JPH05226579A - Heat-conducting substrate, semiconductor device using the heat-conducting substrate and manufacture of heat-conducting substrate - Google Patents

Heat-conducting substrate, semiconductor device using the heat-conducting substrate and manufacture of heat-conducting substrate

Info

Publication number
JPH05226579A
JPH05226579A JP4059385A JP5938592A JPH05226579A JP H05226579 A JPH05226579 A JP H05226579A JP 4059385 A JP4059385 A JP 4059385A JP 5938592 A JP5938592 A JP 5938592A JP H05226579 A JPH05226579 A JP H05226579A
Authority
JP
Japan
Prior art keywords
substrate
type semiconductor
heat transfer
heat
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4059385A
Other languages
Japanese (ja)
Inventor
Yoshihiro Hayashi
喜宏 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4059385A priority Critical patent/JPH05226579A/en
Publication of JPH05226579A publication Critical patent/JPH05226579A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent the characteristics of a semiconductor element from being influenced even when a heat-conducting substrate is made thin by a method wherein a plurality of semiconductor pairs utilizing the Peltier effect are arranged in such a way that heat is moved from the center to the peripheral part of the substrate. CONSTITUTION:A silicon oxide film 2 is formed on a silicon substrate 1; a recessed part is formed by an etching operation. An Si-Ge film is formed on the surface of the substrate; it is etched and removed; the Si-Ge is buried in the recessed part. After that, out of a plurality of buried Si-Ge regions, half of the regions are changed to p-type semiconductor element regions 4 by implanting B (boron) ions. The remaining half of the regions are changed to n-type semiconductor element regions 3 by implanting P (phosphorus) ions. The regions in which heat is moved by utilizing the Peltier effect are only a surface layer in which the p-type semiconductor element regions 4 and the n-type semiconductor element regions 3 are former. Consequently, when the substratum silicon substrate 1 is removed, it is possible to form a thin-film heat-conducting substrate whose efficiency is high.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体基板の構造、詳
しくは半導体素子を利用した伝熱基板および半導体装置
および伝熱基板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a semiconductor substrate, and more particularly to a heat transfer substrate using a semiconductor element, a semiconductor device and a method for manufacturing the heat transfer substrate.

【0002】[0002]

【従来の技術】トランジスタ層が縦方向に積層されてい
る多層構造デバイスを作成する方法の一つとして、CU
BIC(Cumulatively Bonded I
C)技術が知られている(林ら、Semiconduc
tor World 1990.9,pp58〜64参
照)。
2. Description of the Related Art A CU is one of the methods for producing a multi-layer structure device in which transistor layers are vertically stacked.
BIC (Cumulatively Bonded I)
C) Technology is known (Hayashi et al., Semiconduc
tor World 1990.9, pp 58-64.).

【0003】図12に、CUBIC技術による3次元L
SI形成スループロセスの工程断面図を示す。図におい
て、まず、通常のLSIプロセスを利用してバルクシリ
コン基板1上に、MOSFETからなる集積回路を形成
し、さらに選択CVD法を利用してMOSFETのMo
Si2/Al配線21上にタングステンバンプ22を形
成する(図12(a))。
FIG. 12 shows a three-dimensional L based on CUBIC technology.
The process sectional drawing of SI formation through process is shown. In the figure, first, an integrated circuit composed of a MOSFET is formed on the bulk silicon substrate 1 by using a normal LSI process, and then Mo of the MOSFET is formed by using a selective CVD method.
A tungsten bump 22 is formed on the Si 2 / Al wiring 21 (FIG. 12A).

【0004】このタングステンバンプ22は、デバイス
/デバイス間の接続電極として用いる。その後、MOS
FET形成面側に絶縁性のポリイミドを塗布し、その接
着層15を介して支持基板14に接着する。次に、MO
SFETの形成されたシリコン基板1の裏面より、選択
ポリッシングを行い、薄膜構造のNMOSFETを得る
(図12(b))。
This tungsten bump 22 is used as a connection electrode between devices. Then MOS
Insulating polyimide is applied to the FET formation surface side and adhered to the support substrate 14 via the adhesive layer 15. Next, MO
Selective polishing is performed from the back surface of the silicon substrate 1 on which the SFET is formed to obtain an NMOSFET having a thin film structure (FIG. 12B).

【0005】選択ポリッシングでは、シリコンの加工速
度に対してシリコン酸化物の加工速度が1000分の1
程度となるような加工液を用いる。このため、MOSF
ETのLOCOS酸化膜2の裏面まで加工面が達する
と、加工速度が著しく遅くなり、薄膜構造MOSFET
(厚さ:1μm〜2μm)あるいは薄膜集積回路17を
得ることができる。
In selective polishing, the processing speed of silicon oxide is 1/1000 of the processing speed of silicon.
Use a working fluid that provides a degree. Therefore, MOSF
When the processed surface reaches the back surface of the LOCOS oxide film 2 of ET, the processing speed becomes remarkably slow, and the thin film structure MOSFET
(Thickness: 1 μm to 2 μm) or the thin film integrated circuit 17 can be obtained.

