JPH052278B2 - - Google Patents

Info

Publication number
JPH052278B2
JPH052278B2 JP61152641A JP15264186A JPH052278B2 JP H052278 B2 JPH052278 B2 JP H052278B2 JP 61152641 A JP61152641 A JP 61152641A JP 15264186 A JP15264186 A JP 15264186A JP H052278 B2 JPH052278 B2 JP H052278B2
Authority
JP
Japan
Prior art keywords
building
turbine
reactor
seismic
main steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61152641A
Other languages
Japanese (ja)
Other versions
JPS639896A (en
Inventor
Hidetaka Watanabe
Kazuhiro Aoshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP61152641A priority Critical patent/JPS639896A/en
Publication of JPS639896A publication Critical patent/JPS639896A/en
Publication of JPH052278B2 publication Critical patent/JPH052278B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、原子力発電所などの原子力プラント
の建屋に係り、特に建屋構造の簡素化を図り、設
計施工を簡易にする原子力プラント建屋に関す
る。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to a building for a nuclear power plant such as a nuclear power plant, and particularly to simplify the building structure and simplify design and construction. Regarding nuclear power plant buildings.

(従来の技術) わが国は世界有数の地震国であり、原子炉施設
は地震に対する安全性を充分保証するものでなけ
ればならない。原子力発電所においては、地震発
生時に、発電所周辺に居住する一般公衆および発
電所の従業員を放射線災害から防護するために、
全ての建物、構築物、機器配管系は発電所の安全
性を考慮した重要度に応じてクラス分類され、そ
れぞれの分類に従つた耐震設計基準に準拠して、
構造解析がなされた上で建設または製作されてい
る。
(Prior art) Japan is one of the world's most earthquake-prone countries, and nuclear reactor facilities must sufficiently guarantee earthquake safety. At nuclear power plants, in order to protect the general public living around the power plant and power plant employees from radiation hazards in the event of an earthquake,
All buildings, structures, and equipment piping systems are classified into classes according to their importance considering the safety of the power plant, and in accordance with the seismic design standards according to each classification.
It is constructed or manufactured after structural analysis.

原子力発電所の耐震設計を行なう施設区分は、
「発電用原子炉施設に関する耐震設計審査基準」
(原子力安全委員会)、「原子力発電所耐震設計技
術指針」(日本電気協会)に開示されているよう
に、地震により原子炉施設から漏出する可能性の
ある放射性物質の放散による環境への影響度、原
子炉施設としての機能の重要度などを総合的に勘
案して一般に次のような原則に基づいてクラス分
類されている。
The facility classification for seismic design of nuclear power plants is as follows:
“Seismic Design Review Standards for Power Reactor Facilities”
(Nuclear Safety Commission) and "Technical Guidelines for Seismic Design of Nuclear Power Plants" (Japan Electric Association), the impact on the environment due to the dispersion of radioactive materials that may leak from nuclear reactor facilities due to an earthquake. Generally, they are classified into classes based on the following principles, taking into consideration the degree of nuclear power generation and the importance of their function as a nuclear reactor facility.

クラスAs:格納容器、原子炉および一次系機
器、原子炉停止機構など、特に安全対策上
緊急で重要な施設。
Class A: Facilities that are especially urgent and important for safety measures, such as containment vessels, reactors and primary system equipment, and reactor shutdown mechanisms.

クラスA:自ら放射性物質を内蔵しているか、
または内蔵している施設に直接関係してお
り、機能喪失により放射性物質を外部に放
散する可能性のあるもの、およびこれらの
事態を防止するために必要なもの、並びに
事故発生時に外部に放散される放射性物質
による影響を低減させるために必要なもの
であつてその影響効果が大きいもの。例え
ば、制御室設備、排気筒、工学的安全施設
とその電源設備などが該当する。
Class A: Does it contain radioactive materials?
or those that are directly related to built-in facilities and have the possibility of dissipating radioactive materials to the outside due to loss of function, and those that are necessary to prevent these situations, and those that may be dissipated to the outside in the event of an accident. Items that are necessary to reduce the effects of radioactive substances and have large effects. Examples include control room equipment, exhaust stacks, engineering safety facilities and their power supply equipment.

