしても直線化率の値の広がりが大きいので、湿
度の計測精度も悪化するなど計測には不都合という問題
点があった。
In addition, even if the value of the series resistance 64 with the humidity sensor is selected as an appropriate resistance value, the resistance value is fixed with respect to the change in humidity, so that the resistance value of the humidity sensor is logarithmic. In the case of a large change of 2.5 digits or more, the linearity disappears and the linearization rate also increases. That is, the low humidity side,
Since the deviation from the virtual straight line becomes large on the high humidity side, the resolution of the output characteristic deteriorates. Further, even if the temperature correction is taken into consideration, the value of the linearization rate has a large spread, so that there is a problem in that measurement is inconvenient, such as deterioration in humidity measurement accuracy.

【0012】[0012]

【課題を解決するための手段】本発明は、上記問題点を
解決するため、湿度変化を電圧の変化に変換する湿度検
出回路と、前記湿度検出回路を駆動するための交流電圧
を印可する回路とを具備し、前記湿度検出回路は第1の
感湿回路と第2の感湿回路とが直列に接続され、前記第
1の感湿回路と前記第2の感湿回路との接続部の電圧を
湿度検出電圧として出力し、前記第1の感湿回路は湿度
変化によって抵抗値が変化する第1の湿度センサと直列
に第1の抵抗と、更に、前記第1の湿度センサと並列に
第2の抵抗とからなる抵抗回路網で構成され、前記第2
の感湿回路は第3の抵抗と湿度変化によって抵抗値が変
化する第2の湿度センサとの並列回路で構成され、前記
第1の感湿回路と前記第2の感湿回路との接続部の電圧
が、数点の各湿度について直線的になるように前記第1
の湿度センサの抵抗値、前記第1、第2の抵抗値、前記
第2の湿度センサの抵抗値、第3の抵抗値を設定したこ
とを特徴とするものである。
In order to solve the above-mentioned problems, the present invention solves the above problems by a humidity detecting circuit for converting a humidity change into a voltage change, and a circuit for applying an AC voltage for driving the humidity detecting circuit. And a humidity detecting circuit in which a first moisture sensitive circuit and a second moisture sensitive circuit are connected in series, and a connection portion between the first moisture sensitive circuit and the second moisture sensitive circuit is provided. The first humidity sensing circuit outputs a voltage as a humidity detection voltage, and the first humidity sensing circuit is provided with a first resistance in series with a first humidity sensor whose resistance value changes according to a change in humidity, and further in parallel with the first humidity sensor. A resistor circuit network including a second resistor,
The humidity-sensing circuit is composed of a parallel circuit including a third resistance and a second humidity sensor whose resistance value changes according to a change in humidity, and a connecting portion between the first humidity-sensing circuit and the second humidity-sensing circuit. Of the first voltage so that the voltage is linear for several humidity points.
The resistance value of the humidity sensor, the first and second resistance values, the resistance value of the second humidity sensor, and the third resistance value are set.

【0013】更に、出力の直線性の温度補償をするため
に、少なくとも前記記載の第1の感湿回路は、温度変化
に対して抵抗値が変わる抵抗と湿度変化で抵抗値が変わ
る回路網を用いて構成するとともに、第1の感湿回路は
第1の湿度センサと直列に第2第3の抵抗を接続し更に
前記第1の湿度センサと並列に接続された第3の抵抗と
からなる回路網で構成されたことを特徴とするものであ
る。
Further, in order to perform temperature compensation of the linearity of the output, at least the first moisture-sensitive circuit described above includes a resistor whose resistance value changes with temperature change and a circuit network whose resistance value changes with humidity change. In addition to being configured by using the first humidity sensor, the first humidity sensor includes a second humidity resistor connected in series with the first humidity sensor, and a third resistor connected in parallel with the first humidity sensor. It is characterized by being composed of a circuit network.

【0014】[0014]

【作用】上記した構成であるから、交流電圧を印可する
回路によって発振回路のインピーダンスに左右されず、
湿度検出回路を低インピーダンスで駆動するように設定
できる。そして、湿度検出回路について、第1の感湿回
路の抵抗値をra、第2の感湿回路の抵抗値をrbとす
ると、本発明の湿度検出回路の出力は、第1の感湿回路
の抵抗値と第2の感湿回路の抵抗値の分圧比に応じた電
圧の変化を出力することになる。従って、湿度変化に対
する出力特性は、式3の関係の電圧変化となる。但し、
第1の感湿回路と第2の感湿回路の直列回路に印可され
る電圧eを簡単のため1とする。
With the above structure, the circuit for applying an AC voltage does not depend on the impedance of the oscillation circuit,
The humidity detection circuit can be set to drive with low impedance. Then, regarding the humidity detection circuit, assuming that the resistance value of the first humidity detection circuit is ra and the resistance value of the second humidity detection circuit is rb, the output of the humidity detection circuit of the present invention is the output of the first humidity detection circuit. A change in voltage according to the voltage division ratio between the resistance value and the resistance value of the second humidity sensing circuit is output. Therefore, the output characteristic with respect to the humidity change is the voltage change of the relation of the expression 3. However,
The voltage e applied to the series circuit of the first moisture sensitive circuit and the second moisture sensitive circuit is set to 1 for simplicity.

