JPH05226258A - Plasma generation apparatus - Google Patents

Plasma generation apparatus

Info

Publication number
JPH05226258A
JPH05226258A JP2560192A JP2560192A JPH05226258A JP H05226258 A JPH05226258 A JP H05226258A JP 2560192 A JP2560192 A JP 2560192A JP 2560192 A JP2560192 A JP 2560192A JP H05226258 A JPH05226258 A JP H05226258A
Authority
JP
Japan
Prior art keywords
electrodes
electrode
plasma
semiconductor substrate
plasma generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2560192A
Other languages
Japanese (ja)
Inventor
Katsumi Morita
勝巳 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Japan Inc
Original Assignee
Applied Materials Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Japan Inc filed Critical Applied Materials Japan Inc
Priority to JP2560192A priority Critical patent/JPH05226258A/en
Publication of JPH05226258A publication Critical patent/JPH05226258A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To obtain a plasma generation apparatus wherein it is small-sized, its efficiency is high and it causes no plasma damage. CONSTITUTION:A plurality of face-shaped electrodes 3 which have been arranged so as to be faced are installed inside a chamber 1. Out of the electrodes, the electrodes in an every other position are grouped as a first set and the remaining electrodes in every the other position are grouped as a second set. A high-frequency power supply 8 is connected across the electrodes in the first and second sets. A process gas is introduced into gaps formed by the electrodes. The electrodes may be constituted of concentric cylindrical electrodes. Since the large-area electrodes can be obtained by using small electrodes according to this structure, the sputtering phenomenon of the electrodes is not caused even when they are operated at high electric power. Since a plasma generation part is separated from a semiconductor substrate, no plasma damage is caused to the semiconductor substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造装置等の気
相反応技術におけるプロセスガスの高度の活性化技術に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high level activation technology of a process gas in a gas phase reaction technology such as a semiconductor manufacturing apparatus.

【0002】[0002]

【従来技術】半導体製造技術における気相でのエッチン
グ処理、アッシング処理または薄膜堆積処理等において
は、必要なガスを高濃度に活性化して、半導体基板へ均
一に供給する必要がある。この時プラズマから半導体基
板のダメージを防ぐことも必要である。
2. Description of the Related Art In the gas phase etching process, ashing process, thin film deposition process and the like in semiconductor manufacturing technology, it is necessary to activate a necessary gas to a high concentration and to uniformly supply it to a semiconductor substrate. At this time, it is also necessary to prevent the semiconductor substrate from being damaged by the plasma.

【0003】この目的のため、従来図3に示すように並
行平板方式、図4に示すようなバレル型方式及び図5に
示すようなECR方式の装置が用いられていた。しか
し、図3のような並行平板型装置では半導体基板は常に
表面がプラズマに曝されているためプラズマからのダメ
ージが問題となる。また活性化ガス粒子量を増加するた
めに印加電力を増加すると、電極面積が小さいためパワ
ー密度も増加して基板へのダメージが増大するという問
題があった。
For this purpose, conventionally, a parallel plate system as shown in FIG. 3, a barrel type system as shown in FIG. 4 and an ECR system as shown in FIG. 5 have been used. However, in the parallel plate type device as shown in FIG. 3, the surface of the semiconductor substrate is always exposed to the plasma, so that damage from the plasma becomes a problem. Further, when the applied power is increased to increase the amount of activated gas particles, there is a problem in that the electrode area is small, so that the power density is increased and damage to the substrate is increased.

【0004】図4のようなバレル型装置ではエッチトン
ネルの使用により基板は直接プラズマに曝されないの
で、プラズマからのダメージは無いが、やはり印加電力
量を上げるとエッチトンネル構成材のスパッタリングが
発生し、基板への汚染問題が生じた。更に大口径基板に
対する活性化ガスの供給の均一性に問題があった。図5
のようなECR方式の装置では、ダメージや均一性の点
では有利であるが、装置が大型化して複雑となり保守が
面倒になるばかりか、装置の価格が高価になるという問
題があった。
In the barrel type apparatus as shown in FIG. 4, since the substrate is not directly exposed to the plasma due to the use of the etch tunnel, there is no damage from the plasma. , There was a problem of contamination on the substrate. Further, there is a problem in the uniformity of the supply of the activation gas to the large diameter substrate. Figure 5
Such an ECR type device is advantageous in terms of damage and uniformity, but there is a problem that the device becomes large and complicated, maintenance is troublesome, and the price of the device becomes expensive.

【0005】[0005]

【本発明の解決すべき課題】本発明は、従来装置の有す
る欠点を改善し、小型で高効率であり、プラズマダメー
ジのないプラズマ発生装置を得ることを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a plasma generator which is small in size, has high efficiency, and is free from plasma damage, by improving the drawbacks of the conventional device.