クラスB:高放射性物質に関連する施設であつ
て、クラスAs,A以外の施設であり、例
えば原子炉補助設備、廃棄物処理設備、
BWRのタービンおよびタービン建屋、ク
ラスAの施設を収納する建物等が該当す
る。
Class B: Facilities related to highly radioactive materials other than Class As and A, such as reactor auxiliary equipment, waste treatment equipment, etc.
This applies to BWR turbines, turbine buildings, and buildings housing Class A facilities.

クラスC:クラスAs,AおよびBを除いた全
てのもので、一般産業施設と同等の安全性
を保持すればよいもの。
Class C: All facilities except Class As, A and B, which only need to maintain the same level of safety as general industrial facilities.

以上の重要度分類によると、タービン建屋1は
クラスBに属する設備を収納し、または支持する
構造物であることから、本来、前述した耐震設計
審査指針に基づきクラスB相当の静的地震力に対
して安全となるように構造設計を行なえばよいと
されていた。ところが、従来のおいては、第3図
および第4図に示すように、タービン建屋1に
は、タービン2の起動停止時および発電機負荷の
急変時に、原子炉発生蒸気をタービン2へ送給す
ることを停止するために使用する主蒸気止め弁3
と、タービン2へ送給する蒸気が過剰になつた場
合、その過剰蒸気をタービン2をバイパスさせて
直接主復水器4に送給する流路を開閉するタービ
ンバイパス弁5が収納されている。
According to the above importance classification, since Turbine Building 1 is a structure that houses or supports equipment belonging to Class B, it was originally designed to withstand static seismic force equivalent to Class B based on the seismic design review guidelines mentioned above. It was believed that the structural design should be designed to ensure safety. However, in the past, as shown in FIGS. 3 and 4, there is a system in the turbine building 1 that supplies reactor-generated steam to the turbine 2 when the turbine 2 starts or stops and when the generator load suddenly changes. Main steam stop valve 3 used to stop
When the steam to be supplied to the turbine 2 becomes excessive, a turbine bypass valve 5 is housed that opens and closes a passage for bypassing the turbine 2 and directly supplying the excess steam to the main condenser 4. .

この主蒸気止め弁3とタービンバイパス弁5
は、前記のクラス分類によると、原子炉冷却材圧
力バウンダリに直接接続される機器配管系に属
し、一次冷却材を内蔵しているか、または内蔵し
得る設備として扱われ、さらに共振のおそれがあ
るため、主蒸気管6から主蒸気止め弁3およびタ
ービンバイパス弁5までの機器配管系の耐震設計
基準はクラスBに準じるものの、併せて最強地震
による基準地震動S1に対して破壊しない強度を有
することが要求されている。ここで、基準地震動
S1とは、原子力プラントの建設地における過去の
地震の生起状況と建設地近傍に存在する活断層の
状況から規定される最強地震がもたらす地震動を
いう。
This main steam stop valve 3 and turbine bypass valve 5
According to the above classification, equipment belongs to equipment piping systems that are directly connected to the reactor coolant pressure boundary, is treated as equipment that contains or can contain primary coolant, and is also at risk of resonance. Therefore, although the seismic design standards for the equipment piping system from the main steam pipe 6 to the main steam stop valve 3 and the turbine bypass valve 5 conform to class B, it also has the strength to withstand the standard seismic motion S 1 caused by the strongest earthquake. That is required. Here, the standard earthquake ground motion
S 1 refers to the seismic motion caused by the strongest earthquake determined from the occurrence of past earthquakes at the construction site of a nuclear power plant and the status of active faults that exist near the construction site.

したがつて、タービン建屋1についても同一の
基準が適用され、静的地震力に対する検討を実施
する他に、さらに動的地震力に対する検討も要求
される。すなわち、主蒸気止め弁3およびタービ
ンバイパス弁5までの機器配管設備の支持構造物
となるタービン建屋1が動的地震力として基準地
震動S1に対しても充分耐震機能を維持できる構造
とすることが必要とされた。
Therefore, the same standards are applied to the turbine building 1, and in addition to conducting a study on static seismic force, consideration on dynamic seismic force is also required. In other words, the turbine building 1, which serves as a support structure for the equipment and piping equipment up to the main steam stop valve 3 and the turbine bypass valve 5, has a structure that can maintain sufficient seismic function against the standard seismic motion S1 as a dynamic seismic force. was needed.