【0015】 出力=rb/(ra+rb)・・・・・・・・式3 ここで、第1の湿度センサの抵抗値をh1、第2の湿度
センサの抵抗値をh2、第1の抵抗の値をa、第2の抵
抗の値をb、第3の抵抗の値をcとし、 h2≒h1・・・・・・・・式4 c>b>a・・・・・・・・式5 式4、式5の関係にすれば、湿度変化に対して第1の感
湿回路の抵抗値raの変化を制限して、aからbの範囲
内に構成できる。また、第2の感湿回路の抵抗値rbは
第2の湿度センサの抵抗値h2の最小値からcまでの範
囲内で変化するように制限できる。従って、第1の感湿
回路の抵抗値raの変化幅は、第2の感湿回路の抵抗値
rbの変化幅より小さい。そして、第1の感湿回路の抵
抗値raの値を、低湿度側で適当に大きく、多湿度側で
適当に小さくなるように設定できる。
Output = rb / (ra + rb) ... Equation 3 Here, the resistance value of the first humidity sensor is h1, the resistance value of the second humidity sensor is h2, and the resistance value of the first resistance is Let a be the value, b be the value of the second resistance, and c be the value of the third resistance, and h2≈h1 ... Equation 4 c>b> a. 5 According to the equations (4) and (5), it is possible to limit the variation of the resistance value ra of the first moisture-sensitive circuit to the variation of humidity and configure it within the range from a to b. Further, the resistance value rb of the second humidity sensing circuit can be restricted so as to change within the range from the minimum value h2 of the resistance value h2 of the second humidity sensor to c. Therefore, the variation range of the resistance value ra of the first moisture sensitive circuit is smaller than the variation range of the resistance value rb of the second moisture sensitive circuit. The resistance value ra of the first humidity sensing circuit can be set to be appropriately large on the low humidity side and appropriately small on the high humidity side.

【0016】従って、数点の各湿度について湿度検出回
路の出力が直線的になるように、第1の感湿回路の抵抗
値と、第2の感湿回路の抵抗値を制限し設定することが
可能となる。
Therefore, the resistance value of the first humidity sensing circuit and the resistance value of the second humidity sensing circuit are limited and set so that the output of the humidity sensing circuit becomes linear for each of several humidity points. Is possible.

【0017】[0017]

【実施例】【Example】

(実施例1)以下、本発明の一実施例について説明す
る。
(Embodiment 1) An embodiment of the present invention will be described below.

【0018】図1は、本発明の一実施例を示すブロック
図、図2は図1の詳細図である。図1および図2におい
て、1は発振回路、2は駆動回路、3は湿度検出回路、
6は第1の感湿回路、7は第2の感湿回路、eは湿度検
出回路に印可される電圧、4は湿度検出回路の出力、5
は整流回路、8は整流回路の出力を示す。図2におい
て、駆動回路2の18、19は抵抗、17は差動増幅
器、20はコンデンサ、湿度検出回路3の21は抵抗、
22は湿度センサ、23、24は抵抗、25は湿度セン
サ、26は抵抗、整流回路5の27は差動増幅器、28
はダイオード、29は抵抗、30は抵抗、31はコンデ
ンサ、9は中間電源回路、11は中間電源回路の出力、
10は電源線を示す。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a detailed view of FIG. 1 and 2, 1 is an oscillation circuit, 2 is a drive circuit, 3 is a humidity detection circuit,
6 is the first moisture sensitive circuit, 7 is the second moisture sensitive circuit, e is the voltage applied to the humidity detecting circuit, 4 is the output of the humidity detecting circuit, 5
Is a rectifier circuit, and 8 is an output of the rectifier circuit. In FIG. 2, 18 and 19 of the drive circuit 2 are resistors, 17 is a differential amplifier, 20 is a capacitor, 21 of the humidity detection circuit 3 is a resistor,
22 is a humidity sensor, 23 and 24 are resistors, 25 is a humidity sensor, 26 is a resistor, 27 of the rectifier circuit 5 is a differential amplifier, 28
Is a diode, 29 is a resistor, 30 is a resistor, 31 is a capacitor, 9 is an intermediate power supply circuit, 11 is an output of the intermediate power supply circuit,
Reference numeral 10 indicates a power supply line.

