JPH05225603A - Phase transition optical disk medium for short wavelength - Google Patents

Phase transition optical disk medium for short wavelength

Info

Publication number
JPH05225603A
JPH05225603A JP4022228A JP2222892A JPH05225603A JP H05225603 A JPH05225603 A JP H05225603A JP 4022228 A JP4022228 A JP 4022228A JP 2222892 A JP2222892 A JP 2222892A JP H05225603 A JPH05225603 A JP H05225603A
Authority
JP
Japan
Prior art keywords
layer
recording
optical disk
wavelength
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4022228A
Other languages
Japanese (ja)
Inventor
Masami Miyagi
雅美 宮城
Hironori Yamazaki
裕基 山崎
Iwao Hatakeyama
巌 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4022228A priority Critical patent/JPH05225603A/en
Publication of JPH05225603A publication Critical patent/JPH05225603A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To enable high-density recording and reproducing by laminating and forming an under coat layer, a recording layer, an over coat layer and a metallic reflection layer successively from below in the order on a transparent substrate and setting the thicknesses of the respective layers at combinations of a specific range. CONSTITUTION:The under coat layer 2 consisting of a transparent dielectric film having 1.9 to 2.2 refractive index, the recording layer 3 consisting of a GeSbTe alloy film, the over coat layer 4 consisting of the transparent dielectric film like wise having 1.9 to 2.2 refractive index and the metallic reflection layer 5 are successively laminated and formed from below on the transparent substrate 1. The thicknesses of the respective layers mentioned above are limited to the properly selected and combined thicknesses, i.e., the thickness of the under coat layer 2 is 160 to 220nm and the thickness of the recording layer is 15 to 30nm, more preferably 200 to 280nm. The short wavelength phase transition optical disk medium relating to the structure can make recording and reproducing at 450 to 670nm wavelength. The high-=density recording and reproducing are thus attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、短波長のレーザ光を用
いて高密度の記録再生を行うための短波長用相変化光デ
ィスク媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a short wavelength phase change optical disk medium for high density recording / reproducing by using a laser beam having a short wavelength.

【0002】[0002]

【従来の技術】大容量の記録媒体として、昨今は光ディ
スク,光カード等の光記録媒体が開発されているが、当
該光記録媒体はレーザ光をその波長限界近くにまで集光
して記録再生を行うため、記録密度の限界は前記レーザ
光の波長によって決定されている。
2. Description of the Related Art Recently, optical recording media such as optical disks and optical cards have been developed as large-capacity recording media. The optical recording media record and reproduce by condensing laser light to near the wavelength limit. Therefore, the recording density limit is determined by the wavelength of the laser light.

【0003】さらに詳述すると、従来の光ディスクで
は、830nm付近の半導体レーザ光を透明基板を通し
て記録膜に照射することにより、当該記録膜に穴を開け
る(穴開け型)か、屈折率変化を起こさせる(相変化
型)か、若しくは磁気的変化を励起する(光磁気型)こ
とによりマークを記録する。前記何れの型に於いても、
レンズによって絞り込まれた光は記録膜に照射され、熱
に変換されて当該記録膜に変化をもたらすため、記録レ
ーザ光のパワーを通常の値よりも小さくすることで、よ
り小さいマークを記録することが可能である。
More specifically, in the conventional optical disc, by irradiating the recording film with a semiconductor laser beam having a wavelength of about 830 nm through the transparent substrate, the recording film is perforated (drilling type) or the refractive index is changed. A mark is recorded by causing (phase change type) or exciting a magnetic change (magneto-optical type). In any of the above types,
The light narrowed down by the lens is irradiated to the recording film and is converted into heat to change the recording film. Therefore, the power of the recording laser light is made smaller than the normal value to record a smaller mark. Is possible.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記の
様な小さなマークから得られる信号は、再生時に記録時
と同じ波長のレーザ光を使用する限り、隣接するマーク
間の干渉により信号強度の減少を引き起こす。即ち、従
来の光ディスクでは、記録,再生共に830nm付近の
波長の半導体レーザを用いるため、記録密度は波長限界
で決定され、それ以上に増大させることは不可能であ
る。
However, a signal obtained from such a small mark as described above causes a decrease in signal intensity due to interference between adjacent marks as long as a laser beam having the same wavelength as that at the time of recording is used during reproduction. cause. That is, in the conventional optical disc, the recording density is determined by the wavelength limit because the semiconductor laser having a wavelength near 830 nm is used for both recording and reproduction, and it is impossible to increase the recording density beyond that.

