JPH05217740A - Superconducting magnet structure for magnetic levitation train - Google Patents

Superconducting magnet structure for magnetic levitation train

Info

Publication number
JPH05217740A
JPH05217740A JP2226492A JP2226492A JPH05217740A JP H05217740 A JPH05217740 A JP H05217740A JP 2226492 A JP2226492 A JP 2226492A JP 2226492 A JP2226492 A JP 2226492A JP H05217740 A JPH05217740 A JP H05217740A
Authority
JP
Japan
Prior art keywords
superconducting magnet
rigidity
inner tank
load
racetrack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2226492A
Other languages
Japanese (ja)
Other versions
JP2619581B2 (en
Inventor
Shigeru Sakamoto
茂 坂本
Kihachiro Tanaka
基八郎 田中
Tosuke Hirata
東助 平田
Tadashi Sonobe
正 園部
Teruhiro Takizawa
照広 滝沢
Fumio Suzuki
史男 鈴木
Fumihiko Goto
文彦 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Railway Technical Research Institute
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Railway Technical Research Institute
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Railway Technical Research Institute, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP4022264A priority Critical patent/JP2619581B2/en
Publication of JPH05217740A publication Critical patent/JPH05217740A/en
Application granted granted Critical
Publication of JP2619581B2 publication Critical patent/JP2619581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method of supporting a superconducting magnet in such a manner that a maximum natural frequency is achieved with limited rigidity. CONSTITUTION:A superconducting magnet structure includes supports 1 having great rigidity in three directions, supports 4 having great rigidity only toward the outside of the magnet surface, and supports 3 having great rigidity only toward the inside of the magnet surface. These supports are arranged properly depending on the rotational inertia of the superconducting magnet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、現在、実用化を目指し
て開発中の超電導磁石を用いた磁気浮上列車に係り、超
電導磁石の振動を低減するための超電導磁石の支持方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic levitation train using a superconducting magnet which is currently being developed for practical use, and relates to a method for supporting a superconducting magnet for reducing vibration of the superconducting magnet.

【0002】[0002]

【従来の技術】従来、磁気浮上列車における低振動構造
に関しては、乗り心地などを良くするために車両に生じ
る振動を低減するものは出願されている。しかし、超電
導磁石構造そのものにおける低振動化に関しては十分考
慮されているとは言い難い。しかし以下の理由により超
電導磁石の低振動化を考えることが必要不可欠である。
2. Description of the Related Art Conventionally, a low vibration structure for a magnetic levitation train has been filed for reducing vibration generated in a vehicle in order to improve riding comfort. However, it cannot be said that the vibration reduction in the superconducting magnet structure itself is fully considered. However, it is essential to consider reducing the vibration of superconducting magnets for the following reasons.

【0003】磁気浮上列車は、図10および図11のよ
うに車体10に超電導磁石4を備え地上に設けられた推
進コイル8と浮上コイル7によって推進及び浮上する。
尚、符号9は台車台枠である。この原理を簡単に説明す
る。
A magnetic levitation train is propelled and levitated by a propulsion coil 8 and a levitation coil 7 which are provided with a superconducting magnet 4 on a vehicle body 10 and are provided on the ground as shown in FIGS.
Reference numeral 9 is a bogie frame. This principle will be briefly described.

【0004】磁気浮上列車はリニアシンクロナスモ−タ
の原理で推進する。すなわち例えば車体が図12のAの
位置にいるときには地上の推進コイル8には実線の矢印
の方向に電流を流しておく。このとき車体10はフレミ
ングの左手の法則に従ってこの図の矢印の方向の力を受
けて推進する。
The magnetic levitation train is driven by the principle of a linear synchronous motor. That is, for example, when the vehicle body is at the position A in FIG. 12, a current is applied to the ground propulsion coil 8 in the direction of the solid arrow. At this time, the vehicle body 10 receives a force in the direction of the arrow in this figure to propel according to Fleming's left-hand rule.

【0005】次に車体10がBの位置にきたときは破線
の方向に電流を流す。つまりこの図における真中のコイ
ルに関しては電流を流す方向を切り替えることになる。
すると今度も車体10はこの図の矢印の方向に力を受け
同方向に進行する。この繰返しによって車体は同方向に
進行し続けることが出来る。これが推進原理である。
Next, when the vehicle body 10 reaches the position B, an electric current is passed in the direction of the broken line. That is, the direction of current flow is switched for the middle coil in this figure.
Then, again, the vehicle body 10 receives a force in the direction of the arrow in this figure and advances in the same direction. By repeating this, the vehicle body can continue to move in the same direction. This is the propulsion principle.

【0006】次に浮上の原理を説明する。車体がここで
述べた原理で走行すると図13のように地上に設置され
た浮上コイル7に誘導電流が発生する。誘導電流は車体
10に取付けられた超電導磁石4が作る磁界を打ち消す
方向に流れる。このため磁気反発力が生じて車体を浮上
させる。これが浮上の原理である。
Next, the principle of levitation will be described. When the vehicle body travels on the principle described here, an induced current is generated in the levitation coil 7 installed on the ground as shown in FIG. The induced current flows in a direction of canceling the magnetic field generated by the superconducting magnet 4 attached to the vehicle body 10. Therefore, a magnetic repulsive force is generated to levitate the vehicle body. This is the levitation principle.

【0007】ここまでに述べたように超電導磁気浮上列
車は地上に設置された地上コイルと超電導磁石が作る磁
気力によって浮上走行する。地上コイルはN極とS極が
交代で変化していくので地上コイル上を移動していく超
電導磁石はこのN極とS極の切り替えによって生じる変
動磁場を受ける。
As described above, the superconducting magnetic levitation train levitates by the magnetic force generated by the ground coil installed on the ground and the superconducting magnet. Since the N-pole and the S-pole of the ground coil change alternately, the superconducting magnet moving on the ground coil receives the fluctuating magnetic field generated by the switching of the N-pole and the S-pole.