【0006】[0006]

【課題を解決するための手段】本発明は、必要真空度を
保つことのできる真空チャンバー内に複数の面状電極を
対向して配置し、一つ置きの電極を第1の組とし、他の
一つ置きの電極を第2の組として、これら第1の組と第
2の組の電極間に高周波電源を接続し、且つ前記電極に
よって作られる間隙にプロセスガスを導入するようにし
たプラズマ発生装置である。
According to the present invention, a plurality of planar electrodes are arranged to face each other in a vacuum chamber capable of maintaining a required degree of vacuum, and every other electrode constitutes a first set, and A second set of electrodes of every other electrode, a high frequency power source is connected between the electrodes of the first and second sets, and a process gas is introduced into the gap created by the electrodes. It is a generator.

【0007】[0007]

【実施例】以下、本発明の実施例について、図面を参照
して説明する。図1は本発明によるプラズマ発生装置の
断面図である。図2(A)及び(B)は電極構造の斜視
図で、(A)は表面が不動態化された平面状の電極を並
行して配列したものであり、(B)は同様な円筒状電極
を同心円状に配列したものである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a plasma generator according to the present invention. 2 (A) and 2 (B) are perspective views of the electrode structure, (A) is a parallel array of planar electrodes whose surfaces are passivated, and (B) is a similar cylindrical shape. The electrodes are arranged concentrically.

【0008】図1においてチャンバー1内の上部に平面
状の電極板3を複数枚並行に、それぞれ隣合う電極板の
間に間隙を設けて配列し、これらの電極板のうち一つ置
きの電極板を第1の組の電極とし、他の一つ置きの電極
を第2の組の電極とし、第1と第2の組の電極間に高周
波電源を接続している。この電極板は2枚以上であれば
奇数枚でも差し支えない。隣合う電極板の間に設けられ
た間隙にプロセスガスを流入できるように、プロセスガ
ス導入ノズル2が設けられている。チャンバー1内の下
部には基板ホルダー4がありその上に半導体基板5が載
置されると共に、基板ホルダー4の下部に冷却(加熱)
装置がある。更に、チャンバー1には廃ガスを除去する
ための排気口7が設けてある。
In FIG. 1, a plurality of flat electrode plates 3 are arranged in parallel in the upper part of the chamber 1 with a gap provided between adjacent electrode plates. The first set of electrodes is used, the other electrode is used as the second set of electrodes, and a high frequency power supply is connected between the first and second sets of electrodes. This electrode plate may be an odd number if it is two or more. A process gas introduction nozzle 2 is provided so that the process gas can flow into a gap provided between adjacent electrode plates. A substrate holder 4 is provided in the lower part of the chamber 1, and a semiconductor substrate 5 is placed on the substrate holder 4, and the lower part of the substrate holder 4 is cooled (heated).
There is a device. Further, the chamber 1 is provided with an exhaust port 7 for removing waste gas.

【0009】本発明は上記の構成において、プロセスガ
スは使用プロセスに応じて適量混合された後、ノズル2
より電極板3のつくる間隙に放出されると共に、高周波
電源から供給された電力によりプラズマ化され、励起さ
れる。励起されたプロセスガスは電極板3間の間隙を通
過した後、基板ホルダー4上に載せられた半導体基板5
に達し、基板表面において化学反応を生じる。
According to the present invention, in the above configuration, the process gas is mixed in an appropriate amount according to the process used, and then the nozzle 2 is used.
It is emitted into the gap formed by the electrode plate 3 and is turned into plasma by the electric power supplied from the high frequency power source and excited. After the excited process gas passes through the gap between the electrode plates 3, the semiconductor substrate 5 mounted on the substrate holder 4
And a chemical reaction occurs on the substrate surface.

【0010】基板ホルダー4には冷却(或いはプロセス
によっては加熱)装置6が設けられており、最良の反応
状態を維持する。この反応によって生じた廃ガスは排気
口7より除去される。以上、平面状の電極構造について
説明を行ったが、本発明の他の実施例として、図2
(B)に示すような円筒状のものを同心円状に配列した
電極においても、同様の効果が得られることは明らかで
ある。
The substrate holder 4 is provided with a cooling (or heating depending on the process) device 6 for maintaining the best reaction state. Waste gas generated by this reaction is removed from the exhaust port 7. Although the planar electrode structure has been described above, as another embodiment of the present invention, FIG.
It is apparent that the same effect can be obtained also in the electrode in which the cylindrical ones are concentrically arranged as shown in (B).