【0005】一方、短波長のレーザ光源として、波長6
70nmの半導体レーザが開発段階にある。亦、更に短
波長の光源としては、YAGレーザの第2高調波を用い
た波長530nm付近の光源や、波長488nm若しく
は458nmのArレーザ光源等がある。
On the other hand, a short wavelength laser light source has a wavelength of 6
A 70 nm semiconductor laser is in the development stage. Further, as a light source with a shorter wavelength, there is a light source with a wavelength of about 530 nm using the second harmonic of a YAG laser, an Ar laser light source with a wavelength of 488 nm or 458 nm, and the like.

【0006】しかし、従来の光ディスクは、830nm
付近の波長で最も効率良くマークが記録されかつコント
ラストが得られる様に設計されており、前記短波長の光
源を用いて記録再生を行うことは不可能である。こゝに
於いて、本発明は、前記従来の課題に鑑み、波長450
nm〜670nmの光源を用いて記録再生を行える短波
長用相変化光ディスク媒体を提供せんとするものであ
る。
However, the conventional optical disc is 830 nm.
It is designed so that marks can be recorded most efficiently and a contrast can be obtained at wavelengths in the vicinity, and it is impossible to perform recording and reproduction using the light source of the short wavelength. In view of the above conventional problems, the present invention has a wavelength of 450 nm.
It is intended to provide a short-wavelength phase change optical disk medium capable of recording and reproducing by using a light source of nm to 670 nm.

【0007】[0007]

【課題を解決するための手段】前記課題の解決は、本発
明が次の新規な特徴的構成手段を採用することにより達
成される。即ち、本発明の特徴は、透明基板上に、下か
ら順次アンダーコート層,記録層,オーバーコート層,
金属反射層をこの順に積層形成し、前記記録層にはGe
SbTe合金膜をかつ前記アンダーコート層及びオーバ
ーコート層には屈折率が1.9〜2.2の透明誘電体膜
を用いた光ディスク媒体に於いて、前記記録層の厚さが
15〜30nmか30〜45nmか70〜110nmの
いずれかと前記アンダーコート層の厚さが160〜22
0nmと前記オーバーコート層の厚さが80〜160n
mか200〜280nmのいずれかとの範囲組合せによ
り層成してなる短波長用相変化光ディスク媒体である。
The above-mentioned problems can be solved by the present invention by adopting the following novel characteristic construction means. That is, the feature of the present invention is that an undercoat layer, a recording layer, an overcoat layer, a
A metal reflective layer is laminated in this order, and Ge is formed in the recording layer.
In an optical disc medium using an SbTe alloy film and a transparent dielectric film having a refractive index of 1.9 to 2.2 for the undercoat layer and the overcoat layer, the recording layer has a thickness of 15 to 30 nm. Either 30-45 nm or 70-110 nm and the thickness of the undercoat layer is 160-22.
0 nm and the thickness of the overcoat layer is 80 to 160 n
It is a phase-change optical disk medium for short wavelengths, which is layered by a range combination of m or 200 to 280 nm.