【0019】発振回路1は交流電圧を発生するために用
いられる。例えば、無安定マルチバイブレータの回路で
構成されている。駆動回路2は、発振回路1の出力イン
ピーダンスに左右されず低インピーダンスで、発振回路
1の出力を湿度検出回路3に加えるために用いられる。
駆動回路2の出力は、中間電源回路9の出力11の差電
圧を抵抗18、19で分圧し、差動増幅器17の非反転
入力に加え、出力を反転入力に加えて、更にコンデンサ
20を介して湿度検出回路3を駆動している。従って、
抵抗18、19で電圧eの振幅が設定される。コンデン
サ20は、十分インピーダンスが低いものを用い、湿度
センサが分極しないように直流電圧を阻止している。湿
度検出回路3は、第1の感湿回路6と第2の感湿回路7
の直列回路で構成され、第1の感湿回路6と第2の感湿
回路7との接続部を湿度検出回路3の出力4としてい
る。また、抵抗21は印可される電圧波形を低湿度側で
整形するため補助的に接続してある。整流回路5は出力
4を直流に変換するために用いる。整流回路5は、たと
えば、出力4を差動増幅器27の非反転入力に加え、出
力をダイオード28を介し反転入力に加えて、更に、抵
抗29、30、コンデンサ31からなる平滑回路を通し
直流に変換してある。そして、出力4が整流回路5によ
って直流電圧に変換され整流回路5の出力8に出力し、
制御等の信号として利用される。差動増幅回路を単一電
源で動作させる場合、湿度センサに直流バイアスが加わ
らないように、中間電源回路9を設ける。従って、湿度
検出回路3には中間電源回路9の出力11を基準とした
交流電圧eが印可される。
The oscillator circuit 1 is used to generate an AC voltage. For example, it is composed of an astable multivibrator circuit. The drive circuit 2 has a low impedance regardless of the output impedance of the oscillation circuit 1 and is used to add the output of the oscillation circuit 1 to the humidity detection circuit 3.
The output of the drive circuit 2 divides the differential voltage of the output 11 of the intermediate power supply circuit 9 by the resistors 18 and 19, adds the output to the non-inverting input of the differential amplifier 17, adds the output to the inverting input, and further through the capacitor 20. To drive the humidity detection circuit 3. Therefore,
The resistors 18 and 19 set the amplitude of the voltage e. The capacitor 20 has a sufficiently low impedance and blocks a direct current voltage so that the humidity sensor does not polarize. The humidity detecting circuit 3 includes a first moisture sensitive circuit 6 and a second moisture sensitive circuit 7.
And a connection portion between the first moisture sensitive circuit 6 and the second moisture sensitive circuit 7 is used as the output 4 of the humidity detection circuit 3. Further, the resistor 21 is auxiliary connected to shape the applied voltage waveform on the low humidity side. The rectifier circuit 5 is used to convert the output 4 into direct current. The rectifier circuit 5 applies, for example, the output 4 to the non-inverting input of the differential amplifier 27, the output to the inverting input via the diode 28, and a direct current through a smoothing circuit including resistors 29 and 30 and a capacitor 31. It has been converted. Then, the output 4 is converted into a DC voltage by the rectifier circuit 5 and is output to the output 8 of the rectifier circuit 5,
It is used as a signal for control. When the differential amplifier circuit is operated by a single power supply, the intermediate power supply circuit 9 is provided so that a DC bias is not applied to the humidity sensor. Therefore, the AC voltage e based on the output 11 of the intermediate power supply circuit 9 is applied to the humidity detection circuit 3.