(発明が解決しようとする問題点) 前記の通り、主蒸気止め弁およびタービンバイ
パス弁はタービン建屋内に配設されていたため、
タービン建屋はそれらの耐震設計基準に支配さ
れ、一般建屋より大きな地震力に耐える設計条件
が適用されていた。つまり、タービン建屋内に収
納される設備全体と比較すると、主蒸気止め弁3
およびタービンバイパス弁5までの機器配管系は
部分的な構成に過ぎないが、耐震設計基準の厳格
な適用に応じてタービン建屋全体に上記機器配管
系に準じる高度な基準が設定されていた。
(Problems to be Solved by the Invention) As mentioned above, since the main steam stop valve and the turbine bypass valve were located inside the turbine building,
Turbine buildings were subject to these seismic design standards, and were designed to withstand greater seismic forces than ordinary buildings. In other words, compared to the entire equipment housed in the turbine building, the main steam stop valve 3
Although the equipment piping system up to the turbine bypass valve 5 is only a partial configuration, high standards similar to the equipment piping system described above were set for the entire turbine building in accordance with the strict application of seismic design standards.

したがつて、静的地震力のみを検討する一般建
屋の場合と比較して、タービン建屋1は強固な構
造となり、耐震設計に要する設計工数が大幅に上
昇し、建屋建設に使用する鉄骨や鉄筋などの構造
材重量が増加し、この重量増加に比例して建屋工
事の工程が複雑化し、工期が長期化するなどの問
題点があつた。
Therefore, compared to the case of a general building where only static seismic force is considered, Turbine Building 1 has a strong structure, the number of design man-hours required for seismic design increases significantly, and the number of steel frames and reinforcing bars used in building construction increases significantly. The weight of structural materials increased, and the building construction process became more complex in proportion to this weight increase, leading to problems such as longer construction periods.

本発明は、上記問題点を解消するために発案さ
れたものであり、基準地震動S1に対する機能維持
検討が要求される設備をタービン建屋の外部に配
設することにより、タービン建屋自体に適用され
る耐震設計基準を緩和してタービン建屋の構造を
軽量化し、さらに耐震設計を簡素化し、使用材料
および建設費の低減を図り、建屋工事の工期を短
縮できる原子力プラント建屋を提供することを目
的とする。
The present invention was devised to solve the above-mentioned problems, and can be applied to the turbine building itself by arranging equipment that requires consideration of functional maintenance against standard seismic motion S1 outside the turbine building. The purpose of this project is to provide a nuclear power plant building that can lighten the structure of the turbine building by relaxing the seismic design standards, simplify the seismic design, reduce materials used and construction costs, and shorten the building construction period. do.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明に係る原子力プラント建屋は、タービン
建屋に原子炉建屋に隣接して建設した原子力プラ
ント建屋において、タービン建屋に対向する原子
炉建屋の側壁を部分的にタービン建屋方向に突出
させて突出部を形成する一方、タービン建屋の側
壁を部分的に内方向に凹陥せしめて凹陥部を形成
し、上記突出部を凹陥部に嵌入させ、その突出部
の内側に収納室を形成し、この収納室内に主蒸気
止め弁およびタービンバイパス弁を収納したこと
を要旨とする。
(Means for Solving the Problems) A nuclear power plant building according to the present invention is a nuclear power plant building constructed adjacent to a turbine building and a reactor building, in which a side wall of the reactor building facing the turbine building is partially A protruding portion is formed by protruding toward the turbine building, while a side wall of the turbine building is partially depressed inward to form a concave portion, the protruding portion is fitted into the concave portion, and the protruding portion is fitted inside the protruding portion. The main feature is that a storage chamber is formed, and a main steam stop valve and a turbine bypass valve are housed in this storage chamber.

(作用) 上記構成の原子力プラント建屋においては、タ
ービン建屋に形成した凹陥部に原子炉建屋の突出
部を嵌入させ、その突出部の内側に形成した収納
室内に、高度な耐震設計基準が適用される主蒸気
止め弁およびタービンバイパス弁を収納した構造
となるため、これらの弁類をタービン建屋の外部
に配設したことになる。そのため主蒸気止め弁お
よびタービンバイパス弁までの機器配管系をター
ビン建屋から構造的に分離できるので、タービン
建屋の耐震設計基準を緩和できる。したがつて、
タービン建屋の構造が簡略化し、原子力プラント
建屋全体の設計業務が簡略化し、また建設費が低
減できる。
(Function) In the nuclear power plant building with the above configuration, the protrusion of the reactor building is fitted into the recess formed in the turbine building, and advanced seismic design standards are applied to the storage chamber formed inside the protrusion. Since the structure houses the main steam stop valve and turbine bypass valve, these valves are placed outside the turbine building. Therefore, the equipment piping system up to the main steam stop valve and the turbine bypass valve can be structurally separated from the turbine building, making it possible to relax the seismic design standards for the turbine building. Therefore,
The structure of the turbine building is simplified, the design work for the entire nuclear power plant building is simplified, and construction costs can be reduced.