【0008】このため超電導磁石を納める外槽には2次
電流が誘導される。この誘導電流と超電導磁石の磁界が
フレミングの法則により電磁力を発生させる。この電磁
力が原因となって超電導磁石に振動を発生させる。超電
導磁石は極低温(ヘリウム温度の絶対4度)に保たれる
必要があるので発熱等の原因となり得る振動を抑えるこ
とが重要である。そこで超電導磁気浮上列車においては
超電導磁石構造そのものに対する低振動構造を考える必
要がある。
Therefore, a secondary current is induced in the outer tank containing the superconducting magnet. The induced current and the magnetic field of the superconducting magnet generate electromagnetic force according to Fleming's law. This electromagnetic force causes the superconducting magnet to vibrate. Since the superconducting magnet needs to be kept at an extremely low temperature (absolute 4 degrees of the helium temperature), it is important to suppress vibration that may cause heat generation or the like. Therefore, in the superconducting magnetic levitation train, it is necessary to consider a low vibration structure for the superconducting magnet structure itself.

【0009】尚、この種の従来技術としては例えば特開
昭55−87000号公報記載の技術等がある。
As a conventional technique of this kind, there is, for example, the technique described in JP-A-55-87000.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、これま
で超電導磁石そのものについての防振対策について考え
られた発明は少なく、低振動化に関する対策は必ずしも
充分ではなかった。特に列車は一定速度で走行する時間
が多いが、一定速度で走行した場合には、走行速度と地
上の浮上用コイルの接地間隔から決まる振動数を基本と
する電磁加振力を受けることになる。また、地上コイル
は等間隔に離散的に設置されるので上で述べた基本振動
数のほかにそれの高調波成分の振動数も受け複雑に振動
する。このため走行中の振動を低減する機構を考える必
要がある。
However, few inventions have hitherto been conceived of anti-vibration measures for the superconducting magnet itself, and the anti-vibration measures have not necessarily been sufficient. In particular, trains often run at a constant speed, but when they run at a constant speed, they will be subjected to electromagnetic excitation force based on the frequency determined by the traveling speed and the grounding interval of the levitation coil on the ground. .. In addition, the ground coils are installed at equal intervals in a discrete manner, and therefore, in addition to the fundamental frequency described above, the harmonic components also vibrate in a complex manner. For this reason, it is necessary to consider a mechanism that reduces vibration during traveling.

【0011】本発明の目的は超電導磁石を用いた磁気浮
上列車が走行中に電磁加振力を受け続け、大きく振動し
たような場合に超電導磁石の共振を避け、超電導磁石の
発熱等を防止する手段を与えることにある。
An object of the present invention is to avoid resonance of the superconducting magnet and prevent heat generation of the superconducting magnet when the magnetic levitation train using the superconducting magnet continues to receive electromagnetic excitation force while running and vibrates greatly. To give means.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めに本発明は超電導磁石を高剛性に支持する構造を設け
たものである。
In order to achieve the above object, the present invention provides a structure for supporting a superconducting magnet with high rigidity.

【0013】すなわち超電導磁石を高剛性に外槽に支持
及び固定するために、3軸方向に大きな剛性を持つ荷重
支持体を少なくとも1個設け、超電導磁石の重量と3軸
方向の基本的な剛性を確保するものである。
That is, in order to support and fix the superconducting magnet to the outer tank with high rigidity, at least one load support having a large rigidity in the three axis directions is provided, and the weight of the superconducting magnet and the basic rigidity in the three axis directions are provided. To secure.

【0014】本発明の磁気浮上列車用超電導磁石構造体
は、極低温(ヘリウム温度の絶対4K)に冷却された超
電導磁石と、この超電導磁石を冷却するためのヘリウム
を充填する内槽、この内槽を断熱するための輻射シ−ル
ド板およびこれらを真空状態に保つための外槽を備えて
なる超電導磁石構造体において、超電導磁石を高剛性に
支持するために3軸方向に大きな剛性を有する荷重支持
体を少なくとも1個設けることを特徴とする。
The superconducting magnet structure for a magnetic levitation train according to the present invention comprises a superconducting magnet cooled to an extremely low temperature (helium temperature absolute 4K), an inner tank filled with helium for cooling the superconducting magnet, and In a superconducting magnet structure including a radiation shield plate for insulating the tank and an outer tank for keeping them in a vacuum state, the superconducting magnet has high rigidity in three axial directions to support the superconducting magnet with high rigidity. It is characterized in that at least one load support is provided.

【0015】望ましくは次のいずれかの態様が好まし
い。
Desirably, one of the following aspects is preferable.

【0016】(1)3軸方向に大きな剛性を持つ荷重支
持体と、この他に1軸方向に大きな剛性を持つ荷重支持
体を少なくとも1個設け、3軸方向に大きな剛性を持つ
荷重支持体だけでは不十分な剛性を補う構造とする。
(1) A load support having great rigidity in the three-axis directions and at least one load support having great rigidity in the one-axis directions are provided, and a load support having great rigidity in the three-axis directions. A structure that compensates for insufficient rigidity by itself.

【0017】(2)1軸方向に大きな剛性を持つ荷重支
持体として超電導磁石面外方向に大きな剛性を持つも
の、またはレ−ストラック形状の超電導磁石直線部と直
角の面内方向に大きな剛性を持つもの、あるいはその両
方を用いる。
(2) A load support having a large rigidity in the uniaxial direction, which has a large rigidity in the out-of-plane direction of the superconducting magnet, or a large rigidity in the in-plane direction perpendicular to the straight portion of the racetrack-shaped superconducting magnet. Use one with or both.