【0020】ここで、本発明に係る湿度検出回路3の動
作を更に詳細に説明する。第1の感湿回路6は湿度セン
サ22と抵抗23の並列回路と直列に抵抗24を接続し
て構成されている。感湿回路7は湿度センサ25と抵抗
26の並列回路で構成されている。湿度センサは、湿度
変化によってその抵抗値が図12に例示したように対数
的に大きく変化する。従って、第2の感湿回路7のよう
に湿度センサ25と並列に抵抗26を接続するとその上
限値が制限されることになる。その抵抗rbの関係を図
3の36に示した。但し、温度が25℃、並列抵抗26
の抵抗値cが1400kオームの場合を例示した。次
に、第1の感湿回路6に用いる湿度センサ22につい
て、その抵抗値h1を湿度センサ25の抵抗値h2とほ
ぼ同じ程度にしている。この湿度センサ22と抵抗23
の並列回路と直列に抵抗24を接続することによって、
抵抗値h1の上限値と下限値が制限できる。図3の37
に湿度と第1の感湿回路6の抵抗値raについて、その
関係を示した。但し、温度が25℃、並列抵抗値23の
抵抗値bが700kオーム、直列抵抗24の抵抗値aが
10kオームの場合を例示した。このようにして、湿度
検出回路3を第1の感湿回路6と第2の感湿回路7との
直列回路に構成し、直列接続部から出力4を得ると、出
力は式3の関係となる。図4に湿度と出力4との関係を
示した。尚図4はグラフを見やすくするために出力4の
電圧から出力11を取り除いた出力をグラフ化したもの
である。出力11は一定電圧であるから、出力11を取
り除いてグラフ化した値の直線化率には差がない。そし
て、直線化率は図5の38のようになった。低湿度から
多湿度の範囲の数点の各湿度について直線化率の値が数
%以下である。従来技術の10%近い値と比較すれば、
さらに直線的になっている。これは、第2の感湿回路7
の最大値を制限し、そして、第1の感湿回路6の抵抗値
raの値を、低湿度側で適当な値に大きく、多湿度側で
適当な値に小さくなるように設定できるからである。
Now, the operation of the humidity detecting circuit 3 according to the present invention will be described in more detail. The first moisture sensitive circuit 6 is configured by connecting a resistor 24 in series with a parallel circuit of a humidity sensor 22 and a resistor 23. The humidity sensing circuit 7 is composed of a parallel circuit of a humidity sensor 25 and a resistor 26. The resistance value of the humidity sensor changes logarithmically as shown in FIG. Therefore, when the resistance 26 is connected in parallel with the humidity sensor 25 as in the second humidity sensing circuit 7, the upper limit value is limited. The relationship of the resistance rb is shown at 36 in FIG. However, the temperature is 25 ℃, parallel resistance 26
The case where the resistance value c of 1 is 1400 kΩ is illustrated. Next, the resistance value h1 of the humidity sensor 22 used in the first humidity sensing circuit 6 is set to be approximately the same as the resistance value h2 of the humidity sensor 25. This humidity sensor 22 and resistance 23
By connecting the resistor 24 in series with the parallel circuit of
The upper limit value and the lower limit value of the resistance value h1 can be limited. 37 of FIG.
The relationship between the humidity and the resistance value ra of the first moisture sensitive circuit 6 is shown. However, the case where the temperature is 25 ° C., the resistance value b of the parallel resistance value 23 is 700 kΩ, and the resistance value a of the series resistor 24 is 10 kΩ is illustrated. In this way, when the humidity detection circuit 3 is configured in the series circuit of the first humidity sensing circuit 6 and the second humidity sensing circuit 7 and the output 4 is obtained from the series connection portion, the output is expressed by the relation of Expression 3. Become. FIG. 4 shows the relationship between humidity and output 4. Note that FIG. 4 is a graph of the output obtained by removing the output 11 from the voltage of the output 4 in order to make the graph easier to see. Since the output 11 has a constant voltage, there is no difference in the linearization rate of the values plotted by removing the output 11. Then, the linearization rate is as shown by 38 in FIG. The value of the linearization rate is several% or less for each of several humidity ranges from low humidity to high humidity. Compared with the value close to 10% of the conventional technology,
It is even more linear. This is the second moisture sensing circuit 7
Of the first humidity sensing circuit 6 can be set so that the resistance value ra of the first humidity sensing circuit 6 is increased to a suitable value on the low humidity side and decreased to an appropriate value on the high humidity side. is there.

【0021】ところで、直線化率は、抵抗24の値Cに
よって変わる。直列抵抗24の値Cが20kオームの場
合を図5の39に、値Cが5kオームの場合を図5の4
0に示した。次に、図6に湿度センサ22の抵抗値h1
と湿度センサ25の抵抗値h2との関係と直線化率につ
いて示した。41は抵抗値h1とh2がほぼ同じ場合、
42は抵抗値h2がh1の1.25倍の場合、43は抵
抗値h2がh1の0.75倍の場合である。この場合、
抵抗値h1とh2はほぼ同じ場合の直線化率が良い。
By the way, the linearization rate changes depending on the value C of the resistor 24. The case where the value C of the series resistor 24 is 20 kΩ is 39 in FIG. 5, and the case where the value C is 5 kΩ is 4 in FIG.
It was shown at 0. Next, the resistance value h1 of the humidity sensor 22 is shown in FIG.
The relationship between the resistance value h2 of the humidity sensor 25 and the linearization rate is shown. 41 indicates that when the resistance values h1 and h2 are almost the same,
42 is a case where the resistance value h2 is 1.25 times h1 and 43 is a case where the resistance value h2 is 0.75 times h1. in this case,
The linearization rate is good when the resistance values h1 and h2 are almost the same.

【0022】このように、従来の湿度センサの特性を利
用し、ほぼ同じ湿度センサを回路に含む感湿回路を直列
に接続し、更に、抵抗26の抵抗値cを抵抗23の抵抗
値bより高く設定し、抵抗24の抵抗値aを抵抗23の
抵抗値bより小さく適宜選択することによって、数点の
各湿度について湿度検出回路の出力の直線化率がよい条
件が存在する。従って、直線性が向上し、湿度変化を精
度よく計測することができる。
As described above, by utilizing the characteristics of the conventional humidity sensor, a humidity sensitive circuit including almost the same humidity sensor in the circuit is connected in series, and the resistance value c of the resistor 26 is changed from the resistance value b of the resistor 23. There is a condition where the linearization rate of the output of the humidity detection circuit is good for each of several humidity points by setting the resistance value a of the resistor 24 to be high and appropriately selecting the resistance value a of the resistor 24 to be smaller than the resistance value b of the resistor 23. Therefore, the linearity is improved, and the change in humidity can be accurately measured.