【0006】次に、薄膜構造MOSFET17の表面側
(ここでは、n+poly−Si配線23あるいはMo
Si2/Al配線21に流れる電気信号を薄膜構造NM
OSFET裏面側に接続することを目的として、薄膜集
積回路17の裏面より、LOCOS酸化膜上に形成され
たポリシリ配線層23に至るスルーホール24および裏
面配線25を形成する(図12(c))。
Next, the surface side of the thin film structure MOSFET 17 (here, n + poly-Si wiring 23 or Mo is used).
The electric signal flowing through the Si 2 / Al wiring 21 is transferred to the thin film structure NM.
A through hole 24 and a backside wiring 25 are formed from the backside of the thin film integrated circuit 17 to the polysilicon wiring layer 23 formed on the LOCOS oxide film for the purpose of connecting to the backside of the OSFET (FIG. 12C). ..

【0007】さらに、裏面側デバイス接続極として、接
着層15のポリイミド膜にAu/In合金が埋め込まれ
た構造を有するAu/Inプール26を形成する。な
お、Au/Inプール26は、裏面W/Al配線25,
スルーホール24,ポリシリ配線23,MoSi2/A
l配線21を介して、薄膜集積回路17の表面に形成さ
れているタングステンバンプ22と、電気的に接続され
ていることに注意されたい。
Further, an Au / In pool 26 having a structure in which a polyimide film of the adhesive layer 15 is filled with an Au / In alloy is formed as a back surface side device connecting electrode. Note that the Au / In pool 26 includes the back surface W / Al wiring 25,
Through hole 24, polysilicon wiring 23, MoSi 2 / A
It should be noted that it is electrically connected to the tungsten bump 22 formed on the surface of the thin film integrated circuit 17 via the 1 wiring 21.

【0008】次に、薄膜構造MOSFETあるいは薄膜
集積回路17を単位として、順次デバイスをボンディン
グしてゆく。ここでは、赤外線顕微鏡を用い、下層デバ
イス16のMOSFET表面に形成されているタングス
テンバンプ22と、上層デバイスである薄膜構造MOS
FET裏面に形成されているAu/Inプール26との
位置合わせを行う(図12(d))。
Next, the devices are sequentially bonded using the thin film structure MOSFET or the thin film integrated circuit 17 as a unit. Here, using an infrared microscope, the tungsten bumps 22 formed on the MOSFET surface of the lower layer device 16 and the thin film structure MOS that is the upper layer device are used.
The alignment with the Au / In pool 26 formed on the back surface of the FET is performed (FIG. 12D).

【0009】位置合わせ後、Au/In合金が溶融する
温度以上に試料を昇温・加圧し、溶融状態のAu/In
プールにタングステンバンプを挿入させ、“ろう着”に
よるデバイス接続縦配線27にて下層デバイスと、上層
デバイスとが電気的に接続される(図12(e))。最
後に、支持基板14をエッチングにより除去することに
より、薄膜集積回路17が積層された多層構造ICを得
ている(図12(f))。
After the alignment, the sample is heated and pressurized to a temperature above the melting temperature of the Au / In alloy, and Au / In in the molten state is pressed.
Tungsten bumps are inserted into the pool, and the lower layer device and the upper layer device are electrically connected by the device connection vertical wiring 27 by "brazing" (FIG. 12E). Finally, the support substrate 14 is removed by etching to obtain a multi-layer structure IC in which the thin film integrated circuits 17 are stacked (FIG. 12 (f)).

【0010】[0010]

【発明が解決しようとする課題】かかる手段によって複
数の薄膜構造デバイスが積層された多層構造ICを得る
ことができるわけであるが、一般に多層構造ICの周辺
部には、熱伝導性の良い金属材料で入出力金属電極パッ
ドや金属縦配線(電源線やバス信号線)が形成してあ
り、かつ発熱源であるトランジスタ素子密度が低い。
By such means, it is possible to obtain a multilayer structure IC in which a plurality of thin film structure devices are laminated. Generally, a metal having good thermal conductivity is provided around the periphery of the multilayer structure IC. Input / output metal electrode pads and metal vertical wirings (power supply lines and bus signal lines) are formed of a material, and the density of transistor elements that are heat sources is low.

【0011】一方、多層構造IC中心部は、トランジス
タ密度が高く、かつ各薄膜構造デバイス層は、熱伝導性
の悪いポリイミド樹脂接着層で上面あるいは下面が覆わ
れているため、温度上昇が顕著になる。このため、トラ
ンジスタの正常動作が阻害されるといった問題点があっ
た。
On the other hand, in the central part of the multi-layered structure IC, the transistor density is high, and in each thin film structure device layer, the upper surface or the lower surface is covered with the polyimide resin adhesive layer having poor thermal conductivity, so that the temperature rise remarkably. Become. Therefore, there is a problem that the normal operation of the transistor is hindered.