(実施例) 次に、本発明の一実施例を添付図面(第1図お
よび第2図)を参照して説明する。
(Example) Next, an example of the present invention will be described with reference to the accompanying drawings (FIGS. 1 and 2).

第1図は本発明に係る原子力プラント建屋の一
実施例を示す断面図である。第2図は第1図にお
ける−矢視部分断面図である。
FIG. 1 is a sectional view showing one embodiment of a nuclear power plant building according to the present invention. FIG. 2 is a partial sectional view taken along the - arrow in FIG. 1.

すなわち本実施例に係る原子力プラント建屋
は、タービン建屋1に対向する原子炉建屋8の側
壁を部分的にタービン建屋1方向に突出させて突
出部Aを形成する一方、タービン建屋1の側壁を
部分的に内方向に凹陥せしめて凹陥部Bを形成
し、上記突出部Aを凹陥部Bに嵌入させ、その突
出部Aの内側に収納室11を形成し、この収納室
11内に主蒸気止め弁3およびタービンバイパス
弁5を収納して構成される。
That is, in the nuclear power plant building according to this embodiment, the side wall of the reactor building 8 facing the turbine building 1 is partially protruded in the direction of the turbine building 1 to form the protrusion A, while the side wall of the turbine building 1 is partially protruded in the direction of the turbine building 1. The projection A is fitted into the recess B, and a storage chamber 11 is formed inside the projection A. A main steam stopper is provided in the storage chamber 11. It is configured to accommodate a valve 3 and a turbine bypass valve 5.

すなわち、原子炉7を収容する原子炉建屋8に
隣接して、タービン建屋1が建設される。タービ
ン建屋1内には、タービン・発電機架台9上に載
置されたタービン2およびタービン2の直下に配
設された主復水器4などが収容されている。通常
運転時、原子炉7にて発生した蒸気は、主蒸気管
6を通り、主蒸気隔離弁(図示せず)および主蒸
気止め弁3を経由してタービン2へ送給される。
一方、主蒸気止め弁3の一次側の主蒸気管6から
蒸気バイパス配管10が分岐される。この蒸気バ
イパス配管10は主復水器4に直結される一方、
その途中には、タービンバイパス弁5が設けられ
ている。
That is, the turbine building 1 is constructed adjacent to the reactor building 8 that houses the nuclear reactor 7. The turbine building 1 houses a turbine 2 mounted on a turbine/generator mount 9, a main condenser 4 disposed directly below the turbine 2, and the like. During normal operation, steam generated in the nuclear reactor 7 passes through the main steam pipe 6 and is sent to the turbine 2 via the main steam isolation valve (not shown) and the main steam stop valve 3.
On the other hand, a steam bypass pipe 10 is branched from the main steam pipe 6 on the primary side of the main steam stop valve 3. This steam bypass piping 10 is directly connected to the main condenser 4, while
A turbine bypass valve 5 is provided in the middle.

また、原子炉建屋8に対向するタービン建屋1
の側壁を部分的に内方向に凹陥せしめて凹陥部B
が形成される一方、原子炉建屋8は隣接するター
ビン建屋1の凹陥部Bと凹凸嵌合する側壁を有
し、原子炉建屋8からタービン建屋1方向に向つ
て部分的に突出する突出部A内に収納室11が形
成される。この収納室11に主蒸気止め弁3とタ
ービンバイパス弁5が収納され、支持固定され
る。
In addition, the turbine building 1 facing the reactor building 8
The side wall of B is partially recessed inward to form a recessed part B.
On the other hand, the reactor building 8 has a side wall that fits into the concave part B of the adjacent turbine building 1, and a protruding part A that partially protrudes from the reactor building 8 toward the turbine building 1. A storage chamber 11 is formed therein. The main steam stop valve 3 and the turbine bypass valve 5 are housed in this housing chamber 11 and are supported and fixed.

このように本実施例では、タービン建屋8の側
壁を部分的にタービン建屋1方向に突出させる構
造であり、原子炉建屋8の側壁全体をタービン建
屋1方向に移設する構造ではない。したがつて、
突出部Aの形成が原子炉建屋8全体の構造強度に
及ぼす影響も少なく、原子炉建屋8の容積増大化
および建設費の上昇につながるおそれも少ない。
As described above, this embodiment has a structure in which the side wall of the turbine building 8 partially protrudes in the direction of the turbine building 1, and is not a structure in which the entire side wall of the reactor building 8 is moved in the direction of the turbine building 1. Therefore,
The formation of the protrusion A has little effect on the overall structural strength of the reactor building 8, and is less likely to lead to an increase in the volume of the reactor building 8 and an increase in construction costs.

ここで、タービン建屋1に隣接して建設される
原子炉建屋8は、耐震重要度の分類上、クラスA
およびAsに属する機器配管系を多数収納してい
ることから、耐震設計審査指針に基づき、クラス
AおよびAs相当の地震力に対して安全となるよ
う構造設計がなされている。クラスAsの設備に
対しては、基準地震動S2をもたらす設計用限界地
震による地震荷重が作用しても機能の維持ができ
るよう構造解析がなされる。ここで、基準地震動
S2とは、原子力プラントが建設される地域の地震
地帯構造と近距離に存在する活断層の規模から規
定される限界地震がもたらす地震動をいい、前記
最強地震がもたらす基準地震動S1より大きい。
Here, the reactor building 8 constructed adjacent to the turbine building 1 is class A in terms of seismic importance.
Since the building houses a large number of equipment and piping systems belonging to Class A and As, the structure has been designed to be safe against seismic forces equivalent to Class A and As, based on seismic design review guidelines. For class A facilities, structural analysis is performed to ensure that they can maintain their functionality even when subjected to seismic loads due to the design limit earthquake that produces the standard seismic motion S 2 . Here, the standard earthquake ground motion
S 2 refers to the seismic motion caused by a critical earthquake defined by the seismic zone structure of the region where the nuclear power plant is constructed and the scale of active faults that exist in the vicinity, and is larger than the standard seismic motion S 1 caused by the strongest earthquake.

一方、主蒸気止め弁3およびタービンバイパス
弁5の耐震設計基準は、基準地震動S1に対する機
能維持検討を要するクラスBであり、原子炉建屋
に適用される高度なクラスAより基準が緩い。
On the other hand, the seismic design standards for the main steam stop valve 3 and the turbine bypass valve 5 are Class B, which requires functional maintenance consideration against standard seismic motion S1 , and the standards are looser than the advanced Class A applied to reactor buildings.

したがつて、主蒸気止め弁3およびタービンバ
イパス弁5を原子炉建屋8内に配設しても、原子
炉建屋8に適用される耐震設計基準の変更はな
く、その原子炉建屋の構造に及ぼす影響も少な
い。
Therefore, even if the main steam stop valve 3 and the turbine bypass valve 5 are installed in the reactor building 8, there will be no change in the seismic design standards applied to the reactor building 8, and no changes will be made to the structure of the reactor building. The impact is also small.

なお、主蒸気止め弁3、タービンバイパス弁5
と、タービン2との相対的な位置関係は、第3図
および第4図に示す従来例と同一である。したが
つて本実施例の構造を採用した場合でも、主蒸気
配管系の付属配管や弁類計器類の配置設計使用に
大きな変更はなく、従来と同一の配置設計手法を
踏襲することができる。主蒸気止め弁3およびタ
ービンバイパス弁5は、原子炉建屋8内に形成さ
れる収納室11内に収納される。したがつて、タ
ービン建屋1は、上記主蒸気止め弁3およびター
ビンバイパス弁5との構造的に分離される。
In addition, the main steam stop valve 3, the turbine bypass valve 5
The relative positional relationship between the turbine 2 and the turbine 2 is the same as in the conventional example shown in FIGS. 3 and 4. Therefore, even when the structure of this embodiment is adopted, there is no major change in the layout design and use of the attached piping of the main steam piping system, valves, and instruments, and the same layout design method as in the past can be followed. The main steam stop valve 3 and the turbine bypass valve 5 are housed in a housing chamber 11 formed within the reactor building 8 . Therefore, the turbine building 1 is structurally separated from the main steam stop valve 3 and the turbine bypass valve 5.

また、タービン建屋1方向に突出する突出部A
内に形成された収納室11の壁体12とタービン
建屋1の凹陥部Bを区画する壁体13との間に
は、相互の変位を吸収するために間隙14を設け
る。なお、間隙14への雨水等の侵入を防止する
ために、間隙の周囲に防水施工を行なうことは設
計上自明である。
Also, a protrusion A that protrudes in one direction of the turbine building.
A gap 14 is provided between the wall 12 of the storage chamber 11 formed therein and the wall 13 defining the recess B of the turbine building 1 in order to absorb mutual displacement. Note that in order to prevent rainwater etc. from entering the gap 14, it is obvious from the design point of view that waterproofing should be performed around the gap.

本実施例では、主蒸気止め弁3およびタービン
バイパス弁5を、原子炉建屋8から突出して形成
した突出部A内の収納室11に配設して、構造
上、タービン建屋1から分離したことにより、タ
ービン建屋1の耐震設計基準を従来の基準地震動
S1に対する機能維持の検討を含む設計基準から、
単なる静的地震力のみ考慮する設計基準に緩和で
きる。したがつて、複雑かつ高度な動的解析を含
む耐震設計が簡易化され、タービン建屋の構造も
簡略化し、原子力プラント建屋全体として、設計
施工が簡略化される。
In this embodiment, the main steam stop valve 3 and the turbine bypass valve 5 are arranged in a storage chamber 11 within a protrusion A formed to protrude from the reactor building 8, and are structurally separated from the turbine building 1. The seismic design standards for Turbine Building 1 were changed to the conventional standard seismic motion.
From design criteria including consideration of functional maintenance for S1 ,
The design criteria can be relaxed to consider only static seismic forces. Therefore, seismic design including complex and advanced dynamic analysis is simplified, the structure of the turbine building is also simplified, and the design and construction of the entire nuclear power plant building is simplified.

〔発明の効果〕 以上の説明の通り、本発明に係る原子力プラン
ト建屋によれば、原子炉建屋の側壁を部分的に突
出させて形成した突出部をタービン建屋の凹陥部
に嵌合せしめ、上記突出部内に形成した収納室内
に、高度な耐震設計基準が適用される主蒸気止め
弁およびタービンバイパス弁を収納し、これらの
弁類を実質的にタービン建屋の外部に配設したこ
とにより、タービン建屋自体の耐震設計基準が緩
和される。そのため、タービン建屋の構造が簡略
化されるので、耐震設計業務が簡易化する。ま
た、使用材料および建設費が低減され、さらに建
屋工事全体の工期が短縮されるなど大きな効用を
発揮する。
[Effects of the Invention] As described above, according to the nuclear power plant building according to the present invention, the protruding portion formed by partially protruding the side wall of the reactor building is fitted into the recessed portion of the turbine building, and the above-mentioned The main steam stop valve and turbine bypass valve, to which advanced seismic design standards are applied, are housed in the storage chamber formed within the protrusion, and by arranging these valves virtually outside the turbine building, the turbine Earthquake-resistant design standards for buildings themselves will be relaxed. Therefore, the structure of the turbine building is simplified, which simplifies the seismic design work. It also has great benefits, such as reducing the materials used and construction costs, and shortening the overall building construction period.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る原子力プラント建屋の一
実施例を示す断面図、第2図は第1図における
−矢視部分断面図、第3図は従来の原子力プラ
ント建屋の断面図、第4図は第3図における−
矢視断面図である。 1…タービン建屋、2…タービン、3…主蒸気
止め弁、4…主復水器、5…タービンバイパス
弁、6…主蒸気管、7…原子炉、8…原子炉建
屋、9…タービン・発電機架台、10…蒸気バイ
パス配管、11…収納室、12…収納室の壁体、
13…タービン建屋の壁体、14…間隙、A…突
出部、B…凹陥部。
FIG. 1 is a sectional view showing one embodiment of a nuclear power plant building according to the present invention, FIG. 2 is a partial sectional view taken in the direction of the - arrow in FIG. The figure is in Figure 3-
It is an arrow sectional view. 1... Turbine building, 2... Turbine, 3... Main steam stop valve, 4... Main condenser, 5... Turbine bypass valve, 6... Main steam pipe, 7... Nuclear reactor, 8... Reactor building, 9... Turbine. Generator mount, 10... Steam bypass piping, 11... Storage room, 12... Wall of storage room,
13...Wall of turbine building, 14...Gap, A...Protrusion, B...Concave part.