【0023】更に、湿度センサ22、25の温度特性に
対して直線化率の温度補正をするため、抵抗24の代わ
りにサーミスタを直列に接続する。図7に直線化率の温
度特性を示した。サーミスタの温度特性は従来のものを
用いた。44は温度が25℃、45は温度が10℃、4
6は温度が40℃の場合である。従来技術よりも直線化
率の値の広がりが10%以内と少なく、従来技術の十数
%以内よりはるかに直線が良い。第1の感湿回路と第2
の感湿回路との接続部を湿度検出電圧として出力するか
ら、第1、第2の湿度センサの温度特性が互いに出力変
化を緩和するように作用するため、従来特性のサーミス
タを用いた温度補正であっても、従来技術よりも直線化
率の値の広がりが少なく、温度変化にたいして10%以
内にできる。ところで、低温度側、高温度側でサーミス
タの抵抗値を補償する必要がある場合は、サーミスタと
並列にあるいは直列に抵抗を接続してもよい。
Further, instead of the resistor 24, a thermistor is connected in series in order to perform temperature correction of the linearization rate with respect to the temperature characteristics of the humidity sensors 22 and 25. FIG. 7 shows the temperature characteristics of the linearization rate. The temperature characteristics of the thermistor used are conventional. 44 has a temperature of 25 ° C, 45 has a temperature of 10 ° C, 4
No. 6 is when the temperature is 40 ° C. The spread of the value of the linearization rate is less than 10% as compared with the prior art, and the straight line is far better than within 10% of the prior art. First moisture sensitive circuit and second
Since the connection portion with the humidity sensing circuit is output as the humidity detection voltage, the temperature characteristics of the first and second humidity sensors act so as to moderate output changes, so that temperature correction using a thermistor with conventional characteristics is performed. However, the spread of the value of the linearization rate is smaller than that of the conventional technique, and the temperature change can be kept within 10%. By the way, when it is necessary to compensate the resistance value of the thermistor on the low temperature side and the high temperature side, a resistor may be connected in parallel or in series with the thermistor.

【0024】(実施例2)実施例2として湿度検出回路
3の構成方法を図8に示した。47は多孔質基材、4
8、49、50は電極、51、52は駆動端子、53は
出力端子、その他は図2と同じであるので省略する。
(Embodiment 2) As Embodiment 2, a method of constructing the humidity detecting circuit 3 is shown in FIG. 47 is a porous substrate, 4
8, 49 and 50 are electrodes, 51 and 52 are drive terminals, 53 is an output terminal, and others are the same as those in FIG.

【0025】異なるところは、同一の多孔質基材47に
電極48、49、50を設け高分子電解質を含浸する。
そして、電極48と電極49間で図2の湿度センサ22
を形成し、電極49と電極50間で図2の湿度センサ2
5を形成した。湿度検出回路3を構成するには、電極4
8と電極49間に抵抗23を接続し、電極48と抵抗2
4と接続し駆動端子51を介して駆動回路2の出力と接
続する。一方、電極49と電極50間に抵抗26を接続
し出力端子53を介して出力11に接続する。更に、電
極49から駆動端子52を設け整流回路5に接続すれば
よい。
The difference is that electrodes 48, 49 and 50 are provided on the same porous substrate 47 and impregnated with a polymer electrolyte.
Then, between the electrodes 48 and 49, the humidity sensor 22 of FIG.
And the humidity sensor 2 of FIG. 2 is formed between the electrodes 49 and 50.
Formed 5. To configure the humidity detection circuit 3, the electrode 4
8 and the electrode 49 to connect the resistor 23, the electrode 48 and the resistor 2
4 and is connected to the output of the drive circuit 2 via the drive terminal 51. On the other hand, the resistor 26 is connected between the electrode 49 and the electrode 50 and connected to the output 11 via the output terminal 53. Further, the drive terminal 52 may be provided from the electrode 49 and connected to the rectifier circuit 5.

【0026】このように構成することによって、ほぼ同
じ湿度センサが容易に対にして構成できるから、温度特
性も同じであって直線化率のばらつきも少なくなる。従
って、測定精度も向上するなどの利点がある。
With this structure, the humidity sensors having substantially the same structure can be easily paired, so that the temperature characteristics are the same and the variation in the linearization rate is small. Therefore, there are advantages such as improvement in measurement accuracy.

【0027】(実施例3)実施例3として湿度検出回路
3のその他の構成方法を図9に示した。異なるところ
は、一対の湿度センサ54と直列にサーミスタ55と抵
抗56を接続したところにある。測定範囲外での高温多
湿度側で、湿度センサ54とサーミスタ55の抵抗値が
著しく小さくなり、湿度センサ54の消費電力を制限す
る必要がある場合に、サーミスタ55と直列に抵抗56
を接続することが可能である。
(Third Embodiment) As a third embodiment, another configuration method of the humidity detecting circuit 3 is shown in FIG. The difference is that a thermistor 55 and a resistor 56 are connected in series with a pair of humidity sensors 54. When the resistance values of the humidity sensor 54 and the thermistor 55 become extremely small on the high temperature and high humidity side outside the measurement range and it is necessary to limit the power consumption of the humidity sensor 54, a resistor 56 is connected in series with the thermistor 55.
It is possible to connect.