【0012】本発明の目的は、ICの中心部に蓄積され
た熱を熱伝導性の良い周辺部に移動させるための構造お
よびその製造方法を提供することにある。
An object of the present invention is to provide a structure for moving heat accumulated in the central part of an IC to a peripheral part having good thermal conductivity, and a manufacturing method thereof.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するた
め、本発明による伝熱基板においては、n型半導体素子
領域とp型半導体素子領域との複数の接合対を有する伝
熱基板であって、n型半導体素子領域と、p型半導体素
子領域との接合対は基板の中心部より周辺部へ向けてペ
ルチェ効果により熱移動を生じさせるものである。
In order to achieve the above object, a heat transfer substrate according to the present invention is a heat transfer substrate having a plurality of junction pairs of an n-type semiconductor element region and a p-type semiconductor element region. , The junction pair of the n-type semiconductor element region and the p-type semiconductor element region causes heat transfer from the central portion of the substrate toward the peripheral portion by the Peltier effect.

【0014】また、伝熱基板は、2μm〜50μm程度
の厚さを有するものである。
The heat transfer substrate has a thickness of about 2 μm to 50 μm.

【0015】本発明による半導体装置においては、集積
回路基板と伝熱基板とが交互に積層され、周辺部に層間
接続縦配線,埋め込み金属フィラーを有する多層構造の
積層半導体装置であって、集積回路基板は、薄膜化され
たものであり、伝熱基板は、n型半導体素子領域とp型
半導体素子領域との複数の接合対を有し、基板の中心部
より周辺部に向けてペルチェ効果により熱移動を生じさ
せるものであり、層間接続縦配線、あるいは埋め込み金
属フィラーは、各層の伝熱基板上で周辺部に移動した熱
を放熱させるものである。
In the semiconductor device according to the present invention, an integrated circuit substrate and a heat transfer substrate are alternately laminated, and a multilayer semiconductor device having a multilayer structure having interlayer connection vertical wiring and a buried metal filler in the peripheral portion, The substrate is a thin film, and the heat transfer substrate has a plurality of junction pairs of an n-type semiconductor element region and a p-type semiconductor element region, and is formed by the Peltier effect from the central portion of the substrate toward the peripheral portion. The heat transfer is generated, and the interlayer connection vertical wiring or the embedded metal filler radiates the heat transferred to the peripheral portion on the heat transfer substrate of each layer.

【0016】本発明による伝熱基板の製造方法において
は、基板の表面に形成された絶縁膜に複数個の凹部を形
成する工程と、前記凹部にp型半導体およびn型半導体
を埋め込む工程と、前記p型半導体と前記n型半導体と
を金属配線で接続する工程とを有するものである。
In the method of manufacturing a heat transfer substrate according to the present invention, a step of forming a plurality of recesses in the insulating film formed on the surface of the substrate, a step of embedding a p-type semiconductor and an n-type semiconductor in the recesses, And a step of connecting the p-type semiconductor and the n-type semiconductor with a metal wiring.

【0017】[0017]

【作用】本発明に係る伝熱基板構造では、ペルチェ効果
を利用する複数の半導体素子対が基板中央部より周辺部
に熱が移動するように配置されている。この伝熱基板を
薄膜化しても半導体素子の特性に影響を及ぼさない範囲
内であれば、基板中央部から周辺部への熱移動効果が損
なわれることはない。
In the heat transfer substrate structure according to the present invention, a plurality of semiconductor element pairs utilizing the Peltier effect are arranged so that heat is transferred from the central portion of the substrate to the peripheral portion. Even if the heat transfer substrate is thinned, the effect of heat transfer from the central portion of the substrate to the peripheral portion is not impaired as long as it does not affect the characteristics of the semiconductor element.

【0018】この薄膜伝熱基板と薄膜集積回路基板とを
ポリイミドを用いて張り合わせ積層するとしても、得ら
れた積層半導体装置の中央部から周辺部への熱移動が可
能であり、さらに積層構造半導体装置の周辺部に形成し
てある層間金属縦配線や埋め込み金属フィラーを介して
効率良く外界に放熱させることが可能となる。
Even if the thin film heat transfer substrate and the thin film integrated circuit substrate are laminated by using polyimide, heat transfer from the central portion to the peripheral portion of the obtained laminated semiconductor device is possible, and the laminated semiconductor It is possible to efficiently dissipate heat to the outside through the inter-layer metal vertical wiring and the embedded metal filler formed in the peripheral portion of the device.

【0019】本発明による積層構造半導体装置において
は、薄膜集積回路基板を熱伝導性の悪い有機接着材を用
いて張り合わせ積層したとしても、回路動作による発熱
を効率よく外界に放熱させることができる。
In the laminated structure semiconductor device according to the present invention, even if the thin film integrated circuit substrates are laminated by using an organic adhesive having poor thermal conductivity, the heat generated by the circuit operation can be efficiently radiated to the outside.

【0020】[0020]

【実施例】以下に本発明の実施例を図によって説明す
る。実施例として、まずペルチェ効果を示す半導体対と
して、p型シリコン・ゲルマ(Si−Ge)とn型シリ
コン・ゲルマ半導体対を利用した伝熱基板について説明
する。
Embodiments of the present invention will be described below with reference to the drawings. As an example, first, a heat transfer substrate using a p-type silicon-german (Si-Ge) and an n-type silicon-german semiconductor pair as a semiconductor pair showing the Peltier effect will be described.

