JPH05215848A - Image distortion correcting method and device therefor - Google Patents

Image distortion correcting method and device therefor

Info

Publication number
JPH05215848A
JPH05215848A JP63207706A JP20770688A JPH05215848A JP H05215848 A JPH05215848 A JP H05215848A JP 63207706 A JP63207706 A JP 63207706A JP 20770688 A JP20770688 A JP 20770688A JP H05215848 A JPH05215848 A JP H05215848A
Authority
JP
Japan
Prior art keywords
image
distortion correction
gcp
error
altitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63207706A
Other languages
Japanese (ja)
Inventor
Shigeki Kuzuoka
成樹 葛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63207706A priority Critical patent/JPH05215848A/en
Publication of JPH05215848A publication Critical patent/JPH05215848A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9004SAR image acquisition techniques
    • G01S13/9019Auto-focussing of the SAR signals

Abstract

PURPOSE:To enable high-accuracy geometric distortion correction to a radar image by expressing the position of a spot (GCP) allowing the position to be indicated clearly on an image on line-pixel coordinates, using altitude information so as to obtain an orbital error. CONSTITUTION:A stored (2) uncorrected image is subjected to coarse geometric distortion correction by known orbital data. The corrected image is displayed (4), and a GCP position on the image is read by line-pixel coordinates. On the other hand, an altitude input part 5 reads GCP altitude from a digital topographical map on the basis of GCP latitude-longitude and converts the GCP position onto the coordinates on the image. The GCP position on the image is then compared with the theoretically computed position from the map to obtain a GCP error. This error is measured on plural GCPs, and the orbital data used for coarse geometric distortion correction is corrected by the orbital error estimated by calculating the average value of errors so as to form new orbital data, and fine geometric distortion correction is performed using this new orbital data. This is repeated until the convergence of the orbital data to obtain a correct fine geometric distortion corrected image.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は例えば人口衛星に搭載した合成開口 レーダ(Synthetic aperture Radar:SAR)によって 取得した画像データを歪補正する歪補正装置,特 にその幾何学歪補正に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a distortion correction device for correcting the distortion of image data acquired by, for example, a synthetic aperture radar (SAR) mounted on an artificial satellite, and more particularly, to a geometric correction device. It is related to academic distortion correction.

〔従来の技術〕[Conventional technology]

第2図は人口衛星に搭載した光学センサによっ て取得した画像データを歪補正する従来の歪補正 装置を示す構成図であり,図において(1)は未補 正画像入力部,(2)は未補正画像入力部(1)から入 力した補正前の画像を一時格納するデータ格納部 (3)はデータ格納部(2)の未補正画像を入力して画 像の幾何学歪補正をする演算部,(4)は演算部(3) で幾何学歪補正した画像を表示する画像表示部で ある。 Figure 2 is a block diagram showing a conventional distortion correction device that corrects the distortion of the image data acquired by the optical sensor mounted on the artificial satellite. In the figure, (1) is the uncorrected image input section, (2) Is a data storage unit (3) that temporarily stores the uncorrected image input from the uncorrected image input unit (1) and inputs the uncorrected image from the data storage unit (2) to correct the geometric distortion of the image. The calculation unit (4) is an image display unit that displays the image whose geometric distortion has been corrected by the calculation unit (3).

第3図は上記従来の歪補正装置が画像の幾何学 歪を補正するアルゴリズムを示すフローチャート 図である。 FIG. 3 is a flow chart showing an algorithm for correcting the geometric distortion of an image by the conventional distortion correcting apparatus.

従来の画像歪補正装置は上記のように構成され たとえば磁気テープに記録された未補正画像は未 補正画像入力部(1)から入力されデータ格納部(2) に格納される。次にデータ格納部(2)に格納され た未補正画像は第3図のアルゴリズムに従って画 像の幾何学歪,すなわち画像の形状の歪を補正さ れる。 The conventional image distortion correction device is configured as described above and, for example, an uncorrected image recorded on a magnetic tape is input from the uncorrected image input unit (1) and stored in the data storage unit (2). Next, the uncorrected image stored in the data storage unit (2) is corrected for the geometric distortion of the image, that is, the distortion of the image shape according to the algorithm in Fig. 3.