【0028】(実施例4)実施例4として湿度検出回路
3のその他の構成方法を図10に示した。異なるところ
は、一対の湿度センサ54と直列にサーミスタ58と並
列にサーミスタ59を接続したところにある。とくに湿
度が数十%の範囲で、温度補償を高精度にする必要があ
る場合、補償回路57としてサーミスタ58と59を組
み合わせることが可能である。
(Embodiment 4) As Embodiment 4, another method of forming the humidity detecting circuit 3 is shown in FIG. The difference lies in that a thermistor 58 is connected in parallel with the thermistor 58 in series with the pair of humidity sensors 54. Especially when the temperature compensation needs to be highly accurate in the range of several tens of percent of humidity, the thermistors 58 and 59 can be combined as the compensation circuit 57.

【0029】[0029]

【発明の効果】本発明は、上記した構成であるから、交
流電圧を印可する回路によって発振回路のインピーダン
スに左右されず振幅を設定でき、湿度検出回路を低イン
ピーダンスで駆動することがてきる。従って、直線性に
影響しない利点がある。しかも、湿度検出回路の出力特
性の直線性を改良するため、第1の抵抗と第2の抵抗と
第1の湿度センサとの抵抗回路網で構成した第1の感湿
回路と、更に、第2の湿度センサと第3の抵抗とを並列
接続した第2の感湿回路とを直列に接続し、第1の感湿
回路と第2の感湿回路との接続部を湿度検出電圧として
出力する構成にした。このことによって、湿度変化に対
して抵抗値が2.5桁以上変化する従来の湿度センサの
特性を利用しても、第1、第2、第3の抵抗値を適宜選
択すれば、第1の感湿回路と第2の感湿回路の抵抗値の
変化範囲が適当な値に制限できる。そして、第1の感湿
回路6の抵抗値を、低湿度側で適当な値に大きく、多湿
度側で適当な値に小さくなるように設定できるから、数
点の各湿度について従来技術より、湿度検出回路の出力
特性のの直線化率が数%以内という良い条件が存在す
る。従って、従来技術より直線性が向上し、湿度変化を
精度よく計測することができる利点がある。また、第1
の感湿回路と第2の感湿回路との接続部を湿度検出電圧
として出力するから、第1、第2の湿度センサの温度特
性が互いに出力変化を緩和するように作用するため、従
来特性のサーミスタを用いた温度補正であっても、従来
技術よりも直線化率の値の広がりが少なく、温度変化に
対して10%以内にできる。従って、温度変化に対して
も従来より直線性が向上し、湿度変化を精度よく計測す
ることができる。しかも、出力4を整流回路5によって
直流電圧に変換する簡単な手段で、計測や制御等の信号
として利用できるなど効果が大である。
As described above, according to the present invention, the amplitude can be set by the circuit for applying the AC voltage without being influenced by the impedance of the oscillation circuit, and the humidity detecting circuit can be driven with low impedance. Therefore, there is an advantage that linearity is not affected. Moreover, in order to improve the linearity of the output characteristic of the humidity detection circuit, a first humidity-sensitive circuit configured by a resistance circuit network of the first resistance, the second resistance, and the first humidity sensor, and further, The second humidity sensor and the second resistance circuit in which the third resistance is connected in parallel are connected in series, and the connection portion between the first humidity detection circuit and the second humidity detection circuit is output as the humidity detection voltage. It was configured to do. As a result, even if the characteristic of the conventional humidity sensor in which the resistance value changes by 2.5 digits or more with respect to the humidity change is utilized, if the first, second, and third resistance values are appropriately selected, the first It is possible to limit the change range of the resistance values of the humidity sensitive circuit and the second moisture sensitive circuit to appropriate values. Since the resistance value of the first humidity sensing circuit 6 can be set to a large value on the low humidity side and a small value on the high humidity side, the resistance value of the first humidity sensing circuit 6 can be set to a smaller value than the conventional technique for each of several humidity points. There is a good condition that the linearization rate of the output characteristic of the humidity detection circuit is within several percent. Therefore, the linearity is improved as compared with the conventional technique, and there is an advantage that the humidity change can be accurately measured. Also, the first
Since the connection between the humidity-sensitive circuit and the second humidity-sensitive circuit is output as the humidity detection voltage, the temperature characteristics of the first and second humidity sensors act so as to mitigate the output change from each other. Even with the temperature correction using the thermistor, the spread of the linearization rate value is smaller than that in the conventional technique, and it can be within 10% with respect to the temperature change. Therefore, the linearity is improved even with respect to the temperature change, and the humidity change can be accurately measured. Moreover, a simple means of converting the output 4 into a DC voltage by the rectifier circuit 5 can be used as a signal for measurement, control, etc., and has a great effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における湿度検出装置を示す
ブロック図
FIG. 1 is a block diagram showing a humidity detecting device according to an embodiment of the present invention.