【0011】[0011]

【発明の効果】本発明は、上述のとおり小さな電極で大
面積のものが得られるので、プラズマ発生装置全体を小
型化できる。活性種(励起種)の生成量を増やすために
電力量を増加しても、電極面積が大きいので電極面での
パワー密度はあまり上がらず、電極のスパッタ現象は起
こらないので半導体基板を汚染することがない。
As described above, according to the present invention, since a large electrode having a small electrode can be obtained as described above, the entire plasma generator can be miniaturized. Even if the amount of electric power is increased to increase the amount of active species (excited species) generated, the electrode area is large, so the power density on the electrode surface does not increase so much and the electrode sputtering phenomenon does not occur, thus contaminating the semiconductor substrate Never.

【0012】プラズマ発生部分と基板が分離しているの
で、半導体基板へのプラズマダメージがない。更に、本
発明は装置構造が単純であるから、保守が容易である、
製造コストが安い、また将来の半導体基板の大面積化へ
の対応も容易である等の効果を有している。
Since the plasma generating portion and the substrate are separated, there is no plasma damage to the semiconductor substrate. Further, the present invention has a simple device structure, which facilitates maintenance.
The manufacturing cost is low, and it is easy to cope with the future increase in the area of the semiconductor substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のプラズマ発生装置の断面図FIG. 1 is a sectional view of a plasma generator according to the present invention.

【図2】(A)及び(B)は 本発明に用いられる電極
の斜視図
2A and 2B are perspective views of electrodes used in the present invention.

【図3】従来のプラズマ発生装置FIG. 3 Conventional plasma generator

【図4】従来のプラズマ発生装置FIG. 4 Conventional plasma generator

【図5】従来のプラズマ発生装置FIG. 5: Conventional plasma generator

【符号の説明】[Explanation of symbols]

1 チャンバー 2 ノズル 3 電極板 4 ホルダー 5 半導体基板 6 冷却(加熱)装置 7 排気口 8 高周波電源 1 Chamber 2 Nozzle 3 Electrode Plate 4 Holder 5 Semiconductor Substrate 6 Cooling (Heating) Device 7 Exhaust Port 8 High Frequency Power Supply

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 必要真空度を保つことのできる真空チャ
ンバー、 前記チャンバー内に対向して配置された複数の面状電
極、 前記電極のうち一つ置きの電極を第1の組とし、他の一
つ置きの電極を第2の組として、これら第1の組と第2
の組の電極間に接続した高周波電源、及び前記電極によ
って作られる間隙にプロセスガスを導入する手段、 から成ることを特徴としたプラズマ発生装置。
1. A vacuum chamber capable of maintaining a required degree of vacuum, a plurality of planar electrodes arranged to face each other in the chamber, and every other electrode of the electrodes constitutes a first set, and Every other electrode is used as the second set, and the first set and the second set.
And a means for introducing a process gas into a gap formed by the electrodes, and a high frequency power source connected between electrodes of the pair.
【請求項2】 前記電極は、平面状電極が並行して配列
されていることを特徴とする請求項1に記載のプラズマ
発生装置。
2. The plasma generator according to claim 1, wherein the electrodes are planar electrodes arranged in parallel.
【請求項3】 前記電極は、円筒状電極が同心円状に配
列されていることを特徴とする請求項1に記載のプラズ
マ発生装置。
3. The plasma generator according to claim 1, wherein the electrodes are cylindrical electrodes arranged concentrically.
JP2560192A 1992-02-13 1992-02-13 Plasma generation apparatus Pending JPH05226258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2560192A JPH05226258A (en) 1992-02-13 1992-02-13 Plasma generation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2560192A JPH05226258A (en) 1992-02-13 1992-02-13 Plasma generation apparatus

Publications (1)

Publication Number Publication Date
JPH05226258A true JPH05226258A (en) 1993-09-03

Family

ID=12170432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2560192A Pending JPH05226258A (en) 1992-02-13 1992-02-13 Plasma generation apparatus

Country Status (1)

Country Link
JP (1) JPH05226258A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273037A (en) * 1994-03-29 1995-10-20 Kawasaki Steel Corp Processing equipment for semiconductor substrate
KR100531991B1 (en) * 1996-10-21 2006-01-27 가부시키가이샤 아루박 Sputtering device
KR100736218B1 (en) * 2006-02-21 2007-07-06 (주)얼라이드 테크 파인더즈 The plasma source with structure of multi-electrode from one side to the other
US7819081B2 (en) 2002-10-07 2010-10-26 Sekisui Chemical Co., Ltd. Plasma film forming system
US20140216343A1 (en) 2008-08-04 2014-08-07 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US9721764B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Method of producing plasma by multiple-phase alternating or pulsed electrical current
US9721765B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US10242846B2 (en) 2015-12-18 2019-03-26 Agc Flat Glass North America, Inc. Hollow cathode ion source
US10573499B2 (en) 2015-12-18 2020-02-25 Agc Flat Glass North America, Inc. Method of extracting and accelerating ions
US10586685B2 (en) 2014-12-05 2020-03-10 Agc Glass Europe Hollow cathode plasma source
US10755901B2 (en) 2014-12-05 2020-08-25 Agc Flat Glass North America, Inc. Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces
WO2023047960A1 (en) * 2021-09-21 2023-03-30 東京エレクトロン株式会社 Plasma processing device and plasma processing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059728A (en) * 1983-09-12 1985-04-06 Sanyo Electric Co Ltd Preparation of semiconductor film
JPH02271527A (en) * 1989-04-12 1990-11-06 Fujitsu Ltd Chemical vapor deposition apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059728A (en) * 1983-09-12 1985-04-06 Sanyo Electric Co Ltd Preparation of semiconductor film
JPH02271527A (en) * 1989-04-12 1990-11-06 Fujitsu Ltd Chemical vapor deposition apparatus