【0018】(3)3軸方向に大きな剛性を持つ荷重支
持体は、超電導磁石を覆う内槽表面のいづれかの場所に
設けられ、内槽を直接支持する構造とする。
(3) The load support having a large rigidity in the three axial directions is provided at any place on the surface of the inner tank covering the superconducting magnet and has a structure for directly supporting the inner tank.

【0019】(4)1軸方向に大きな剛性を持つ荷重支
持体は、超電導磁石を覆う内槽表面のいづれかの場所に
設けられ、内槽を直接支持する構造とする。
(4) The load support having a large rigidity in the uniaxial direction is provided at any place on the surface of the inner tank covering the superconducting magnet and has a structure for directly supporting the inner tank.

【0020】(5)3軸方向に大きな剛性を持つ荷重支
持体は、レ−ストラック形状をした超電導磁石を覆う内
槽表面の直線部に設けられ内槽を直接支持する構造とす
る。
(5) The load support having a large rigidity in the three axial directions is provided on the straight portion of the surface of the inner tank covering the racetrack-shaped superconducting magnet and directly supports the inner tank.

【0021】(6)上で述べた3種類の異なる荷重支持
体を、超電導磁石の持つ並進モ−ドおよび回転モ−ドを
抑える位置に適正に設けるものである。すなわちレ−ス
トラック形状をした超電導磁石を覆う内槽の直線部の中
央に3軸方向に大きな剛性を持つ荷重支持体、コ−ナ−
部に、超電導磁石の面外の1軸方向に大きな剛性を持つ
荷重支持体、また円弧部の両端に、超電導磁石直線部と
直角の面内の1軸方向に大きな剛性を持つ荷重支持体を
設け、超電導磁石の並進およびロ−リング、ヨ−イン
グ、ピッチングの振動モ−ドが生じにくくなるような構
造とする。
(6) The above-mentioned three types of different load supports are properly provided at positions where the translational and rotational modes of the superconducting magnet are suppressed. That is, in the center of the straight portion of the inner tank that covers the racetrack-shaped superconducting magnet, there is a load support having a large rigidity in the three axial directions, and a corner.
, A load support having a large rigidity in the uniaxial direction outside the plane of the superconducting magnet, and a load support having a large rigidity in the uniaxial direction in the plane perpendicular to the linear portion of the superconducting magnet at both ends of the arc part. The superconducting magnet is provided with a structure such that translation, rolling, yawing, and pitching vibration modes are less likely to occur.

【0022】(7)3軸方向に大きな剛性を持つ荷重支
持体はレ−ストラック形状をした超電導磁石を覆う内槽
の中央部付近に設けられ内槽を直接支持する構造とす
る。
(7) The load support having great rigidity in the three axial directions is provided near the center of the inner tank covering the racetrack-shaped superconducting magnet and has a structure for directly supporting the inner tank.

【0023】(8)超電導磁石面外の1軸方向に大きな
剛性を持つ荷重支持体を、レ−ストラック形状をした超
電導磁石を覆う内槽表面に、超電導磁石の曲げやねじり
の振動モ−ドが生じにくいように、短いスパンで多数設
け、内槽を直接支持する構造とする。
(8) A load support having great rigidity in the uniaxial direction outside the surface of the superconducting magnet is placed on the surface of the inner tank covering the racetrack-shaped superconducting magnet, and a vibration mode for bending or twisting the superconducting magnet. A large number of short spans are provided to directly support the inner tank so that there is no rust.

【0024】[0024]

【作用】上記構成によれば、超電導磁石の並進およびロ
−リング、ヨ−イング、ピッチングのそれぞれのモ−ド
を生じにくくすることができ、限られた剛性の範囲内で
最も剛的に超電導磁石支持することができるので、外力
を受けた場合などに超電導磁石が共振しにくくなる。
According to the above construction, the translation, rolling, yawing and pitching modes of the superconducting magnet can be made less likely to occur, and the superconducting magnet can be most rigidly provided within a limited rigidity range. Since the magnet can be supported, the superconducting magnet is less likely to resonate when receiving an external force.

【0025】[0025]

【実施例】本発明の実施例を図1から図5および図14
を用いて説明する。
Embodiments of the present invention will be described with reference to FIGS. 1 to 5 and FIG.
Will be explained.

【0026】超電導磁石4は液体ヘリウムで満たされた
内槽と称される容器5に挿入されている。液体ヘリウム
によって内槽5の中は絶対温度4度に保たれている。内
槽5は輻射シ−ルド板(図示せず)に包まれておりこれ
は窒素によって絶対温度80度に保たれている。この輻
射シ−ルド板はさらに外槽6に収まっていて外槽6の中
は断熱のために真空に保たれている。なお外槽6の中に
は通常複数個の輻射シ−ルド板が設けられている。
The superconducting magnet 4 is inserted in a container 5 called an inner tank filled with liquid helium. The absolute temperature inside the inner tank 5 is kept at 4 degrees by liquid helium. The inner tank 5 is surrounded by a radiation shield plate (not shown), which is kept at an absolute temperature of 80 degrees by nitrogen. The radiation shield plate is further housed in the outer tank 6, and the outer tank 6 is kept in a vacuum for heat insulation. The outer tank 6 is usually provided with a plurality of radiation shield plates.

【0027】超電導磁石を支持及び固定するための部材
が荷重支持体1、2、3である。これらの荷重支持体に
よって、超電導磁石4を収めた内槽4は外槽6に支持及
び固定されている。
The members for supporting and fixing the superconducting magnet are load supports 1, 2, and 3. The inner tank 4 containing the superconducting magnet 4 is supported and fixed to the outer tank 6 by these load supports.