【0021】表1に、Si−Ge系材料の熱電特性を示
す(村上 欣一および西田 勲夫,“熱電半導体とその
応用”,日刊工業新聞社,ISBN4−526−024
54−6 C30 55,pp175参照)。
Table 1 shows the thermoelectric properties of Si-Ge materials (Kinichi Murakami and Isao Nishida, "Thermoelectric semiconductors and their applications", Nikkan Kogyo Shimbun, ISBN4-526-024.
54-6 C30 55, pp175).

【0022】[0022]

【表1】 [Table 1]

【0023】Si−Ge系材料のボロンあるいはリン等
の不純物を添加してp型半導体化あるいはn型半導体化
し、電流がn型半導体素子領域からp型半導体素子領域
に配線を施すことによりペルチェ効果により熱移動が生
じるわけである。
A Peltier effect is obtained by adding an impurity such as boron or phosphorus of a Si-Ge-based material into a p-type semiconductor or an n-type semiconductor, and applying a wiring from the n-type semiconductor element region to the p-type semiconductor element region. This causes heat transfer.

【0024】図1に示すがごとく、Si基板1上にシリ
コン酸化膜2が形成され、そのn型半導体素子領域3に
おいては、基板周辺部から中心に向かって電流が流れ、
かつp型半導体素子領域4においては、中心部から周辺
部に向かって電流7が流れるように半導体素子領域を設
置し、配線5を施すことにより、基板中心部から周辺部
に矢印で示すように熱流束6が生じる。
As shown in FIG. 1, a silicon oxide film 2 is formed on a Si substrate 1. In the n-type semiconductor element region 3, a current flows from the peripheral portion of the substrate toward the center,
In addition, in the p-type semiconductor element region 4, the semiconductor element region is installed so that the current 7 flows from the central portion to the peripheral portion, and the wiring 5 is provided so that the central portion of the substrate is surrounded by the peripheral portion as indicated by an arrow. Heat flux 6 occurs.

【0025】すなわち、図1に示した半導体装置は、中
心部から周辺部への熱流束6を生じさせる伝熱基板とな
る。
That is, the semiconductor device shown in FIG. 1 serves as a heat transfer substrate for generating the heat flux 6 from the central portion to the peripheral portion.

【0026】図2から図7に、図1に示した構造を有す
る伝熱基板を形成するための工程を示す。まず、シリコ
ン基板1にシリコン酸化膜2を形成し(図2)、シリコ
ン酸化膜2にエッチングにより凹部8を形成する(図
3)。
2 to 7 show steps for forming the heat transfer substrate having the structure shown in FIG. First, the silicon oxide film 2 is formed on the silicon substrate 1 (FIG. 2), and the recesses 8 are formed in the silicon oxide film 2 by etching (FIG. 3).

【0027】基板表面に蒸着法等によりSi−Ge膜9
を堆積し(図4)、凹部8以外の酸化膜2上のSi−G
e膜をフォトリソグラフィー工程と、エッチング工程に
より除去して前記凹部8にSi−Geを埋め込む。
The Si-Ge film 9 is formed on the surface of the substrate by vapor deposition or the like.
Is deposited (FIG. 4), and Si-G on the oxide film 2 other than the recess 8 is deposited.
The e film is removed by a photolithography process and an etching process to fill the recess 8 with Si—Ge.

【0028】なお、このSi−Ge膜の埋め込み構造を
得る方法として、酸化膜2上のSi−Ge膜9をポリッ
シングにより除去する方法を用いても良い。しかる後、
レジスト10によるフォトマスクを用いて複数個の埋め
込みSi−Ge領域の内、その半数個の領域にボロンを
イオン注入してp型半導体素子領域4とし(図5)、残
りの半数個の領域にリンをイオン注入してn型半導体素
子領域3とする(図6)。
As a method of obtaining the embedded structure of the Si-Ge film, a method of removing the Si-Ge film 9 on the oxide film 2 by polishing may be used. After that,
Of the plurality of embedded Si-Ge regions, a half of the plurality of embedded Si-Ge regions is ion-implanted into p-type semiconductor element regions 4 (FIG. 5) using the photomask formed by the resist 10, and the remaining half of the regions are formed. Phosphorus is ion-implanted to form the n-type semiconductor element region 3 (FIG. 6).

【0029】層間絶縁膜11を堆積した後、コンタクト
ホール12およびアルミ配線5を通常のフォトリソグラ
フィーおよびドライエッチングにより形成する(図
7)。
After depositing the interlayer insulating film 11, the contact hole 12 and the aluminum wiring 5 are formed by ordinary photolithography and dry etching (FIG. 7).

【0030】なお、層間絶縁膜11および素子分離酸化
膜2の熱抵抗を下げるため、それらの厚さをそれぞれ
0.5μm〜2μm程度と十分に薄膜化することが望ま
しい。
In order to reduce the thermal resistance of the interlayer insulating film 11 and the element isolation oxide film 2, it is desirable that the thickness of each of them be made as thin as 0.5 μm to 2 μm.