まず演算部(3)は,既知の軌道データを用いて未 補正画像データの幾何学歪を補正するいわゆる粗 幾何学歪補正(6)を行う。しかし既知の軌道デー タには決定誤差が含まれているため,粗幾何学歪 補正した画像が地図に完全に正確に重なる訳では ない。そのため粗幾何学歪補正した画像に対し, 橋や交差点等地図上での位置が明確でありかつ画 像上でその位置を明確に指示できる地点(Ground Control Point:GCP)を用いてさらに精度良く補正 する。まず粗幾何学歪補正した画像を画像表示部 (4)に表示し,その画像上でGCPの位置を画像上の 座標(ライン,ピクセル)で読み取る(8),次にこの GCPの位置を粗幾何学歪補正したときに求めた幾 何学歪補正量を示す関係式から地図上の位置(緯 度,経度)に変換する(9),このようにして画像か ら求めたGCPの地図上の位置(緯度,経度)と地 図から読み取ったGCP本来の位置(緯度,経度) を比較することにより誤差を求める(10)。このよ うな誤差を複数のGCPに対して測定し,その値 を統計処理すると,粗幾何学歪補正のときに用い た軌道データに含まれていた誤差が計算できる (11)。そこでこの誤差を補正した軌道データを用 いて再度幾何学歪補正すると精度の高い精幾何学 歪補正(12)ができて,地図に完全に重なる画像が 求まる。 First, the computing unit (3) performs so-called coarse geometric distortion correction (6) that corrects the geometric distortion of uncorrected image data using known trajectory data. However, since the known orbital data contains decision errors, the image with coarse geometric distortion correction does not completely overlap the map exactly. For this reason, it is possible to use a point (Ground Control Point: GCP) that has a clear position on the map such as a bridge or an intersection and can clearly indicate the position on the image that has been subjected to the coarse-geometry correction, with even higher accuracy. to correct. First, the image with coarse geometric distortion correction is displayed on the image display unit (4), and the position of GCP on the image is read by coordinates (line, pixel) on the image (8). The relational expression showing the geometric distortion correction amount obtained when geometric distortion correction is performed is converted into the position (latitude, longitude) on the map [9]. The error is calculated by comparing the position (latitude, longitude) of GCP and the original position (latitude, longitude) of GCP read from the ground map (10). By measuring such an error for multiple GCPs and statistically processing the values, the error contained in the orbit data used for coarse geometric distortion correction can be calculated [11]. Therefore, if the geometric distortion correction is performed again using the trajectory data that has corrected this error, a highly accurate geometric distortion correction [12] can be performed, and an image that completely overlaps the map can be obtained.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記のような従来の画像歪補正装置では光学セ ンサ画像(14)については精度良く補正できる。こ れは第4図に示すように光学センサでは対象物の 高度に依存せず,画像位置がきまるためである。 The conventional image distortion correction device as described above can accurately correct the optical sensor image (14). This is because the optical sensor does not depend on the altitude of the object as shown in Fig. 4, and the image position is fixed.

しかしレーダ画像(13)は第4図に示すようにレー ダと対象物との距離(スラントレンジ)が等しくな る地上に画像が形成されるので,画像位置は対象 物の高度に依存する。このため従来の画像歪補正 装置でレーダ画像の幾何学歪補正をするとは,画 像上のGCP位置(ライン,ピクセル)をそのまま 地図上のGCPの位置(緯度,経度)に変換してし まい各GCP毎にその高度に応じた誤差が生ずる という課題があった。However, the radar image (13) is formed on the ground where the distance between the radar and the object (slant range) is equal, as shown in Fig. 4, so the image position depends on the altitude of the object. Therefore, in order to correct the geometric distortion of a radar image with a conventional image distortion correction device, the GCP position (line, pixel) on the image should be converted directly to the GCP position (latitude, longitude) on the map. There was a problem that an error occurred depending on the altitude for each GCP.

この発明は,かかる課題を解決するためになさ れたもので,レーダ画像に対して精度良く幾何学 歪補正ができる歪補正装置を得ることを目的とす る。 The present invention has been made to solve such problems, and an object thereof is to obtain a distortion correction device capable of correcting geometric distortion with high accuracy for radar images.

〔課題を解決するための手段〕[Means for Solving the Problems]

この発明に係わる歪補正装置は,各GCPの位 置データとして緯度,経度の他に高度を使用でき るように高度入力装置を有し,高度情報を用いて GCP位置をライン,ピクセル座標上で表現して 軌道誤差を求めるものである。 The distortion correction device according to the present invention has an altitude input device so that the altitude as well as the latitude and longitude can be used as the position data of each GCP, and the GCP position is displayed on the line and pixel coordinates by using the altitude information. It expresses and calculates the orbital error.