【0028】本発明の第1実施例は、適正な剛性の荷重
支持体を、図1のように配置するものである。すなわ
ち、超電導磁石4の荷重を支えるため、3軸方向に大き
な剛性を持つ荷重支持体1をレ−ストラック形状をした
超電導磁石を納める内槽5の直線部の中央に配置する。
In the first embodiment of the present invention, load supports having appropriate rigidity are arranged as shown in FIG. That is, in order to support the load of the superconducting magnet 4, the load support 1 having great rigidity in the three axis directions is arranged at the center of the straight portion of the inner tank 5 which accommodates the racetrack-shaped superconducting magnet.

【0029】また3軸方向に大きな剛性を持つ荷重支持
体1では十分抑えきれていないモ−ドを抑えるために、
レ−ストラック形状の超電導磁石4の直線部と直角の面
内の1軸方向に大きな剛性を持つ荷重支持体2(すなわ
ち超電導磁石面内の1軸方向に大きな剛性を持つ)を、
超電導磁石を納める内槽5の円弧部に、さらに超電導磁
石面外の1軸方向に大きな剛性を持つ荷重支持体3を、
超電導磁石を納める内槽5のコ−ナ−部に設けるもので
ある。荷重支持体全体の剛性は超電導磁石に侵入が許さ
れる熱量の制限内である。
Further, in order to suppress a mode which cannot be sufficiently suppressed by the load support 1 having a large rigidity in the three axis directions,
The load support 2 having a large rigidity in the uniaxial direction in the plane perpendicular to the straight portion of the racetrack-shaped superconducting magnet 4 (that is, having a large rigidity in the uniaxial direction in the superconducting magnet surface),
In the arc portion of the inner tank 5 that houses the superconducting magnet, the load support 3 having a large rigidity in the uniaxial direction outside the surface of the superconducting magnet,
It is provided in the corner portion of the inner tank 5 which houses the superconducting magnet. The rigidity of the entire load support is within the limit of the amount of heat that can enter the superconducting magnet.

【0030】ここで3軸方向に大きな剛性を持つ荷重支
持体および1軸方向に大きな剛性を持つ荷重支持体につ
いて図6から図9を用いて説明する。まず、3軸方向に
大きな剛性を持つ荷重支持体は図6のように直径の異な
る円筒の部材11(例えばFRP製)を多重に同心円状
に組み合わせたものである。円筒の部材であるから、円
筒の長手方向には断面係数とヤング率から決まる剛性を
持つ。また、これを多重に同心円状に重ねているので円
筒の直径方向にも大きな剛性が確保される。材料として
は剛性が高く断熱効果も高いFRPを用いる。
A load support having a large rigidity in the three-axis directions and a load support having a large rigidity in the one-axis directions will be described with reference to FIGS. 6 to 9. First, as shown in FIG. 6, a load support having a large rigidity in the three-axis direction is a combination of cylindrical members 11 (for example, made of FRP) having different diameters in multiple concentric circles. Since it is a cylindrical member, it has rigidity determined by the cross-sectional modulus and Young's modulus in the longitudinal direction of the cylinder. In addition, since they are superposed in a concentric manner in multiple layers, great rigidity is secured in the diameter direction of the cylinder. As a material, FRP having high rigidity and high heat insulating effect is used.

【0031】一方、1軸方向に大きな剛性を持つ荷重支
持体は図7のような断面形状が円の棒上の部材(円柱部
材)である。この部材も長手方向には断面係数とヤング
率から決まる大きな剛性を持つ。この棒は1軸方向(長
手方向)だけに大きな剛性を持てば良いので、長手方向
に必要な剛性が確保される範囲内でできるだけ細いもの
が望ましい。材質はやはり剛性が高く断熱性も高いFR
Pを用いる。
On the other hand, the load support having a large rigidity in the uniaxial direction is a rod-shaped member (cylindrical member) having a circular cross section as shown in FIG. This member also has a large rigidity in the longitudinal direction, which is determined by the section modulus and Young's modulus. Since this rod only needs to have a large rigidity in only one axial direction (longitudinal direction), it is desirable that the rod be as thin as possible within the range in which the required rigidity is ensured in the longitudinal direction. The material is FR with high rigidity and high heat insulation.
P is used.

【0032】この棒上の部材を超電導磁石面内の1軸方
向に大きな剛性を持つ荷重支持体として用いる場合は図
8のようにこの部材で超電導磁石4の内槽5を水平に支
持するようにする。一方この部材を超電導磁石面外の1
軸方向に大きな剛性を持つ荷重支持体として用いる場合
は図9に示すようにこの部材で超電導磁石4の内槽5を
垂直に支持するようにする。
When this member on the rod is used as a load support having a great rigidity in the direction of one axis in the surface of the superconducting magnet, the member should support the inner tank 5 of the superconducting magnet 4 horizontally as shown in FIG. To On the other hand, this member is
When it is used as a load support having great rigidity in the axial direction, this member vertically supports the inner tank 5 of the superconducting magnet 4 as shown in FIG.

【0033】本発明の第2実施例は、適正な剛性の荷重
支持体1、2、3を図2のように配置するものである。
すなわち、超電導磁石4の荷重を支えるため、3軸方向
に大きな剛性を持つ荷重支持体1をレ−ストラック形状
をした超電導磁石を納める内槽5の直線部の中央に配置
する。
In the second embodiment of the present invention, load supports 1, 2 and 3 having appropriate rigidity are arranged as shown in FIG.
That is, in order to support the load of the superconducting magnet 4, the load support 1 having great rigidity in the three axis directions is arranged at the center of the straight portion of the inner tank 5 which accommodates the racetrack-shaped superconducting magnet.