【0008】[0008]

【作用】本発明は、前記のような手段を講じたので、透
明基板上に、下方から屈折率が1.9〜2.2の透明誘
電体膜からなるアンダーコート層,GeSbTe合金膜
からなる記録層,前記アンダーコート層同様屈折率が
1.9〜2.2の透明誘電体膜からなるオーバーコート
層及び金属反射層をこの順に積層形成する。
Since the present invention has taken the above-mentioned means, it is composed of a GeSbTe alloy film and an undercoat layer made of a transparent dielectric film having a refractive index of 1.9 to 2.2 from below on a transparent substrate. Like the recording layer, the undercoat layer, an overcoat layer made of a transparent dielectric film having a refractive index of 1.9 to 2.2 and a metal reflective layer are laminated in this order.

【0009】前記各層の厚さは、前記アンダーコート層
の厚さが160〜220nm、前記記録層の厚さが15
〜30nm、30〜45nm若しくは70〜110n
m、前記オーバーコート層の厚さを80〜160nm若
しくは200〜280nmとして適宜選択組合い層成さ
れたものに限定される。前記構造に係る短波長用相変化
光ディスク媒体は、450〜670nmの波長で記録再
生可能であり、高密度記録再生を実現した。
The thickness of each layer is 160 to 220 nm for the undercoat layer and 15 for the recording layer.
~ 30 nm, 30-45 nm or 70-110 n
m, the thickness of the overcoat layer is set to 80 to 160 nm or 200 to 280 nm, and the layer is limited to a layer formed by a proper selective combination. The short-wavelength phase change optical disk medium having the above structure can record and reproduce at a wavelength of 450 to 670 nm, and realizes high density recording and reproduction.

【0010】[0010]

【実施例】本発明の実施例を図面につき詳説する。図1
は本実施例の短波長用相変化光ディスク媒体の断層図、
図2は本実施例の短波長用相変化光ディスク媒体に適用
する光学計算の原理図である。図中、A1,A2,A3
は短波長用相変化光ディスク媒体、1は透明基板,2は
アンダーコート層,3は記録層,4はオーバーコート
層,5は金属反射層,6は封止層,7は光学的干渉層、
Lはレーザ光である。
Embodiments of the present invention will be described in detail with reference to the drawings. Figure 1
Is a tomographic view of the short-wavelength phase change optical disk medium of the present embodiment,
FIG. 2 is a principle diagram of optical calculation applied to the short wavelength phase change optical disk medium of the present embodiment. In the figure, A1, A2, A3
Is a short wavelength phase change optical disk medium, 1 is a transparent substrate, 2 is an undercoat layer, 3 is a recording layer, 4 is an overcoat layer, 5 is a metal reflection layer, 6 is a sealing layer, 7 is an optical interference layer,
L is a laser beam.

【0011】本実施例の短波長用相変化光ディスク媒体
A1,A2,A3の構成は、図1に示す様、ガラスある
いはポリカーボネート等の透明基板1上にアンダーコー
ト層2,記録層3,オーバーコート層4,金属反射層
5,封止層6をこの順に積層形成している。前記アンダ
ーコート層2,記録層3及びオーバーコート層4は、光
学的干渉層7を形成しており、これらの膜厚の組合せ選
択により、反射率等の光学特性が大きく変化する。
As shown in FIG. 1, the constitution of the short wavelength phase change optical disk media A1, A2 and A3 of this embodiment is such that an undercoat layer 2, a recording layer 3 and an overcoat are formed on a transparent substrate 1 such as glass or polycarbonate. The layer 4, the metal reflection layer 5, and the sealing layer 6 are laminated in this order. The undercoat layer 2, the recording layer 3, and the overcoat layer 4 form an optical interference layer 7, and the optical characteristics such as reflectance change greatly depending on the selection of the combination of these film thicknesses.

【0012】本実施例の短波長用相変化光ディスク媒体
A1,A2,A3に於いては、450〜670nmの波
長で記録再生を行うため、この波長域でのレーザ光Lの
吸収率が大きく、かつ結晶状態と非晶状態の反射率差,
即ちコントラストが大きいという条件が必要である。
In the short wavelength phase change optical disk media A1, A2 and A3 of the present embodiment, since recording / reproducing is performed at a wavelength of 450 to 670 nm, the absorption rate of the laser light L in this wavelength range is large, And the difference in reflectance between the crystalline state and the amorphous state,
That is, the condition that the contrast is high is necessary.

【0013】よって前記条件を満足する各層の膜厚の組
合せを光学計算により求めた。尚、この光学計算は、光
学多膜層の理論(参考文献として例えば、GEORGE HAS
S:"Physics of thin films",Vol.1, ACADEMIC PRESS(19
63),p69- )を用いて行った。前記光学計算の原理図で
ある図2中に示した各層の屈折率nj ,膜厚dj を次式
に代入することにより、反射率及び吸収率(1−反射率
−透過率)が得られる。
Therefore, the combination of the film thicknesses of the layers satisfying the above conditions was obtained by optical calculation. This optical calculation is based on the theory of optical multi-layer (for example, GEORGE HAS
S: "Physics of thin films", Vol.1, ACADEMIC PRESS (19
63), p69-). The reflectance and the absorptance (1-reflectance-transmittance) are obtained by substituting the refractive index n j and the film thickness d j of each layer shown in FIG. 2, which is the principle diagram of the optical calculation, into the following equations. Be done.

【0014】[0014]

【数1】 尚、式中λは光の波長である。[Equation 1] In the formula, λ is the wavelength of light.

【0015】一例として、記録層3に於けるGeSbT
eの非晶質の屈折率na =4.8−j1.1,結晶質の
屈折率nc =6.0−j3.1,アンダーコート層2及
びオーバーコート層4の屈折率n=2.0,透明基板1
の屈折率n=1.57,金属反射層5(Au)の屈折率
0.17−j5.3とし、金属反射層5の膜厚を40n
m,前記記録層3の膜厚を26,40,80nmの3種
類とし、アンダーコート層2及びオーバーコート層4の
膜厚を変化させることにより、波長450〜670nm
に於けるコントラストが10%以上で、かつ吸収率が6
0%以上となる範囲を求めた。
As an example, GeSbT in the recording layer 3
e of amorphous refractive index n a = 4.8-j1.1, crystalline refractive index n c = 6.0-j3.1, undercoat layer 2 and overcoat layer 4 refractive index n = 2 0.0, transparent substrate 1
And the refractive index of the metal reflective layer 5 (Au) is 0.17-j5.3, and the film thickness of the metal reflective layer 5 is 40n.
m, the thickness of the recording layer 3 is set to 26, 40, and 80 nm, and the thickness of the undercoat layer 2 and the overcoat layer 4 is changed to obtain a wavelength of 450 to 670 nm.
Has a contrast of 10% or more and an absorption rate of 6
The range of 0% or more was determined.

【0016】その結果、次表に示す組合せで前記条件を
満足させ得ることが分かった。
As a result, it was found that the above conditions can be satisfied by the combinations shown in the following table.

【表1】 [Table 1]

【0017】本実施例の仕様は、このような具体的実施
態様であって、次に、この計算結果に基づいてそれぞれ
製作した短波長相用変化光ディスク媒体A1,A2,A
3に付き個別に詳説する。 (製作例1)先ず、短波長相用変化光ディスク媒体A1
を説明する。図1の構成で、透明基板1としてポリカー
ボネート基板を用い、記録層3としてGe2 Sb2 Te
5 合金膜、アンダーコート層2及びオーバーコート層4
としてZnSとSiO2 の混合膜、金属反射層5として
Au膜を用いた。
The specification of the present embodiment is such a concrete embodiment, and next, the short-wavelength phase change optical disk media A1, A2, A produced respectively based on the calculation results.
It will be explained in detail for each item 3. (Production Example 1) First, a short wavelength phase change optical disc medium A1
Will be explained. In the configuration of FIG. 1, a polycarbonate substrate is used as the transparent substrate 1 and Ge 2 Sb 2 Te is used as the recording layer 3.
5 Alloy film, undercoat layer 2 and overcoat layer 4
A mixed film of ZnS and SiO 2 was used as the above, and an Au film was used as the metal reflection layer 5.

【0018】各層の厚さは前記アンダーコート層2が1
90nm、記録層3が26nm、オーバーコート層4が
120nmとし、何れもRFスパッタ法により形成し
た。亦、封止層6にはUV硬化樹脂をスピンコート法及
び紫外線照射により形成した。
The undercoat layer 2 has a thickness of 1
The thickness was 90 nm, the recording layer 3 was 26 nm, and the overcoat layer 4 was 120 nm, all of which were formed by the RF sputtering method. Further, a UV curable resin was formed on the sealing layer 6 by a spin coating method and ultraviolet irradiation.

【0019】かくして製作した短波長用相変化光ディス
ク媒体A1をアルゴンレーザを光源とする記録再生装置
に装着し、記録再生消去特性の測定を行った。その結
果、457.9nmに於ける記録パワー及び消去パワー
がそれぞれ12mW及び6mWで、C/N55dB、消
去率−26dBを得た。
The thus manufactured short-wavelength phase-change optical disk medium A1 was mounted on a recording / reproducing apparatus using an argon laser as a light source, and the recording / reproducing erasing characteristics were measured. As a result, the recording power and the erasing power at 457.9 nm were 12 mW and 6 mW, respectively, and C / N 55 dB and an erasing rate of -26 dB were obtained.

【0020】次に、マークピッチを変えて信号コントラ
ストを測定した。その結果、記録密度の限界(飽和値の
半分になる値)は0.7μmであることが分かった。ち
なみに、従来の光ディスク媒体の波長830nmに於け
る同様の測定による記録密度の限界は1.3μmであっ
た。
Next, the signal contrast was measured by changing the mark pitch. As a result, it was found that the limit of the recording density (value that becomes half the saturation value) was 0.7 μm. Incidentally, the limit of the recording density by the same measurement at the wavelength of 830 nm of the conventional optical disk medium was 1.3 μm.

【0021】更に、本製作例の短波長相用変化光ディス
ク媒体A1に於いて、光源の波長を488nmとして記
録再生消去特性の測定を行った結果、C/N56dB、
消去率−28dBを得た。亦、波長530nmのYAG
第2高調波光源及び波長670nmの半導体レーザ光源
を用いた記録再生装置に装着し、記録再生消去特性を行
った結果、何れの波長に於いても、C/N55dB以
上、消去率−25dB以下を得た。
Further, in the short wavelength phase change optical disk medium A1 of this manufacturing example, the recording / reproducing erasing characteristics were measured with the wavelength of the light source set to 488 nm. As a result, C / N 56 dB,
An erasing rate of -28 dB was obtained. YAG with wavelength 530nm
It was mounted on a recording / reproducing apparatus using a second harmonic light source and a semiconductor laser light source with a wavelength of 670 nm, and as a result of recording / reproducing / erasing characteristics, a C / N of 55 dB or more and an erasing rate of -25 dB or less were observed at any wavelength. Obtained.

【0022】(製作例2)次に、短波長相用変化光ディ
スク媒体A2を説明する。当該短波長相用変化光ディス
ク媒体A2は、前記短波長相用変化光ディスク媒体A1
の記録層3の厚さを40nmとしたもので、その他は同
一の物である。かくして製作した短波長相用変化光ディ
スク媒体A2を前記短波長相用変化光ディスク媒体A1
と同様の記録再生装置に装着し、記録再生消去特性を測
定した結果、波長457.9nm、488nm、530
nm、670nmの何れに於いてもC/N55dB以
上、消去率−25dB以下を得た。
(Production Example 2) Next, the short wavelength phase change optical disk medium A2 will be described. The short wavelength phase change optical disc medium A2 is the short wavelength phase change optical disc medium A1.
The recording layer 3 has a thickness of 40 nm and is otherwise the same. The thus-produced short wavelength phase change optical disk medium A2 is used as the short wavelength phase change optical disk medium A1.
The recording / reproducing apparatus was mounted on the same recording / reproducing apparatus as the above, and the recording / reproducing erasing characteristics were measured.
C / N of 55 dB or more and an erasing rate of -25 dB or less were obtained at both nm and 670 nm.

【0023】(製作例3)次に、短波長相用変化光ディ
スク媒体A3を説明する。当該短波長相用変化光ディス
ク媒体A3は、前記短波長相用変化光ディスク媒体A1
のアンダーコート層2の厚さを200nm、記録層3の
厚さを80nm、オーバーコート層4の厚さを240n
mとしたもので、その他は同一の物である。
(Manufacturing Example 3) Next, a short wavelength phase change optical disk medium A3 will be described. The short wavelength phase change optical disc medium A3 is the short wavelength phase change optical disc medium A1.
The undercoat layer 2 has a thickness of 200 nm, the recording layer 3 has a thickness of 80 nm, and the overcoat layer 4 has a thickness of 240 n.
m is the same as the others.

【0024】かくして製作した短波長相用変化光ディス
ク媒体A3を前記短波長相用変化光ディスク媒体A1と
同様の記録再生装置に装着し、記録再生消去特性を測定
した結果、波長457.9nm、488nm、530n
m、670nmの何れに於いてもC/N55dB以上、
消去率−25dB以下を得た。
The short-wavelength phase change optical disc medium A3 thus manufactured was mounted on the same recording / reproducing apparatus as the short-wavelength phase change optical disc medium A1 and the recording / reproducing characteristics were measured. As a result, the wavelengths were 457.9 nm, 488 nm and 530n.
m / 670nm, C / N 55dB or more,
An erasing rate of -25 dB or less was obtained.

【0025】[0025]

【発明の効果】かくして、本発明によれば、記録,再生
共に830nm付近の波長の半導体レーザを用いた従来
の光ディスクに於いては、波長限界のため記録密度を現
段階以上に増大させることは不可能であったものを、4
50〜670nmの短波長を利用してより高密度な記録
再生を可能とすると共に、前記短波長に於いても良好な
記録再生消去特性が得られる利点を有する。
As described above, according to the present invention, in a conventional optical disk using a semiconductor laser having a wavelength of around 830 nm for both recording and reproduction, the recording density cannot be increased beyond the present stage because of the wavelength limit. What was impossible was 4
There is an advantage that a high density recording / reproducing can be performed by utilizing a short wavelength of 50 to 670 nm and a good recording / reproducing / erasing characteristic can be obtained even in the short wavelength.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の短波長用相変化光ディスク媒
体の構成断面図である。
FIG. 1 is a cross-sectional view of a configuration of a short wavelength phase change optical disk medium according to an embodiment of the present invention.

【図2】同上に適用する光学計算の原理図である。FIG. 2 is a principle diagram of an optical calculation applied to the above.

【符号の説明】[Explanation of symbols]

A1,A2,A3…短波長用相変化光ディスク媒体 1…透明基板 2…アンダーコート層 3…記録層 4…オーバーコート層 5…金属反射層 6…封止層 7…光学的干渉層 L…レーザ光 A1, A2, A3 ... Phase change optical disk medium for short wavelength 1 ... Transparent substrate 2 ... Undercoat layer 3 ... Recording layer 4 ... Overcoat layer 5 ... Metal reflective layer 6 ... Sealing layer 7 ... Optical interference layer L ... Laser light

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】透明基板上に、下から順次アンダーコート
層,記録層,オーバーコート層,金属反射層を積層形成
し、前記記録層にはGeSbTe合金膜をかつ前記アン
ダーコート層及びオーバーコート層には屈折率が1.9
〜2.2の透明誘電体膜をそれぞれ用いた光ディスク媒
体に於いて、前記記録層の厚さが15〜30nmか30
〜45nmか70〜110nmのいずれかと前記アンダ
ーコート層の厚さが160〜220nmと前記オーバー
コート層の厚さが80〜160nmか200〜280n
mのいずれかとの範囲組合せにより層成したことを特徴
とする短波長用相変化光ディスク媒体
1. An undercoat layer, a recording layer, an overcoat layer, and a metal reflection layer are sequentially laminated from the bottom on a transparent substrate, and a GeSbTe alloy film is formed on the recording layer, and the undercoat layer and the overcoat layer are formed. Has a refractive index of 1.9.
In the optical disk medium using the transparent dielectric film of 2.2 to 2.2, the thickness of the recording layer is 15 to 30 nm or 30.
To 45 nm or 70 to 110 nm, the thickness of the undercoat layer is 160 to 220 nm, and the thickness of the overcoat layer is 80 to 160 nm or 200 to 280 n.
a phase-change optical disc medium for short wavelength, which is layered by a range combination with any of m
JP4022228A 1992-02-07 1992-02-07 Phase transition optical disk medium for short wavelength Pending JPH05225603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4022228A JPH05225603A (en) 1992-02-07 1992-02-07 Phase transition optical disk medium for short wavelength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4022228A JPH05225603A (en) 1992-02-07 1992-02-07 Phase transition optical disk medium for short wavelength

Publications (1)

Publication Number Publication Date
JPH05225603A true JPH05225603A (en) 1993-09-03

Family

ID=12076943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4022228A Pending JPH05225603A (en) 1992-02-07 1992-02-07 Phase transition optical disk medium for short wavelength

Country Status (1)

Country Link
JP (1) JPH05225603A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010029133A (en) * 1999-09-29 2001-04-06 윤종용 Phase change optical disc
US6333913B1 (en) 1998-10-06 2001-12-25 Tdk Corporation Optical recording medium and optical recording method
EP0642123B1 (en) * 1993-09-07 2002-01-09 Kabushiki Kaisha Toshiba Information recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0642123B1 (en) * 1993-09-07 2002-01-09 Kabushiki Kaisha Toshiba Information recording medium
US6333913B1 (en) 1998-10-06 2001-12-25 Tdk Corporation Optical recording medium and optical recording method
KR20010029133A (en) * 1999-09-29 2001-04-06 윤종용 Phase change optical disc

Similar Documents

Publication Publication Date Title
JPWO2003025922A1 (en) Optical information recording medium
JPH11203725A (en) Phase transition optical disk
WO1998038636A1 (en) Phase-changeable optical recording medium, method of manufacturing the same, and method of recording information on the same
JP3698905B2 (en) Optical information recording medium, information recording method thereof, and information erasing method thereof
JP3648378B2 (en) optical disk
US5449589A (en) Method of making an optical information recording medium and method of recording/reproducing optical information
JP2001319370A (en) Phase change optical disk
JPH05225603A (en) Phase transition optical disk medium for short wavelength
JPH04298389A (en) Optical recording medium and manufacture thereof
JP2001273679A (en) Optical recording medium
JP3156418B2 (en) Optical information recording medium and optical information recording / reproducing method
JP2002092956A (en) Optical information recording medium and producing method thereof
JPH0562248A (en) Optical disk medium using two wavelengths
JPH04228126A (en) Optical information recording medium
JPS6339387A (en) Optical recording medium
JPH1031844A (en) Maltilayered optical information medium
KR100694031B1 (en) Phase change optical disk
JPH02187939A (en) Optical recording medium and optical recording and reproducing method
JPH10289478A (en) Optical information recording medium and its production
JPH01208737A (en) Novel optical recording medium and production thereof
KR100565569B1 (en) optical recording medium
JPH08263875A (en) Optical recording medium and reproducing method
JPH03216824A (en) Optical information recording medium and optical information recording method
JP2000105946A (en) Phase change optical disk
JPH11328738A (en) Optical information recording medium