【0031】図7は、図1に示した伝熱基板の断面構造
図であるが、実際にペルチェ効果を利用して熱移動を生
じさせている領域は、厚さ数百ミクロンを有するシリコ
ン基板1上のp型半導体素子領域4およびn型半導体素
子領域3が形成されている表面層のみである。
FIG. 7 is a sectional structural view of the heat transfer substrate shown in FIG. 1. The region where heat is actually transferred utilizing the Peltier effect is a silicon substrate having a thickness of several hundreds of microns. 1 only on the surface layer on which the p-type semiconductor element region 4 and the n-type semiconductor element region 3 are formed.

【0032】従って、下地シリコン基板1を除去するこ
とにより、より効率の高い薄膜熱伝導基板とすることが
できる。図8に、下地シリコン基板1を研磨あるいはエ
ッチングにより除去することにより、厚さを2μmから
50μmとした薄膜伝熱基板13を示す。ここでは、p
型半導体4およびn型半導体3の素子分離酸化膜2下に
シリコン基板1の一部を残した場合を示したが、図9に
示すがごとく、全てのシリコン基板を除去しても良い。
ただし、この場合、機械的補強を目的として伝熱基板を
支持基板14に接着層15を介して接着した後、伝熱基
板を薄膜化する必要がある。
Therefore, by removing the base silicon substrate 1, a highly efficient thin film heat conduction substrate can be obtained. FIG. 8 shows a thin film heat transfer substrate 13 having a thickness of 2 μm to 50 μm by removing the base silicon substrate 1 by polishing or etching. Here, p
Although the case where a part of the silicon substrate 1 is left under the element isolation oxide film 2 of the type semiconductor 4 and the n-type semiconductor 3 is shown, as shown in FIG. 9, all the silicon substrates may be removed.
However, in this case, it is necessary to reduce the thickness of the heat transfer substrate after the heat transfer substrate is bonded to the support substrate 14 via the adhesive layer 15 for the purpose of mechanical reinforcement.

【0033】図10(a)に、集積回路16の形成され
ているシリコン基板1に、薄膜伝熱基板13と、薄膜集
積回路17とを絶縁性接着層15を介して張り合わせた
積層構造半導体装置の断面図を示す。薄膜集積回路17
は、従来の技術を示す図12に示したように、集積回路
が形成されてシリコン基板を選択ポリッシング法により
薄膜化することにより得られる。
FIG. 10A shows a laminated structure semiconductor device in which a thin film heat transfer substrate 13 and a thin film integrated circuit 17 are bonded to a silicon substrate 1 on which an integrated circuit 16 is formed with an insulating adhesive layer 15 in between. FIG. Thin film integrated circuit 17
12 is obtained by forming an integrated circuit and thinning a silicon substrate by a selective polishing method, as shown in FIG. 12 showing a conventional technique.

【0034】かかる積層半導体装置の構造の特徴は、回
路動作時に発熱するMOSFET等の半導体集積回路素
子形成領域18を積層半導体装置中央部に配置し、その
周辺部に熱伝導性の良い金属材料からなる層間接続縦配
線19や、埋め込み金属フィラー20を形成して中央部
よりもその周辺部の熱伝導性を高くしてみることであ
る。
A feature of the structure of such a laminated semiconductor device is that a semiconductor integrated circuit element forming region 18 such as a MOSFET that generates heat during circuit operation is arranged in the central portion of the laminated semiconductor device, and a peripheral portion thereof is made of a metal material having good thermal conductivity. By forming the inter-layer connection vertical wiring 19 and the embedded metal filler 20 to be formed, the thermal conductivity of the peripheral portion is made higher than that of the central portion.

【0035】このような積層構造半導体装置の構造をと
ることで、図10(b)に示すがごとく半導体装置中央
部で発生した熱を薄膜伝熱基板13により、周辺部に移
動させ、図10(b)では、図示を略しているが、周辺
部に形成してある層間金属縦配線や埋め込み金属フィラ
ーを通して放熱させる。
By taking such a structure of the laminated structure semiconductor device, as shown in FIG. 10B, the heat generated in the central part of the semiconductor device is moved to the peripheral part by the thin film heat transfer substrate 13, and the heat is generated. In (b), although not shown, heat is dissipated through the interlayer metal vertical wiring and the embedded metal filler formed in the peripheral portion.

【0036】なお、上述した積層半導体装置の実施例で
は、バルクシリコン基板に形成された集積回路上に、薄
膜伝熱基板13と薄膜集積回路17とを張り合わせた場
合を示したが、図11に示すがごとく、さらに多層構造
の積層半導体装置に適応できることは自明である。
In the embodiment of the laminated semiconductor device described above, the thin film heat transfer substrate 13 and the thin film integrated circuit 17 are attached to each other on the integrated circuit formed on the bulk silicon substrate. As shown, it is obvious that it can be applied to a stacked semiconductor device having a multilayer structure.