【0034】また3軸方向に大きな剛性を持つ荷重支持
体1では十分抑えきれていないモ−ドを抑えるために超
電導磁石4の面外の1軸方向に大きな剛性を持つ荷重支
持体3および超電導磁石の直線部と直角の面内の1軸方
向に大きな剛性を持つ荷重支持体2をレ−ストラック形
状をした超電導磁石4を納める内槽5の円弧部の両端に
設けるものである。荷重支持体全体の剛性はやはり超電
導磁石に侵入が許される熱量の制限内である。
Further, in order to suppress a mode which is not sufficiently suppressed by the load support 1 having a large rigidity in the three axial directions, the load support 3 and the superconducting material having a large rigidity in the uniaxial direction out of the plane of the superconducting magnet 4 are suppressed. A load support body 2 having a large rigidity in the direction of one axis in a plane perpendicular to the linear portion of the magnet is provided at both ends of an arc portion of an inner tank 5 for accommodating a superconducting magnet 4 having a racetrack shape. The rigidity of the entire load support is still within the limit of the amount of heat that can enter the superconducting magnet.

【0035】本発明の第3実施例は、適正な剛性の荷重
支持体1、2、3を図3のように配置する。すなわち、
超電導磁石4の荷重を支えるため3軸方向に大きな剛性
を持つ荷重支持体1をレ−ストラック形状をした超電導
磁石を納める内槽5の中央部付近に配置する。
In the third embodiment of the present invention, load supports 1, 2 and 3 having appropriate rigidity are arranged as shown in FIG. That is,
In order to support the load of the superconducting magnet 4, a load support 1 having a large rigidity in the three axial directions is arranged near the center of the inner tank 5 which houses the racetrack-shaped superconducting magnet.

【0036】また3軸方向に大きな剛性を持つ荷重支持
体1では十分抑えきれていないモ−ドを抑えるために超
電導磁石4の面外の1軸方向に大きな剛性を持つ荷重支
持体3をレ−ストラック形状をした超電導磁石4を納め
る内槽5の直線部に、および超電導磁石の直線部と直角
の面内の1軸方向に大きな剛性を持つ荷重支持体2を内
槽5の円弧部の両端に設けるものである。荷重支持体全
体の剛性はやはり超電導磁石に侵入が許される熱量の制
限内である。
Further, in order to suppress a mode which is not sufficiently suppressed by the load support 1 having a large rigidity in the three axial directions, the load support 3 having a large rigidity in the uniaxial direction out of the plane of the superconducting magnet 4 is mounted. -The load supporting member 2 having a large rigidity in the linear portion of the inner tank 5 for accommodating the superconducting magnet 4 in the shape of a track and in the direction perpendicular to the linear portion of the superconducting magnet is provided in the arc portion of the inner tank 5. Are provided at both ends of. The rigidity of the entire load support is still within the limit of the amount of heat that can enter the superconducting magnet.

【0037】本発明の第4実施例は適正な剛性の荷重支
持体1、2、3を図4のように配置するものである。ま
ず、超電導磁石4の荷重を支えるため3軸方向に大きな
剛性を持つ荷重支持体3をレ−ストラック形状をした超
電導磁石4を納める内槽5の直線部の中央に2個配置す
る。次に荷重支持体の剛性では十分抑えきれていないモ
−ドを抑えるために超電導磁石の面外の1軸方向に大き
な剛性を持つ荷重支持体3をレ−ストラック形状をした
超電導磁石4を納める内槽5のコ−ナ−部に、さらに超
電導磁石4の直線部と直角の面内の1軸方向にのみ大き
な剛性を持つ荷重支持体2を超電導磁石4を納める内槽
5の円弧部と直線部の境界の部分に設けるものである。
荷重支持体全体の剛性は超電導磁石に侵入が許される制
限内であることは同様である。
In the fourth embodiment of the present invention, load supports 1, 2 and 3 having appropriate rigidity are arranged as shown in FIG. First, in order to support the load of the superconducting magnet 4, two load supports 3 having great rigidity in the three axial directions are arranged in the center of the straight portion of the inner tank 5 for accommodating the superconducting magnet 4 having the racetrack shape. Next, in order to suppress a mode which is not sufficiently suppressed by the rigidity of the load supporting body, the load supporting body 3 having a large rigidity in the uniaxial direction out of the plane of the superconducting magnet is formed into the racetrack-shaped superconducting magnet 4. Further, in the corner portion of the inner tank 5 for accommodating, the load supporting body 2 having a large rigidity only in one axis direction in a plane perpendicular to the straight portion of the superconducting magnet 4 is formed in the arc portion of the inner tank 5 for accommodating the superconducting magnet 4. Is provided at the boundary of the straight line portion.
Similarly, the rigidity of the entire load support is within the limit that allows penetration into the superconducting magnet.

【0038】本発明の第5実施例は、適正な剛性の荷重
支持体1、2、3を図5のように配置するものである。
すなわち、3軸方向に大きな剛性を持つ荷重支持体1お
よび超電導磁石面内方向に大きな剛性を持つ荷重支持体
2については本発明の第一実施例(図1)と同じ位置に
設ける。そして超電導磁石面外方向に大きな剛性を持つ
荷重支持体3は内槽5のコ−ナ−部に、許容される熱侵
入の範囲内で数多く設けるものである。
In the fifth embodiment of the present invention, the load supports 1, 2 and 3 having appropriate rigidity are arranged as shown in FIG.
That is, the load support 1 having a large rigidity in the triaxial direction and the load support 2 having a large rigidity in the in-plane direction of the superconducting magnet are provided at the same positions as in the first embodiment (FIG. 1) of the present invention. A large number of load supports 3 having great rigidity in the out-of-plane direction of the superconducting magnet are provided in the corner portion of the inner tank 5 within the range of allowable heat penetration.