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273037A (en) * 1994-03-29 1995-10-20 Kawasaki Steel Corp Processing equipment for semiconductor substrate
KR100531991B1 (en) * 1996-10-21 2006-01-27 가부시키가이샤 아루박 Sputtering device
US7819081B2 (en) 2002-10-07 2010-10-26 Sekisui Chemical Co., Ltd. Plasma film forming system
KR100736218B1 (en) * 2006-02-21 2007-07-06 (주)얼라이드 테크 파인더즈 The plasma source with structure of multi-electrode from one side to the other
US10580624B2 (en) 2008-08-04 2020-03-03 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
TWI641292B (en) * 2008-08-04 2018-11-11 Agc北美平面玻璃公司 Plasma source
US20150002021A1 (en) 2008-08-04 2015-01-01 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
JP2016001607A (en) * 2008-08-04 2016-01-07 エージーシー フラット グラス ノース アメリカ,インコーポレイテッドAgc Flat Glass North America,Inc. Plasma source and method for depositing thin film coating using plasma enhanced chemical vapor deposition
US9478401B2 (en) 2008-08-04 2016-10-25 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
TWI578854B (en) * 2008-08-04 2017-04-11 Agc北美平面玻璃公司 Method of forming coating using plasma enhanced chemical vapor deposition (pecvd)
US10580625B2 (en) 2008-08-04 2020-03-03 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US20140216343A1 (en) 2008-08-04 2014-08-07 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US10438778B2 (en) 2008-08-04 2019-10-08 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US20150004330A1 (en) 2008-08-04 2015-01-01 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US10586685B2 (en) 2014-12-05 2020-03-10 Agc Glass Europe Hollow cathode plasma source
US10755901B2 (en) 2014-12-05 2020-08-25 Agc Flat Glass North America, Inc. Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces
US11875976B2 (en) 2014-12-05 2024-01-16 Agc Flat Glass North America, Inc. Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces
US20170309458A1 (en) 2015-11-16 2017-10-26 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US10559452B2 (en) 2015-11-16 2020-02-11 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US9721765B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US9721764B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Method of producing plasma by multiple-phase alternating or pulsed electrical current
US10242846B2 (en) 2015-12-18 2019-03-26 Agc Flat Glass North America, Inc. Hollow cathode ion source
US10573499B2 (en) 2015-12-18 2020-02-25 Agc Flat Glass North America, Inc. Method of extracting and accelerating ions
WO2023047960A1 (en) * 2021-09-21 2023-03-30 東京エレクトロン株式会社 Plasma processing device and plasma processing method

Similar Documents

Publication Publication Date Title
JP3114739U (en) Gas distribution plate electrode of plasma reactor
US4968374A (en) Plasma etching apparatus with dielectrically isolated electrodes
JP2680338B2 (en) Electrostatic chuck device
US5556474A (en) Plasma processing apparatus
JPH05226258A (en) Plasma generation apparatus
US6167835B1 (en) Two chamber plasma processing apparatus
US4340461A (en) Modified RIE chamber for uniform silicon etching
US5543688A (en) Plasma generation apparatus with interleaved electrodes and corresponding method
JP2895909B2 (en) Plasma processing method
JPS62193141A (en) Wafer holding mechanism
JP3583294B2 (en) Plasma emission device and plasma processing device
JPH1140398A (en) Plasma producing device
JPH07169745A (en) Parallel plate type dry etching device
JPS62299031A (en) Electrode structure of parallel plate etching system
JP2646261B2 (en) Plasma processing equipment
JPH05299382A (en) Method and apparatus for plasma processing
JPS6324623A (en) Plasma treatment equipment
JPH02312231A (en) Dryetching device
JPH051072Y2 (en)
JPH0637052A (en) Semiconductor processing device
JPS62280372A (en) Plasma vapor growth device
JP2906505B2 (en) Microwave plasma processing equipment
KR100230983B1 (en) Gas distribution plate of dry etching apparatus for semiconductor
JP2793821B2 (en) Plasma processing equipment
JP2693882B2 (en) Reactive ion etching equipment

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19950117