【図2】本発明の一実施例における湿度検出装置の詳細
FIG. 2 is a detailed diagram of a humidity detecting device according to an embodiment of the present invention.

【図3】本実施例に用いる第1の感湿回路と第2の感湿
回路における湿度と抵抗値の関係を示す特性図
FIG. 3 is a characteristic diagram showing a relationship between humidity and resistance value in a first moisture sensitive circuit and a second moisture sensitive circuit used in this embodiment.

【図4】本実施例に係る湿度検出回路のもっとも直線が
得られる条件の出力特性図
FIG. 4 is an output characteristic diagram of the humidity detection circuit according to the present embodiment under the condition that the most straight line is obtained.

【図5】本実施例に係る第1の感湿回路の直線化率を示
す図
FIG. 5 is a diagram showing a linearization rate of the first moisture sensitive circuit according to the present embodiment.

【図6】本実施例に係る第2の感湿回路おいて、第2の
湿度センサの値の条件を変えた場合の直線化率の関係を
示す図
FIG. 6 is a diagram showing the relationship of the linearization rate when the condition of the value of the second humidity sensor is changed in the second humidity sensing circuit according to the present embodiment.

【図7】本実施例に係る第1の感湿回路おいて、抵抗の
変わりにサーミスタを用いた場合の温度と直線化率の関
係を示す図
FIG. 7 is a diagram showing the relationship between temperature and linearization rate when a thermistor is used in place of resistance in the first moisture sensitive circuit according to the present embodiment.

【図8】本発明に係る湿度検出回路の構成を示す第2の
実施例
FIG. 8 is a second embodiment showing the configuration of the humidity detecting circuit according to the present invention.

【図9】本発明に係る湿度検出回路の構成を示す第3の
実施例
FIG. 9 is a third embodiment showing the configuration of the humidity detecting circuit according to the present invention.

【図10】本発明に係る湿度検出回路の構成を示す第4
の実施例
FIG. 10 is a fourth diagram showing the configuration of the humidity detection circuit according to the present invention.
Examples of

【図11】従来の湿度検出装置を示すブロック図FIG. 11 is a block diagram showing a conventional humidity detector.

【図12】多孔質に高分子電解質を含浸して構成した湿
度センサの特性図
FIG. 12 is a characteristic diagram of a humidity sensor configured by impregnating a porous material with a polymer electrolyte.

【図13】従来の湿度検出回路の抵抗の条件と出力特性
を示す図
FIG. 13 is a diagram showing resistance conditions and output characteristics of a conventional humidity detection circuit.

【図14】直線化率を説明するための図FIG. 14 is a diagram for explaining the linearization rate.

【図15】従来の湿度検出回路の抵抗の条件と直線化率
の関係を示す図
FIG. 15 is a diagram showing the relationship between the resistance condition and the linearization rate of the conventional humidity detection circuit.

【図16】従来の湿度検出回路の抵抗の変わりにサーミ
スタを用いた場合の温度と直線化率の関係を示す図
FIG. 16 is a diagram showing the relationship between temperature and linearization rate when a thermistor is used instead of the resistance of the conventional humidity detection circuit.

【符号の説明】 1 発振回路 2 駆動回路 3 湿度検出回路 4 出力 6 第1の感湿回路 7 第2の感湿回路 21 抵抗 22 湿度センサ 23 抵抗 24 抵抗 25 湿度センサ 26 抵抗[Explanation of Codes] 1 Oscillation circuit 2 Drive circuit 3 Humidity detection circuit 4 Output 6 First humidity sensing circuit 7 Second moisture sensing circuit 21 Resistance 22 Humidity sensor 23 Resistance 24 Resistance 25 Humidity sensor 26 Resistance

───────────────────────────────────────────────────── フロントページの続き (72)発明者 牧元 良一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 辻 哲次 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 多木 宏光 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryoichi Makimoto 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Hiromitsu Taki 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】湿度変化を電圧の変化に変換する湿度検出
回路と、前記湿度検出回路を駆動するための交流電圧を
印可する回路を備え、前記湿度検出回路は第1の感湿回
路と第2の感湿回路とが直列に接続され、前記第1の感
湿回路と前記第2の感湿回路との接続部の電圧を湿度検
出電圧として出力し、前記第1の感湿回路は湿度変化に
よって抵抗値が変化する第1の湿度センサと直列に第1
の抵抗と、更に、前記第1の湿度センサと並列に第2の
抵抗とからなる抵抗回路網で構成され、前記第2の感湿
回路は第3の抵抗と湿度変化によって抵抗値が変化する
第2の湿度センサとの並列回路で構成され、前記第1の
感湿回路と前記第2の感湿回路との接続部の電圧が、数
点の各湿度について直線的になるように前記第1の湿度
センサの抵抗値、前記第1、第2の抵抗値、前記第2の
湿度センサの抵抗値、第3の抵抗値を設定したことを特
徴とする湿度検出装置。
1. A humidity detecting circuit for converting a humidity change into a voltage change, and a circuit for applying an AC voltage for driving the humidity detecting circuit, wherein the humidity detecting circuit includes a first humidity sensing circuit and a first humidity sensing circuit. 2 humidity-sensitive circuits are connected in series, and the voltage at the connection between the first humidity-sensitive circuit and the second humidity-sensitive circuit is output as a humidity detection voltage, and the first humidity-sensitive circuit outputs humidity. The first humidity sensor whose resistance value changes due to the change is connected in series with the first humidity sensor.
And a second resistance in parallel with the first humidity sensor, and the second humidity sensing circuit has a third resistance and a resistance value that changes according to a change in humidity. It is configured by a parallel circuit with a second humidity sensor, and the voltage at the connecting portion between the first humidity sensing circuit and the second moisture sensing circuit is linear for several humidity points. A humidity detecting device, wherein the resistance value of the first humidity sensor, the first and second resistance values, the resistance value of the second humidity sensor, and the third resistance value are set.
【請求項2】第1項記載の第1の感湿回路は、少なくと
も温度変化に対して抵抗値が変わる抵抗と湿度変化で抵
抗値が変わる回路網を用いたことを特徴とする請求項1
記載の湿度検出装置。
2. The first moisture-sensitive circuit according to claim 1, wherein at least a resistance whose resistance value changes with temperature change and a circuit network whose resistance value changes with humidity change are used.
The humidity detection device described.
【請求項3】第1の感湿回路が第1の湿度センサと直列
に第2、第3の抵抗を接続し、更に前記第1の湿度セン
サと並列に接続された第3の抵抗とからなる回路網で構
成されたことを特徴とする請求項2記載の湿度検出装
置。
3. A first humidity-sensing circuit connects a second humidity resistor and a third resistor in series with the first humidity sensor, and further comprises a third resistor connected in parallel with the first humidity sensor. The humidity detecting apparatus according to claim 2, wherein the humidity detecting apparatus is configured by the following network.
JP04037628A 1992-02-25 1992-02-25 Humidity detector Expired - Fee Related JP3106660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04037628A JP3106660B2 (en) 1992-02-25 1992-02-25 Humidity detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04037628A JP3106660B2 (en) 1992-02-25 1992-02-25 Humidity detector

Publications (2)

Publication Number Publication Date
JPH05232055A true JPH05232055A (en) 1993-09-07
JP3106660B2 JP3106660B2 (en) 2000-11-06

Family

ID=12502908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04037628A Expired - Fee Related JP3106660B2 (en) 1992-02-25 1992-02-25 Humidity detector

Country Status (1)

Country Link
JP (1) JP3106660B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004530861A (en) * 2000-10-27 2004-10-07 マイン セイフティ アプライアンセス カンパニー Catalyst sensor
CN114353865A (en) * 2021-12-13 2022-04-15 广东盈科电子有限公司 Temperature and humidity detection circuit and temperature and humidity detection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004530861A (en) * 2000-10-27 2004-10-07 マイン セイフティ アプライアンセス カンパニー Catalyst sensor
JP4820528B2 (en) * 2000-10-27 2011-11-24 マイン セイフティ アプライアンセス カンパニー Catalyst sensor
CN114353865A (en) * 2021-12-13 2022-04-15 广东盈科电子有限公司 Temperature and humidity detection circuit and temperature and humidity detection method
CN114353865B (en) * 2021-12-13 2024-04-16 广东盈科电子有限公司 Temperature and humidity detection circuit and temperature and humidity detection method

Also Published As

Publication number Publication date
JP3106660B2 (en) 2000-11-06

Similar Documents

Publication Publication Date Title
JP2758458B2 (en) Measuring method and sensor for measuring relative concentration of gas or vapor
EP0798557B1 (en) Gas sensor and method of measuring quantity of specific compounds in measuring gas
JPH10239264A (en) Electric resistance type moisture sensor
US7924028B2 (en) Method and system for adjusting characteristics of integrated relative humidity sensor
JPS646691B2 (en)
JP4807252B2 (en) Humidity sensor device
JP3106660B2 (en) Humidity detector
JPS63103957A (en) Humidity detector
JP3310479B2 (en) Grain moisture meter
JPH0743340B2 (en) Oxygen concentration detector
JPH0228443Y2 (en)
JPS6135967Y2 (en)
JP3421192B2 (en) Method for measuring water vapor concentration by limiting current type gas sensor and apparatus for measuring water vapor concentration using the method
JPH0627011A (en) Measuring apparatus for humidity or specific gravity and temperature of liquid
JP2885581B2 (en) Temperature and humidity detection circuit
JPS6126885Y2 (en)
JPS6152945B2 (en)
JPH0437332B2 (en)
JPH07209247A (en) Gas detector with temperature compensating function forelectrochemical gas sensor
JPH0458143A (en) Water measuring instrument for grain
JPH0317233Y2 (en)
JPS593319A (en) Liquid level detector
JPH06265518A (en) Apparatus for detecting gas component
JPH0516527Y2 (en)
JPH0442770Y2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080908

LAPS Cancellation because of no payment of annual fees