【0039】本発明の第6実施例は、適正な剛性の荷重
支持体1、2、3を図14のように配置するものであ
る。すなわち、3軸方向に大きな剛性を持つ荷重支持体
1および超電導磁石面内方向に大きな剛性を持つ荷重支
持体2については本発明の第一実施例(図1)と同じ位
置に設ける。そして超電導磁石面外方向に大きな剛性を
持つ荷重支持体3は内槽5に、超電導磁石の曲げやねじ
りなどの局部変形が生じにくいように、短いスパンで数
多く設けるものである。
In the sixth embodiment of the present invention, load supports 1, 2 and 3 having appropriate rigidity are arranged as shown in FIG. That is, the load support 1 having a large rigidity in the triaxial direction and the load support 2 having a large rigidity in the in-plane direction of the superconducting magnet are provided at the same positions as in the first embodiment (FIG. 1) of the present invention. A large number of load supports 3 having a large rigidity in the out-of-plane direction of the superconducting magnet are provided in the inner tank 5 with a short span so that local deformation such as bending and twisting of the superconducting magnet is unlikely to occur.

【0040】この超電導磁石面外の1軸方向に大きな剛
性を持つ荷重支持体3は、超電導磁石の曲げやねじりの
振動モ−ドの腹の位置に設けるのが良い。荷重支持体全
体の剛性はやはり超電導磁石に侵入が許容される制限内
である。
The load support 3 having a great rigidity in the uniaxial direction outside the surface of the superconducting magnet is preferably provided at the antinode of the vibration mode of bending and twisting of the superconducting magnet. The rigidity of the entire load support is still within the limit that allows penetration into the superconducting magnet.

【0041】また、第3実施例においては、超電導磁石
面外の1軸方向に剛性を持つ荷重支持体3は、レ−スト
ラック形状をした超電導磁石を納める内槽5の直線部の
ほかにコ−ナ−部にも設けても良い。
In addition, in the third embodiment, the load support 3 having rigidity in the uniaxial direction outside the surface of the superconducting magnet is not limited to the straight portion of the inner tank 5 which accommodates the racetrack-shaped superconducting magnet. It may also be provided in the corner section.

【0042】[0042]

【発明の効果】本発明によれば、超電導磁石を、与えら
れた剛性の荷重支持体を用いた範囲内で、最も高剛性
に、すなわち超電導磁石の固有振動数が最も高くなるよ
うに支持することができるので、超電導磁石の共振回避
に役立ち低振動化に大きな効果がある。
According to the present invention, the superconducting magnet is supported with the highest rigidity, that is, with the highest natural frequency of the superconducting magnet, within the range in which the load support having the given rigidity is used. Therefore, it helps avoid the resonance of the superconducting magnet and has a great effect in reducing vibration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の超電導磁石の支持位置で
ある。
FIG. 1 is a support position of a superconducting magnet according to a first embodiment of the present invention.

【図2】本発明の第2実施例の超電導磁石の支持位置で
ある。
FIG. 2 is a support position of a superconducting magnet according to a second embodiment of the present invention.

【図3】本発明の第3実施例の超電導磁石の支持位置で
ある。
FIG. 3 is a support position of a superconducting magnet according to a third embodiment of the present invention.

【図4】本発明の第4実施例の超電導磁石の支持位置で
ある。
FIG. 4 is a support position of a superconducting magnet according to a fourth embodiment of the present invention.

【図5】本発明の第5実施例の超電導磁石の支持位置で
ある。
FIG. 5 is a support position of a superconducting magnet according to a fifth embodiment of the present invention.

【図6】3軸方向に大きな剛性を持つ荷重支持体の説明
図である。
FIG. 6 is an explanatory diagram of a load support having a large rigidity in three axis directions.

【図7】1軸方向に大きな剛性を持つ荷重支持体に用い
る部材の説明図である。
FIG. 7 is an explanatory diagram of a member used for a load support having a large rigidity in a uniaxial direction.

【図8】超電導磁石の面内方向を支持する場合の説明図
である。
FIG. 8 is an explanatory diagram for supporting the in-plane direction of the superconducting magnet.

【図9】超電導磁石の面外方向を支持する場合の説明図
である。
FIG. 9 is an explanatory diagram for supporting the superconducting magnet in an out-of-plane direction.

【図10】磁気浮上列車システムの構造を表す正面図で
ある。
FIG. 10 is a front view showing the structure of a magnetic levitation train system.

【図11】磁気浮上列車システムの構造を表す側面図で
ある。
FIG. 11 is a side view showing the structure of a magnetic levitation train system.

【図12】磁気浮上列車の推進原理を表す説明図であ
る。
FIG. 12 is an explanatory diagram showing a propulsion principle of a magnetic levitation train.

【図13】磁気浮上列車の浮上原理を表す説明図であ
る。
FIG. 13 is an explanatory diagram showing a levitation principle of a magnetic levitation train.

【図14】本発明の第6実施例の超電導磁石の支持位置
の説明図である。
FIG. 14 is an explanatory diagram of a supporting position of a superconducting magnet according to a sixth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…3軸方向に大きな剛性を持つ荷重支持体、2…超電
導磁石の面外方向の1軸に大きな剛性を持つ荷重支持
体、3…超電導磁石の面内方向の1軸に大きな剛性を持
つ荷重支持体、4…超電導磁石、5…内槽、6…外槽、
7…浮上コイル、8…推進コイル、9…台車台枠、10
…車体。
1 ... A load support having a large rigidity in three axial directions, 2 ... A load support having a large rigidity in one out-of-plane direction of the superconducting magnet, 3 ... A large rigidity in one in-plane direction of the superconducting magnet Load support, 4 ... Superconducting magnet, 5 ... Inner tank, 6 ... Outer tank,
7 ... levitating coil, 8 ... propulsion coil, 9 ... bogie frame, 10
… Body.