【0037】また、シリコン集積回路製造プロセスとの
整合性を加味して、ペルチェ効果を利用する半導体とし
てSi−Geを使用したが、Si−Ge以外の材料、例
えばBi−Te−Sb系材料でも良いことは自明であ
る。
Although Si-Ge was used as a semiconductor utilizing the Peltier effect in consideration of compatibility with the silicon integrated circuit manufacturing process, materials other than Si-Ge, for example, Bi-Te-Sb-based materials are also used. Good things are self-evident.

【0038】また、ペルチェ効果を利用するp型および
n型半導体素子対の数には制限はないことは自明である
が、ただし、熱移動の方向を基板中心から周辺部へ移動
させるには、少なくともp型半導体素子領域では基板中
心から周辺部へ電流が流れ、一方n型半導体素子領域で
は周辺部から中心部へ流れるようにしておく必要があ
る。
It is obvious that the number of p-type and n-type semiconductor element pairs utilizing the Peltier effect is not limited, but in order to move the heat transfer direction from the substrate center to the peripheral portion, At least in the p-type semiconductor element region, it is necessary to allow the current to flow from the center of the substrate to the peripheral portion, while in the n-type semiconductor element region, to flow from the peripheral portion to the central portion.

【0039】[0039]

【発明の効果】以上述べたように本発明を適用するなら
ば、ペルチェ効果を利用して基板中央部から周辺部へと
熱移動させる伝熱基板を形成することができる。さら
に、薄膜半導体集積回路基板を張り合わせて得られる積
層構造半導体装置に薄膜伝熱基板を組み込むことによ
り、半導体装置中央部で発生した熱を周辺部に移動さ
せ、さらに周辺部に形成してある層間金属縦配線や埋め
込み金属フィラーを介して放熱させることを可能ならし
める。
As described above, if the present invention is applied, it is possible to form a heat transfer substrate that transfers heat from the central portion of the substrate to the peripheral portion by utilizing the Peltier effect. Furthermore, by incorporating a thin film heat transfer substrate into a laminated structure semiconductor device obtained by laminating thin film semiconductor integrated circuit substrates, the heat generated in the central part of the semiconductor device is transferred to the peripheral part, and the interlayer formed in the peripheral part is further transferred. It is possible to dissipate heat through metal vertical wiring and embedded metal filler.

【0040】すなわち、半導体装置において、発熱によ
る温度上昇により動作特性が劣化するのは主に中央部に
形成されている半導体集積回路素子領域であることに着
目し、薄膜伝熱基板を用いて半導体集積回路素子部から
の熱を接続縦配線形成領域である周辺部へ移動ならしめ
ている。
That is, in the semiconductor device, the operation characteristics are deteriorated due to the temperature rise due to heat generation mainly in the semiconductor integrated circuit element region formed in the central portion, and the semiconductor is formed by using the thin film heat transfer substrate. The heat from the integrated circuit element portion is transferred to the peripheral portion, which is the connection vertical wiring formation region.

【0041】このことにより、放熱特性の問題で積層数
に限界があるとされていた積層半導体装置の課題を解決
し、より多層・高密度の積層半導体装置の設計を可能な
らしめるものである。
This solves the problem of the stacked semiconductor device, which has been limited in the number of stacked layers due to the problem of heat dissipation characteristics, and enables the design of a stacked semiconductor device with a higher number of layers and a higher density.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を説明するための伝熱基板の斜
視図である。
FIG. 1 is a perspective view of a heat transfer board for explaining an embodiment of the present invention.

【図2】本発明の実施例に係わる製造方法を説明するた
めの断面図である。
FIG. 2 is a cross-sectional view for explaining the manufacturing method according to the embodiment of the present invention.

【図3】本発明の実施例に係わる製造方法を説明するた
めの断面図である。
FIG. 3 is a cross-sectional view for explaining the manufacturing method according to the embodiment of the present invention.

【図4】本発明の実施例に係わる製造方法を説明するた
めの断面図である。
FIG. 4 is a cross-sectional view for explaining the manufacturing method according to the embodiment of the present invention.

【図5】本発明の実施例に係わる製造方法を説明するた
めの断面図である。
FIG. 5 is a sectional view for explaining the manufacturing method according to the embodiment of the present invention.

【図6】本発明の実施例に係わる製造方法を説明するた
めの断面図である。
FIG. 6 is a sectional view for explaining the manufacturing method according to the embodiment of the present invention.

【図7】本発明の実施例に係わる製造方法を説明するた
めの断面図である。
FIG. 7 is a cross-sectional view for explaining the manufacturing method according to the embodiment of the present invention.

【図8】本発明の実施例を説明するための薄膜熱伝基板
の断面図である。
FIG. 8 is a cross-sectional view of a thin film heat transfer substrate for explaining an embodiment of the present invention.

【図9】本発明の実施例を説明するための薄膜熱伝基板
の断面図である。
FIG. 9 is a cross-sectional view of a thin film heat transfer substrate for explaining an embodiment of the present invention.

【図10】(a),(b)は、本発明の実施例に係わる
積層半導体装置の構造および熱の流れ方向を説明するた
めの断面図である。
10A and 10B are cross-sectional views for explaining a structure and a heat flow direction of a laminated semiconductor device according to an example of the present invention.

【図11】本発明の実施例を発展・応用させた積層半導
体装置の構造を説明するための断面図である。
FIG. 11 is a cross-sectional view for explaining the structure of a laminated semiconductor device which is an embodiment of the present invention developed and applied.

【図12】従来の多層構造半導体装置の製造方法を説明
するための断面図である。
FIG. 12 is a cross-sectional view for explaining the conventional method for manufacturing a multilayer-structure semiconductor device.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 シリコン酸化膜 3 n型半導体素子領域 4 p型半導体素子領域 5 金属配線 6 熱の流れ 7 電流の流れ 8 シリコン酸化膜に形成された凹部 9 Si−Ge膜 10 レジスト 11 層間絶縁膜 12 コンタクトホール 13 薄膜伝熱基板 14 支持基板 15 絶縁性接着層(ポリイミド) 16 シリコン基板表面層に形成された集積回路 17 薄膜集積回路 18 半導体集積回路素子形成領域 19 層間接続縦配線 20 埋め込み金属フィラー DESCRIPTION OF SYMBOLS 1 Silicon substrate 2 Silicon oxide film 3 n-type semiconductor element region 4 p-type semiconductor element region 5 Metal wiring 6 Heat flow 7 Current flow 8 Recesses formed in silicon oxide film 9 Si-Ge film 10 Resist 11 Interlayer insulating film 12 Contact Hole 13 Thin Film Heat Transfer Substrate 14 Support Substrate 15 Insulating Adhesive Layer (Polyimide) 16 Integrated Circuit Formed on Silicon Substrate Surface Layer 17 Thin Film Integrated Circuit 18 Semiconductor Integrated Circuit Element Forming Area 19 Interlayer Connection Vertical Wiring 20 Embedded Metal Filler

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 n型半導体素子領域とp型半導体素子領
域との複数の接合対を有する伝熱基板であって、 n型半導体素子領域と、p型半導体素子領域との接合対
は基板の中心部より周辺部へ向けてペルチェ効果により
熱移動を生じさせるものであることを特徴とする伝熱基
板。
1. A heat transfer substrate having a plurality of junction pairs of an n-type semiconductor element region and a p-type semiconductor element region, wherein the junction pair of the n-type semiconductor element region and the p-type semiconductor element region is of the substrate. A heat transfer board characterized by causing heat transfer from the central part to the peripheral part by the Peltier effect.
【請求項2】 伝熱基板は、2μm〜50μm程度の厚
さを有するものであることを特徴とする請求項1に記載
の伝熱基板。
2. The heat transfer board according to claim 1, wherein the heat transfer board has a thickness of about 2 μm to 50 μm.
【請求項3】 集積回路基板と伝熱基板とが交互に積層
され、周辺部に層間接続縦配線,埋め込み金属フィラー
を有する多層構造の積層半導体装置であって、 集積回路基板は、薄膜化されたものであり、 伝熱基板は、n型半導体素子領域とp型半導体素子領域
との複数の接合対を有し、基板の中心部より周辺部に向
けてペルチェ効果により熱移動を生じさせるものであ
り、 層間接続縦配線、あるいは埋め込み金属フィラーは、各
層の伝熱基板上で周辺部に移動した熱を放熱させるもの
であることを特徴とする半導体装置。
3. A laminated semiconductor device having a multilayer structure in which an integrated circuit substrate and a heat transfer substrate are alternately laminated, and an interlayer connection vertical wiring and a buried metal filler are provided in a peripheral portion, wherein the integrated circuit substrate is thinned. The heat transfer substrate has a plurality of junction pairs of an n-type semiconductor element region and a p-type semiconductor element region, and causes heat transfer from the central portion of the substrate toward the peripheral portion by the Peltier effect. The semiconductor device is characterized in that the interlayer connection vertical wiring or the embedded metal filler radiates the heat transferred to the peripheral portion on the heat transfer substrate of each layer.
【請求項4】 基板の表面に形成された絶縁膜に複数個
の凹部を形成する工程と、 前記凹部にp型半導体およびn型半導体を埋め込む工程
と、 前記p型半導体と前記n型半導体とを金属配線で接続す
る工程とを有することを特徴とする伝熱基板の製造方
法。
4. A step of forming a plurality of recesses in an insulating film formed on a surface of a substrate, a step of embedding a p-type semiconductor and an n-type semiconductor in the recesses, the p-type semiconductor and the n-type semiconductor And a step of connecting them with metal wiring.
JP4059385A 1992-02-13 1992-02-13 Heat-conducting substrate, semiconductor device using the heat-conducting substrate and manufacture of heat-conducting substrate Pending JPH05226579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4059385A JPH05226579A (en) 1992-02-13 1992-02-13 Heat-conducting substrate, semiconductor device using the heat-conducting substrate and manufacture of heat-conducting substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4059385A JPH05226579A (en) 1992-02-13 1992-02-13 Heat-conducting substrate, semiconductor device using the heat-conducting substrate and manufacture of heat-conducting substrate