〔作用〕[Action]

この発明においては,各GCPの位置データと して緯度,経度,高度を使用するから,粗幾何学 歪補正に使用した軌道,地図上のGCP位置(緯 度,経度,高度)を用いて各GCPが画像上で見 えるはずの理論的な位置を計算でき,実際の画像 上のGCP位置とGCPが見えるはずの理論上の 位置の差から粗歪補正に用いた軌道データのバイ アス的な誤差をもとめることができる。このバイ アス的な軌道誤差を修正した軌道データを用いて 再度幾何学歪補正することを何度か繰り返すこと により正確な精幾何学歪補正ができる。 In the present invention, since the latitude, longitude, and altitude are used as the position data of each GCP, the orbit used for the coarse geometric distortion correction and the GCP position (latitude, longitude, altitude) on the map are used for each calculation. The theoretical position that GCP should see on the image can be calculated. From the difference between the GCP position on the actual image and the theoretical position where GCP should be visible, the bias data of the trajectory data used for coarse distortion correction can be calculated. You can find the error. Accurate precise geometrical distortion correction can be performed by repeating geometrical distortion correction again several times using the orbital data in which the biased orbital error is corrected.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す構成図であ り,(1)〜(4)は上記従来装置と全く同一のもので ある。(5)はフロッピーディスク等に格納されて いるディジタル地形図からGCPの高度を入力す る高度入力部である。 FIG. 1 is a block diagram showing an embodiment of the present invention, and (1) to (4) are exactly the same as the above conventional device. (5) is an altitude input section for inputting the altitude of GCP from the digital topographic map stored on a floppy disk or the like.

第5図は上記発明の一実施例の歪補正装置が画 像の幾何学歪を補正するアルゴリズムを示すフロ ーチャート図である。 FIG. 5 is a flow chart showing an algorithm for correcting the geometric distortion of an image by the distortion correcting apparatus according to the embodiment of the present invention.

上記のように構成された画像歪補正装置では, 従来の画像歪補正装置と同様に未補正画像は未補 正画像入力部(1)から入力されデータ格納部(2)に 格納される。次にデータ格納部(2)に格納された 未補正画像は第5図のアルゴリズムに従って既知 の軌道データを用いて粗幾何学歪補正される(6) その後粗幾何学歪補正した画像を画像表示部(4) に表示し(7),その画像上でGCPの位置を画像上の 座標(ライン,ピクセル)で読み取る(8)。 In the image distortion correction device configured as described above, the uncorrected image is input from the uncorrected image input unit (1) and stored in the data storage unit (2) as in the conventional image distortion correction device. Next, the uncorrected image stored in the data storage unit (2) is subjected to the coarse geometric distortion correction using the known trajectory data according to the algorithm of FIG. 5 (6) After that, the image after the coarse geometric distortion correction is displayed as an image. It is displayed on the section (4) (7), and the position of GCP on the image is read by coordinates (line, pixel) on the image (8).

一方この発明による画像歪補正装置では,GC Pの緯度,経度を基に該当地点の高度をディジタ ル地形図から高度入力部(5)が読み取る(15),こ のGCP本来の位置(緯度,経度,高度)と粗幾何 学歪補正に用いた軌道データから以下の式を用い てGCPの位置を画像上の座標(ライン,ピクセ ル)に変換する(9),ここで下記式の記号は第4図 に示すように,Xは緯度経度及び粗幾何学歪補正 に用いた軌道データから計算できるGCPが現れ る理論的位置,X0はGCP本来の位置,hはGC Pの高度,Hは衛星の高度である。 On the other hand, in the image distortion correction device according to the present invention, the altitude input section (5) reads the altitude of the corresponding point from the digital topographic map based on the latitude and longitude of the GCP (15), and the GCP original position (latitude, latitude, (Longitude, altitude) and orbit data used for coarse geometric distortion correction are used to convert the GCP position to coordinates (line, pixel) on the image using the following equation (9), where the symbol for the following equation is As shown in Fig. 4, X is the theoretical position where GCP that can be calculated from the latitude / longitude and the orbit data used for coarse geometric distortion correction appears, X0 is the original position of GCP, h is the altitude of GCP, and H is The altitude of the satellite.

このようにして画像から求めたGCPの画像上の 位置(ライン,ピクセル)と地図上の位置から理論 的に計算した位置(ライン,ピクセル)を比較する ことによりGCP誤差を求める(10)。このような 誤差を複数のGCPに対して測定し,その値をラ イン,ピクセルそれぞれに平均すれば粗幾何学歪 補正のときに用いた軌道データに含まれていた誤 差が計算できる(11)。すなわちライン方向(衛星 進行方向)の誤差平均値は衛星進行方向の軌道誤 差となり,ピクセル方向(衛星進行方向に直交す る方向)の誤差平均値は衛星進行方向に直交する 方向の軌道誤差となる。この軌道誤差で,粗幾何 学歪補正に用いた軌道データを修正して新しい軌 道データとし,そのデータを用いて精幾何学歪補 正を行う(12)。Thus, the GCP error is obtained by comparing the position (line, pixel) on the image of GCP obtained from the image with the position (line, pixel) theoretically calculated from the position on the map [10]. By measuring such an error for multiple GCPs and averaging the measured values for each line and pixel, the error included in the trajectory data used for coarse geometric distortion correction can be calculated (11 ). That is, the average error value in the line direction (satellite traveling direction) becomes the orbit error in the satellite traveling direction, and the average error value in the pixel direction (direction orthogonal to the satellite traveling direction) is the orbit error in the direction orthogonal to the satellite traveling direction. Become. With this orbital error, the orbital data used for the coarse geometrical distortion correction is corrected to new trajectory data, and the geometrical geometric distortion correction is performed using this data [12].

ところでこのようにして軌道誤差が求まり,精 幾何学歪補正済画像が求まるが,この計算ではあ くまで粗幾何学歪補正に用いた軌道データを基に xの値を計算したため,一度で完全に正確な軌道 誤差及び正確な精幾何学歪補正済画像が求まるわ けではない。そこでこのようにして求めた精幾何 学歪補正済画像に対して再度上記プロセスを繰り 返し次の軌道データ及び精幾何学歪補正済画像を 求める。このように軌道誤差を求めてはその誤差 を軌道データに修正して再度軌道誤差を求めるこ とを繰り返すと,軌道データは正しい軌道データ に収束し,収束した軌道データを用いて幾何学歪 補正した結果がレーダ画像にたいする正確な精幾 何学歪補正済画像となる。 By the way, the orbital error is obtained in this way, and the image with the corrected geometric distortion is obtained. However, since this calculation was not performed until this time, the value of x was calculated based on the trajectory data used for the coarse geometric distortion correction, and therefore, it was completed completely at It is not always possible to obtain an accurate orbital error and an image with precise geometric distortion correction. Therefore, the above process is repeated again for the geometric-geometry-distortion-corrected image obtained in this way to obtain the next trajectory data and the geometric-geometry-distortion-corrected image. When the orbital error is calculated in this way, the error is corrected to the orbital data, and the orbital error is calculated again, the orbital data converges to the correct orbital data, and the converged orbital data is used to correct the geometric distortion. The result is an accurate geometrical distortion-corrected image for the radar image.

なお,上記実施例では高度入力部(5)をフロッ ピーディスク等に格納されているディジタル地形 図を入力するようになっているが,これは指定し た地点の高度情報を入力するたとえばキーボード といったものでもよい。 In the above embodiment, the altitude input section (5) is adapted to input a digital topographic map stored in a floppy disk or the like. This is, for example, a keyboard for inputting altitude information at a designated point. It may be one.

〔発明の効果〕〔The invention's effect〕

この発明は以上説明したとおり,高度入力部を 付加するという簡単な構造により、従来不可能で あったレーダ画像の高精度幾何学歪補正画像を得 られるという効果がある。 As described above, the present invention has an effect that a highly accurate geometric distortion-corrected image of a radar image, which has been impossible in the past, can be obtained by the simple structure of adding an altitude input section.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例を示す構成図,第 2図は従来の画像歪補正装置を示す構成図,第3 図は従来の画像歪補正装置のアルゴリズムを示す フローチャート,第4図はレーダ及び光学センサ による画像取得説明図,第5図はこの発明のアル ゴリズムを示すフローチャートである。 図において,(1)は未補正画像入力部,(2)未補 正画像入力部(1)から入力した補正前の画像を一 時格納するデータ格納部,(3)はデータ格納部(2) の未補正画像を入力して画像の幾何学歪補正をす る演算部,(4)は演算部(3)で幾何学歪補正した画 像を表示する画像表示部,(5)はフロッピーディス ク等に格納されているディジタル地形図からGC Pの高度を入力する高度入力部である。 また(6)は粗幾何学歪補正,(7)は画像表示,(8) は画像表示部におけるGCP位置読み取り,(9)は GCP位置を地図上の位置へ変換,(10)はGCP誤差計 算,(11)はGCP誤差の統計計算による軌道誤差推定 (12)は精幾何学歪補正,(15)はディジタル地形図 からGCP高度入力の処理である。(13)はレーダ画 像,(14)は光学センサ画像である。 なお,各図中同一符号は同一または相当部を示 す。 FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a block diagram showing a conventional image distortion correction device, FIG. 3 is a flow chart showing an algorithm of the conventional image distortion correction device, and FIG. FIG. 5 is a flow chart showing the algorithm of the present invention, which is an explanatory view of image acquisition by the radar and the optical sensor. In the figure, (1) is an uncorrected image input unit, (2) is a data storage unit that temporarily stores the uncorrected image input from the uncorrected image input unit (1), and (3) is a data storage unit (2 ) Is an operation unit that inputs the uncorrected image to correct the geometric distortion of the image, (4) is an image display unit that displays the image that has been geometrically corrected by the operation unit (3), and (5) is a floppy disk. This is an altitude input unit that inputs the altitude of the GCP from the digital topographic map stored on a disk or the like. In addition, (6) is the coarse geometric distortion correction, (7) is the image display, (8) is the GCP position reading on the image display, (9) is the GCP position converted to the position on the map, and (10) is the GCP error. Calculation, (11) is orbital error estimation by statistical calculation of GCP error, (12) is precision geometric distortion correction, and (15) is processing of GCP altitude input from digital topographic maps. (13) is the radar image and (14) is the optical sensor image. The same reference numerals in each figure indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 レーダ画像の歪補正において既知の軌道
デ ータを用いて粗歪補正し,粗歪補正した画像から 特徴のある地点の画像上の座標を抽出し,当該特 徴点の高度及び軌道データを用いて特徴点が画像 上に現れる位置を理論的に計算し,実際に画像か ら抽出した位置と理論的に計算した位置とを比較 することにより軌道データの誤差を推定し,推定 した軌道誤差を粗歪補正に用いた軌道データに対 して修正した軌道データを用いて精歪補正し,精 歪補正済画像から再度特徴点を用いて軌道データ の誤差を計算することを軌道データが収束するま で繰り返し,その結果正確な精歪補正画像を得る ことを特徴とする画像歪補正方法。
1. In the distortion correction of a radar image, coarse distortion correction is performed using known orbit data, and the coordinates on the image of a characteristic point are extracted from the rough distortion corrected image, and the altitude of the characteristic point is extracted. And the trajectory data are used to theoretically calculate the position where the feature point appears on the image, and the error of the trajectory data is estimated by comparing the position actually extracted from the image with the theoretically calculated position. Correcting the estimated trajectory error using the trajectory data corrected for the trajectory data used for the coarse distortion correction, and calculating the error of the trajectory data using the feature points again from the distortion-corrected image. An image distortion correction method characterized in that it repeats until the orbital data converges, and as a result, an accurate distortion correction image is obtained.
【請求項2】 レーダ画像を歪補正する装置において、
画 像の歪補正をする演算部,歪補正した画像を表示 し表示した画像から特徴のある地点の画像上の座 標を抽出する画像表示部,所定の特徴のある地点 の高度を入力する高度データ入力部を有すること を特徴とする画像歪補正装置。
2. A device for correcting distortion of a radar image,
An image distortion correction unit, an image display unit that displays the distortion-corrected image and extracts the coordinates on the image of a characteristic point from the displayed image, and an altitude that inputs the altitude of the point with a specific characteristic. An image distortion correction device having a data input section.
JP63207706A 1988-08-22 1988-08-22 Image distortion correcting method and device therefor Pending JPH05215848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63207706A JPH05215848A (en) 1988-08-22 1988-08-22 Image distortion correcting method and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63207706A JPH05215848A (en) 1988-08-22 1988-08-22 Image distortion correcting method and device therefor

Publications (1)

Publication Number Publication Date
JPH05215848A true JPH05215848A (en) 1993-08-27

Family

ID=16544218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63207706A Pending JPH05215848A (en) 1988-08-22 1988-08-22 Image distortion correcting method and device therefor

Country Status (1)

Country Link
JP (1) JPH05215848A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19704775A1 (en) * 1997-02-08 1998-08-13 Thomson Brandt Gmbh Method for correcting convergence in a projection television set
JP2003269957A (en) * 2002-03-18 2003-09-25 Mitsubishi Space Software Kk Position correction device and position correction method for satellite image
JP2004198275A (en) * 2002-12-19 2004-07-15 Mitsubishi Electric Corp Synthetic aperture radar system, and image reproducing method
JP2006189372A (en) * 2005-01-07 2006-07-20 Mitsubishi Electric Corp Position correction device of satellite images
JP2015529800A (en) * 2012-06-28 2015-10-08 レイセオン カンパニー Wide beam SAR focusing method using navigation solutions derived from autofocus data
WO2021020274A1 (en) * 2019-07-26 2021-02-04 株式会社イッツ・エムエムシー Position space identification method, position space identifier imparting device, and computer program
CN112526486A (en) * 2020-11-23 2021-03-19 哈尔滨工业大学 Three-dimensional laser radar space coordinate calibration method based on shafting error model

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19704775A1 (en) * 1997-02-08 1998-08-13 Thomson Brandt Gmbh Method for correcting convergence in a projection television set
US6111616A (en) * 1997-02-08 2000-08-29 Deutsche Thomson Brandt Gmbh Method for correcting the convergence in a projection television receiver
JP2003269957A (en) * 2002-03-18 2003-09-25 Mitsubishi Space Software Kk Position correction device and position correction method for satellite image
JP2004198275A (en) * 2002-12-19 2004-07-15 Mitsubishi Electric Corp Synthetic aperture radar system, and image reproducing method
JP2006189372A (en) * 2005-01-07 2006-07-20 Mitsubishi Electric Corp Position correction device of satellite images
JP4523422B2 (en) * 2005-01-07 2010-08-11 三菱電機株式会社 Satellite image position correction device
JP2015529800A (en) * 2012-06-28 2015-10-08 レイセオン カンパニー Wide beam SAR focusing method using navigation solutions derived from autofocus data
WO2021020274A1 (en) * 2019-07-26 2021-02-04 株式会社イッツ・エムエムシー Position space identification method, position space identifier imparting device, and computer program
CN112526486A (en) * 2020-11-23 2021-03-19 哈尔滨工业大学 Three-dimensional laser radar space coordinate calibration method based on shafting error model
CN112526486B (en) * 2020-11-23 2022-06-14 哈尔滨工业大学 Three-dimensional laser radar space coordinate calibration method based on shafting error model

Similar Documents

Publication Publication Date Title
US6807287B1 (en) Road profile prediction
JP5614903B2 (en) Investigation method of ground change
JPH07107548B2 (en) Positioning method using artificial satellites
Mikhail et al. Detection and sub-pixel location of photogrammetric targets in digital images
CN111007530A (en) Laser point cloud data processing method, device and system
CN107527382B (en) Data processing method and device
US6415043B1 (en) Method and arrangement for determining the position of an object
Fraser et al. Sub-metre geopositioning with Ikonos GEO imagery
CN116625354B (en) High-precision topographic map generation method and system based on multi-source mapping data
JPH05215848A (en) Image distortion correcting method and device therefor
CN110395297B (en) Train positioning method
Anuta Geometric correction of ERTS-1 digital multispectral scanner data
JPS6236272B2 (en)
JPS5910109B2 (en) Image geometric distortion correction device
EP1692463B1 (en) Methods and systems for generating a terrain elevation map in a cartesian format
JP4523422B2 (en) Satellite image position correction device
Sunar et al. Technical note An assessment of the geometric accuracy of remotely-sensed images
CN114279438B (en) Geomagnetic matching navigation method based on PSO and ICCP
CN114993286B (en) Grid map creation method and device based on image, laser radar and odometer
CN116503269B (en) SAR image correction method and device
JPH07294620A (en) Doppler position-measuring apparatus
Brewster Geometric Correction System Capabilities, Processing, and Application
Oo et al. Automated Registration with High to Medium Resolution Satellite Data
KR100467466B1 (en) Method for obtaining the geometry coordinate of a target point
CN117537815A (en) Aircraft positioning method based on three-dimensional terrain matching-inertial navigation-speed measurement combination