フロントページの続き (72)発明者 田中 基八郎 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 平田 東助 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 園部 正 東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所内 (72)発明者 滝沢 照広 東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所内 (72)発明者 鈴木 史男 東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所内 (72)発明者 後藤 文彦 茨城県日立市幸町三丁目2番1号 日立エ ンジニアリング株式会社内Front Page Continuation (72) Inventor Kihachiro Tanaka, 502 Kintatemachi, Tsuchiura-City, Ibaraki Prefecture, Hiritsu Seisakusho Co., Ltd. (72) Inventor Tadashi Sonobe 4-6 Kanda Surugadai, Chiyoda-ku, Tokyo Hitachi, Ltd. (72) Inventor Teruhiro Takizawa 4-6 Kanda Surugadai, Chiyoda-ku, Tokyo (72) Invented by Hitachi, Ltd. (72) Fumio Suzuki 4-6 Kanda Surugadai, Chiyoda-ku, Tokyo, Hitachi, Ltd. (72) Inventor Fumihiko Goto 3-2-1, Saiwaicho, Hitachi, Ibaraki Hitachi Engineering Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】極低温に冷却された超電導磁石と、この超
電導磁石を冷却するためのヘリウムを充填する内槽、こ
の内槽を断熱するための輻射シ−ルド板およびこれらを
真空状態に保つための外槽を備えてなる超電導磁石構造
体において、超電導磁石を高剛性に支持するために3軸
方向に大きな剛性を有する荷重支持体を少なくとも1個
設けることを特徴とする磁気浮上列車用超電導磁石構造
体。
1. A superconducting magnet cooled to an extremely low temperature, an inner tank filled with helium for cooling the superconducting magnet, a radiation shield plate for insulating the inner tank, and keeping them in a vacuum state. In a superconducting magnet structure including an outer tank for a magnetic levitation train, at least one load support having great rigidity in three axial directions is provided to support the superconducting magnet with high rigidity. Magnet structure.
【請求項2】請求項1において、超電導磁石を高剛性に
支持するために少なくとも1個の3軸方向に大きな剛性
を有する荷重支持体と、少なくとも1個の単軸(1軸)
方向に大きな剛性を持つ荷重支持体を組合せて設けるこ
とを特徴とする磁気浮上列車用超電導磁石構造体。
2. The load supporting body according to claim 1, which has a high rigidity in three axial directions for supporting the superconducting magnet with high rigidity, and at least one uniaxial (uniaxial) supporting member.
A superconducting magnet structure for a magnetic levitation train, characterized in that a load support having great rigidity in a direction is provided in combination.
【請求項3】請求項2において、1軸方向に大きな剛性
を持つ荷重支持体として超電導磁石の面内方向を支持す
るもの及び/または面外方向を支持するものを用いるこ
とを特徴とする磁気浮上列車用超電導磁石構造体。
3. A magnetic material according to claim 2, wherein a load supporting body having a large rigidity in a uniaxial direction is used to support an in-plane direction and / or an out-of-plane direction of the superconducting magnet. Superconducting magnet structure for levitating trains.
【請求項4】請求項1において、3軸方向に大きな剛性
を持つ荷重支持体をレ−ストラック形状をした超電導磁
石を覆う内槽表面のいづれかの位置に少なくとも1個設
けることを特徴とする磁気浮上列車用超電導磁石構造
体。
4. A load supporting body having a large rigidity in the three axial directions is provided at least at one position on the surface of the inner tank covering the racetrack-shaped superconducting magnet. Superconducting magnet structure for magnetic levitation trains.
【請求項5】請求項3において、1軸方向に大きな剛性
を持つ荷重支持体をレ−ストラック形状をした超電導磁
石を覆う内槽表面のいづれかの位置に少なくとも1個設
けることを特徴とする磁気浮上列車用超電導磁石構造
体。
5. A load supporting body having great rigidity in one axis direction is provided at least at one position on the surface of the inner tank covering the racetrack-shaped superconducting magnet. Superconducting magnet structure for magnetic levitation trains.
【請求項6】請求項1において、3軸方向に大きな剛性
を持つ荷重支持体をレ−ストラック形状をした超電導磁
石の内槽表面の少なくとも1個所の直線部の中央の位置
に設けることを特徴とする磁気浮上列車用超電導磁石構
造体。
6. A load support having great rigidity in three axial directions is provided at a central position of at least one linear portion on the surface of the inner tank of the racetrack-shaped superconducting magnet. A characteristic superconducting magnet structure for a magnetic levitation train.
【請求項7】請求項2において、超電導磁石を支持する
手段は、レ−ストラック形状を持つ超電導磁石を覆う内
槽において、内槽の直線部の中央に3軸方向に大きな剛
性を持つ荷重支持体、レ−ストラック形状をした内槽の
コ−ナ−部に、超電導磁石の面外方向を抑える1軸方向
に大きな剛性を持つ荷重支持体、超電導磁石の円弧部の
両端に超電導磁石の直線部と直角の面内方向を抑える1
軸方向に大きな剛性を持つ荷重支持体を配置したことを
特徴とする磁気浮上列車用超電導磁石構造体。
7. The means for supporting a superconducting magnet according to claim 2, wherein in the inner tank covering the superconducting magnet having a racetrack shape, a load having great rigidity in three axial directions is provided at the center of the straight portion of the inner tank. The support, the corner portion of the racetrack-shaped inner tank, the load support having a large rigidity in the uniaxial direction that suppresses the out-of-plane direction of the superconducting magnet, and the superconducting magnets at both ends of the arc portion of the superconducting magnet. Suppresses the in-plane direction at right angles to the straight part of 1
A superconducting magnet structure for a magnetic levitation train, characterized in that a load support having great rigidity is arranged in the axial direction.
【請求項8】請求項1において、3軸方向に大きな剛性
を持つ荷重支持体は、レ−ストラック形状をした超電導
磁石の内槽の中央部付近の位置に少なくとも1個設けら
れていることを特徴とする磁気浮上列車用超電導磁石構
造体。
8. A load supporting body having great rigidity in three axial directions according to claim 1, wherein at least one load supporting body is provided near a central portion of an inner tank of a racetrack-shaped superconducting magnet. A superconducting magnet structure for a magnetic levitation train.
【請求項9】請求項2において、超電導磁石を支持する
手段は、レ−ストラック形状を持つ超電導磁石を覆う内
槽において、内槽の直線部の中央に3軸方向に大きな剛
性を持つ荷重支持体を、また、レ−ストラック形状の超
電導磁石を覆う内槽の円弧部の両端に、超電導磁石の面
内の1軸方向に大きな剛性を持つ荷重支持体を設け、さ
らに、超電導磁石を覆う内槽に、超電導磁石面外の振動
を抑える1軸方向に大きな剛性を持つ荷重支持体を、曲
げやねじりなどの局部変形が生じにくいように短いスパ
ンで多数配置することを特徴とする磁気浮上列車用超電
導磁石構造体。
9. The means for supporting a superconducting magnet according to claim 2, wherein in the inner tank covering the superconducting magnet having a racetrack shape, a load having great rigidity in three axial directions is provided at the center of the straight portion of the inner tank. A load supporting body having a large rigidity in the uniaxial direction in the plane of the superconducting magnet is provided at both ends of the arcuate portion of the inner tank that covers the racetrack-shaped superconducting magnet. In the inner tank to be covered, a large number of load supports having a large rigidity in the uniaxial direction that suppresses vibrations outside the surface of the superconducting magnet are arranged with a short span so that local deformation such as bending and twisting does not easily occur. Superconducting magnet structure for levitating trains.
JP4022264A 1992-02-07 1992-02-07 Superconducting magnet structure for magnetic levitation train Expired - Fee Related JP2619581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4022264A JP2619581B2 (en) 1992-02-07 1992-02-07 Superconducting magnet structure for magnetic levitation train