Claims (1)

【特許請求の範囲】[Claims] 1 タービン建屋を原子炉建屋に隣接して建設し
た原子力プラント建屋において、タービン建屋に
対向する原子炉建屋の側壁を部分的にタービン建
屋方向に突出させて突出部を形成する一方、ター
ビン建屋の側壁を部分的に内方向に凹陥せしめて
凹陥部を形成し、上記突出部を凹陥部に嵌入さ
せ、その突出部の内側に収納室を形成し、この収
納室内に主蒸気止め弁およびタービンバイパス弁
を収納したことを特徴とする原子力プラント建
屋。
1. In a nuclear power plant building in which the turbine building is constructed adjacent to the reactor building, the side wall of the reactor building facing the turbine building is partially projected toward the turbine building to form a protrusion, while the side wall of the turbine building is partially recessed inward to form a recessed part, the protruding part is fitted into the recessed part, a storage chamber is formed inside the protrusion, and a main steam stop valve and a turbine bypass valve are installed in this storage chamber. A nuclear power plant building characterized by housing.
JP61152641A 1986-07-01 1986-07-01 Housing for nuclear power plant Granted JPS639896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61152641A JPS639896A (en) 1986-07-01 1986-07-01 Housing for nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61152641A JPS639896A (en) 1986-07-01 1986-07-01 Housing for nuclear power plant

Publications (2)

Publication Number Publication Date
JPS639896A JPS639896A (en) 1988-01-16
JPH052278B2 true JPH052278B2 (en) 1993-01-12

Family

ID=15544845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61152641A Granted JPS639896A (en) 1986-07-01 1986-07-01 Housing for nuclear power plant

Country Status (1)

Country Link
JP (1) JPS639896A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664357A (en) * 2012-05-07 2012-09-12 中国电力科学研究院 Three-grade seismic fortification method for electrical equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963596A (en) * 1982-10-04 1984-04-11 株式会社日立製作所 Main steam stop valve structure of atomic power plant
JPS6228694A (en) * 1985-07-31 1987-02-06 株式会社日立製作所 Main steam system facility

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963596A (en) * 1982-10-04 1984-04-11 株式会社日立製作所 Main steam stop valve structure of atomic power plant
JPS6228694A (en) * 1985-07-31 1987-02-06 株式会社日立製作所 Main steam system facility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664357A (en) * 2012-05-07 2012-09-12 中国电力科学研究院 Three-grade seismic fortification method for electrical equipment

Also Published As

Publication number Publication date
JPS639896A (en) 1988-01-16

Similar Documents

Publication Publication Date Title
EP2091050B1 (en) Containment vessel and nuclear power plant therewith
CA1049665A (en) Nuclear reactor apparatus
CN103850483A (en) Main machine hall group arrangement method of nuclear power plant
Forsberg et al. Advanced reactors, passive safety, and acceptance of nuclear energy
JPH052278B2 (en)
JP3739868B2 (en) Nuclear power plant
Kim The Design Characteristics of Advanced Power Reactor 1400
JPS6375595A (en) Turbine housing
Frisch et al. Improving the safety of future nuclear fission power plants
JPH0348558Y2 (en)
Bang et al. A Review of Licensing Considerations for Changes of NPP due to NRHES Installation from a Nuclear Safety Perspective
JPH10282285A (en) Reactor building
EP3422361B1 (en) Turbine building and nuclear power plant
JP3481306B2 (en) Reactor building
Caira et al. MARS II: A design improvement to reduce construction time and cost
Moon et al. Development of the APR+ Auxiliary Building General Arrangement (GA)
JP2004037172A (en) Nuclear power plant
Sato et al. iB1350: Part 1—A Generation III. 7 Reactor iB1350 and Defense in Depth (DiD)
Katoh et al. Evaluation of External Event Effects on JSFR Fuel Handling System
Sütterlin et al. Probabilistic risk assessment of nuclear power plants for seismic events in the Federal Republic of Germany
Duncan et al. Antiseismic design of a PWR nuclear power station
Cho et al. Design concepts and status of the Korean next generation reactor (KNGR)
Nawrotzki Earthquake protection strategies for power plant equipment
Seidensticker Structural design aspects of innovative designs under development in the current US liquid metal cooled reactor program
Eckert et al. BACKFITTING OF INDEPENDENT RESIDUAL HEAT REMOVAL SYSTEMS IN WEST-GERMANY AND SWITZERLAND

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term