Publications (1)

Publication Number Publication Date
JPH05226579A true JPH05226579A (en) 1993-09-03

Family

ID=13111766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4059385A Pending JPH05226579A (en) 1992-02-13 1992-02-13 Heat-conducting substrate, semiconductor device using the heat-conducting substrate and manufacture of heat-conducting substrate

Country Status (1)

Country Link
JP (1) JPH05226579A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436467A (en) * 1994-01-24 1995-07-25 Elsner; Norbert B. Superlattice quantum well thermoelectric material
US5550387A (en) * 1994-01-24 1996-08-27 Hi-Z Corporation Superlattice quantum well material
JP2004207385A (en) * 2002-12-24 2004-07-22 Rohm Co Ltd Mask, its manufacturing method, and method of manufacturing semiconductor device using the same
JP2011526081A (en) * 2008-06-27 2011-09-29 クゥアルコム・インコーポレイテッド Active thermal control for stacked IC devices
JP2013191753A (en) * 2012-03-14 2013-09-26 Fujitsu Ltd Semiconductor device and method for using the same
JP2014204123A (en) * 2013-04-09 2014-10-27 ハーマン ベッカー オートモーティブ システムズ ゲーエムベーハー Printed circuit board integrated thermoelectric cooler/heater

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436467A (en) * 1994-01-24 1995-07-25 Elsner; Norbert B. Superlattice quantum well thermoelectric material
US5550387A (en) * 1994-01-24 1996-08-27 Hi-Z Corporation Superlattice quantum well material
JP2004207385A (en) * 2002-12-24 2004-07-22 Rohm Co Ltd Mask, its manufacturing method, and method of manufacturing semiconductor device using the same
US7344805B2 (en) 2002-12-24 2008-03-18 Rohm Co., Ltd. Mask and method for producing thereof and a semiconductor device using the same
JP2011526081A (en) * 2008-06-27 2011-09-29 クゥアルコム・インコーポレイテッド Active thermal control for stacked IC devices
KR101318842B1 (en) * 2008-06-27 2013-10-17 퀄컴 인코포레이티드 Active thermal control for stacked ic devices
US8598700B2 (en) 2008-06-27 2013-12-03 Qualcomm Incorporated Active thermal control for stacked IC devices
US8987062B2 (en) 2008-06-27 2015-03-24 Qualcomm Incorporated Active thermal control for stacked IC devices
EP2304792B1 (en) * 2008-06-27 2020-03-11 QUALCOMM Incorporated Active thermal control for stacked ic devices
JP2013191753A (en) * 2012-03-14 2013-09-26 Fujitsu Ltd Semiconductor device and method for using the same
JP2014204123A (en) * 2013-04-09 2014-10-27 ハーマン ベッカー オートモーティブ システムズ ゲーエムベーハー Printed circuit board integrated thermoelectric cooler/heater

Similar Documents

Publication Publication Date Title
US7997087B2 (en) Thin film thermoelectric devices for hot-spot thermal management in microprocessors and other electronics
Das et al. Technology, performance, and computer-aided design of three-dimensional integrated circuits
US8030113B2 (en) Thermoelectric 3D cooling
US7344959B1 (en) Metal filled through via structure for providing vertical wafer-to-wafer interconnection
EP3203507B1 (en) Semiconductor structure and fabrication method thereof
TWI427700B (en) Method of fabricating semiconductor device with three-dimensional stacked structure
US7855101B2 (en) Layer transfer process and functionally enhanced integrated circuits produced thereby
EP0206696B1 (en) Multi-layer semiconductor device
KR101554686B1 (en) A semiconductor device comprising an in-chip active heat transfer system
TW201013801A (en) 3D integrated circuit device fabrication using interface wafer as permanent carrier
JP2012156514A (en) Three dimensional device integration method and integrated device
JPS6281745A (en) Lsi semiconductor device in wafer scale and manufacture thereof
JP2005109498A (en) Three dimensional cmos integrated circuit having device layer constituted on wafer with different crystal orientation
WO2007037106A1 (en) Method for manufacturing integrated circuit device having three-dimensional multilayer structure
JP5355863B2 (en) Three-dimensional semiconductor device manufacturing method, substrate product manufacturing method, substrate product, and three-dimensional semiconductor device
US9099427B2 (en) Thermal energy dissipation using backside thermoelectric devices
US20060289988A1 (en) Integrated circuit with heat conducting structures for localized thermal control
JPH11168157A (en) Multi-chip semiconductor device
JPH05226579A (en) Heat-conducting substrate, semiconductor device using the heat-conducting substrate and manufacture of heat-conducting substrate
JP3048686B2 (en) Semiconductor device and manufacturing method thereof
JP2002334967A (en) Three-dimensional semiconductor chip
JP4483123B2 (en) Three-dimensional semiconductor chip and manufacturing method thereof
TWI746213B (en) Chip package structure and method for forming the same
TW202240842A (en) Multi-tier backside power delivery network for dense gate-on-gate 3d logic
KR20220079482A (en) Inter-tier power delivery network (pdn) for dense gate-on-gate 3d logic integration