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4022264A JP2619581B2 (en) 1992-02-07 1992-02-07 Superconducting magnet structure for magnetic levitation train

Publications (2)

Publication Number Publication Date
JPH05217740A true JPH05217740A (en) 1993-08-27
JP2619581B2 JP2619581B2 (en) 1997-06-11

Family

ID=12077914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4022264A Expired - Fee Related JP2619581B2 (en) 1992-02-07 1992-02-07 Superconducting magnet structure for magnetic levitation train

Country Status (1)

Country Link
JP (1) JP2619581B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4845739A (en) * 1985-07-10 1989-07-04 Fdr Interactive Technologies Telephonic-interface statistical analysis system
JP2006126614A (en) * 2004-10-29 2006-05-18 Toshiba Corp Method for generating mask data pattern, method for manufacturing photomask, and method for manufacturing semiconductor device
JP2010272659A (en) * 2009-05-21 2010-12-02 Sumitomo Heavy Ind Ltd Superconducting magnet device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562251A (en) * 1979-06-15 1981-01-10 Tokyo Shibaura Electric Co Inner cell support construction of superconductive electromagnet
JPS5735385A (en) * 1980-07-04 1982-02-25 Japan Atom Energy Res Inst Supercryogenic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562251A (en) * 1979-06-15 1981-01-10 Tokyo Shibaura Electric Co Inner cell support construction of superconductive electromagnet
JPS5735385A (en) * 1980-07-04 1982-02-25 Japan Atom Energy Res Inst Supercryogenic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4845739A (en) * 1985-07-10 1989-07-04 Fdr Interactive Technologies Telephonic-interface statistical analysis system
JP2006126614A (en) * 2004-10-29 2006-05-18 Toshiba Corp Method for generating mask data pattern, method for manufacturing photomask, and method for manufacturing semiconductor device
JP2010272659A (en) * 2009-05-21 2010-12-02 Sumitomo Heavy Ind Ltd Superconducting magnet device

Also Published As

Publication number Publication date
JP2619581B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
US7478598B2 (en) Oscillation damping means for magnetically levitated systems
JP4846237B2 (en) Magnetic suspension system
KR101137968B1 (en) Magnetically levitated system and magnetically levitated vehicle system using superconductor
CN106926743A (en) Eddy current retarder and magnetically supported vehicle
JPH05217740A (en) Superconducting magnet structure for magnetic levitation train
JP3810932B2 (en) Non-contact induction current collector
JP3493274B2 (en) Maglev train
JP3304761B2 (en) Superconducting magnet for magnetic levitation train and magnetic levitation train using the same
JP2931169B2 (en) Magnetically levitated superconducting magnet device for vehicles
JP3274093B2 (en) Maglev vehicle
JP2691111B2 (en) Superconducting magnet structure
KR101471092B1 (en) Magnetic levitation system having division invertor
JPH0620831A (en) Superconductive magnet device
JP3275798B2 (en) Superconducting magnet device for magnetic levitation train
JP3306619B2 (en) Superconducting magnet for magnetic levitation train with induction current collecting coil
JP2002052004A (en) Magnetic resonance imaging apparatus
JP3965311B2 (en) Magnetically levitated mobile system and coil arrangement structure thereof
JPH06333733A (en) Damper for magnetic levitation train
JP4202575B2 (en) Superconducting magnet for magnetic levitation train
JPH1154317A (en) Superconducting magnet for magnetic levitation train
JP3151512B2 (en) Superconducting magnet for maglev train
JPH09312209A (en) Superconducting magnet device
JPH0312903A (en) Superconducting magnet with mechanism of periodic damping
JP3253394B2 (en) Superconducting magnet
JP3329864B2 (en) Superconducting device

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090311

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees