JPH05215509A - Scanning-type probe microscope and manufacture of probe thereof - Google Patents

Scanning-type probe microscope and manufacture of probe thereof

Info

Publication number
JPH05215509A
JPH05215509A JP4017455A JP1745592A JPH05215509A JP H05215509 A JPH05215509 A JP H05215509A JP 4017455 A JP4017455 A JP 4017455A JP 1745592 A JP1745592 A JP 1745592A JP H05215509 A JPH05215509 A JP H05215509A
Authority
JP
Japan
Prior art keywords
probe
scanning
probes
microscope
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4017455A
Other languages
Japanese (ja)
Inventor
Seiichi Kondo
誠一 近藤
Yasuo Wada
恭雄 和田
Kazusukatsu Igarashi
万壽和 五十嵐
Hisashi Nagano
久志 永野
Hiroshi Kajiyama
博司 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4017455A priority Critical patent/JPH05215509A/en
Publication of JPH05215509A publication Critical patent/JPH05215509A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To expand a scanning range and to shorten a scanning time by scanning a plurality of probes of a scanning-type microscope. CONSTITUTION:In order to maintain a clean surface, a scanning-type tunnel microscope 13, which can be operated in an ultrahigh vacuum state, is used. For probes 11, W (tungsten), which has undergone electropolishing, is used. In order to attach a gold atom 14 on the tip of the probe, the probe is brought close to the surface of gold, and a positive voltage is applied on the probe 11. After the probe is arranged on the specified position of the surface of SiO2, a negative voltage is applied on the probe. The gold atom 14 is moved on the surface 12. By the same way, the gold atom 14 is manipulated again. The next gold atom 14 is manipulated on the surface 12 and arranged so that this atom is separated from the previous gold atom by 0.1mum. This procedure is repeated. Then, with the surface being maintained clean, W is selectively grown only at the part of the gold atoms by chemical vapor growth. Signal plugs are arranged on a plurality of the manufactured probes. The probes are brought close to an Si surface 16 in an ultrahigh vacuum state. When a tunnel current is detected, the approaching of multiple chips is stopped. A piezoelectric element 15 is operated, and the Si surface is finely moved and adjusted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、走査型プローブ顕微鏡
用とその探針製造方法に係わり、さらに詳述すれば、複
数の探針を走査することにより、情報を高速にかつ広範
囲に得ることを特徴とした走査型プローブ顕微鏡用とそ
の探針製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning probe microscope and a method of manufacturing a probe therefor. More specifically, it is possible to obtain information at high speed and in a wide range by scanning a plurality of probes. And a method for manufacturing the probe thereof.

【0002】[0002]

【従来の技術】従来、走査型プローブ顕微鏡の代表であ
る走査型トンネル顕微鏡や走査型フォース顕微鏡は、ピ
エゾ素子を利用することにより、一つの探針を走査し
て、試料と探針の間に流れるトンネル電流や原子間力を
検知して、試料の表面形状や電子状態などの情報を得て
いた。詳しくは、日本表面科学会編「表面科学の基礎と
応用」1991年8月エヌ・ティー・エス発行の222頁から234
頁に記載されている。
2. Description of the Related Art Conventionally, scanning tunneling microscopes and scanning force microscopes, which are typical scanning probe microscopes, use a piezo element to scan one probe and place it between the sample and the probe. Information such as the surface shape and electronic state of the sample was obtained by detecting the flowing tunnel current and interatomic force. For more details, “Basics and Applications of Surface Science” edited by the Society of Surface Science, Japan, August 1991, NTS, pages 222-234.
Page.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術におい
て、例えば走査型トンネル顕微鏡では、一つのタングス
テンや白金イリジウムなどの探針を走査する際に、ピエ
ゾ素子の非線形性のために、最大走査範囲は1μmくら
いの非常に狭い範囲であった。また、探針を走査して、
一つの画像を形成するのに数秒から数十秒の時間がかか
り、その間に実際の像が変化してしまうという問題があ
った。さらに、固体表面上の原子一つ一つを記録媒体と
して使用する場合には、記録および読み出しに非常に時
間がかかるという問題があった。
In the prior art described above, for example, in the scanning tunneling microscope, when scanning a single probe such as tungsten or platinum iridium, the maximum scanning range is due to the non-linearity of the piezo element. It was a very narrow range of about 1 μm. Also, scan the probe,
There is a problem that it takes several seconds to several tens of seconds to form one image, and the actual image changes during that time. Further, when each atom on the solid surface is used as a recording medium, there is a problem that recording and reading take a very long time.

【0004】本発明の目的は、走査型プローブ顕微鏡の
走査する時間を短縮することにある。本発明の他の目的
は、走査型プローブ顕微鏡の最大走査範囲を拡大するこ
とにある。
An object of the present invention is to reduce the scanning time of a scanning probe microscope. Another object of the present invention is to expand the maximum scanning range of the scanning probe microscope.

【0005】[0005]

【課題を解決するための手段】上記目的は、走査型プロ
ーブ顕微鏡の探針を複数個、同時に走査することにより
達成される。
The above object is achieved by simultaneously scanning a plurality of probes of a scanning probe microscope.

【0006】[0006]

【作用】従来の走査型プローブ顕微鏡においては、1μ
m×1μmの領域を走査して像を得ようとすると、例え
ば、256×256に分割して、一つの探針でこの領域すべて
の測定をしなければならなかった。本発明によれば、例
えば10×10、すなわち100本の探針を同時に走査すれ
ば、1μm×1μmの領域の像を得るのに、0.1μm×0.1
μmの領域を走査するのと同じ速度で像が得られること
になる。
In the conventional scanning probe microscope, 1μ
In order to obtain an image by scanning an area of m × 1 μm, it was necessary to divide it into, for example, 256 × 256 and measure all of this area with one probe. According to the present invention, if, for example, 10 × 10, that is, 100 probe needles are simultaneously scanned, an image of a region of 1 μm × 1 μm can be obtained.
An image will be obtained at the same speed as scanning a μm region.

【0007】また、従来、ピエゾの非線形性のために、
1μm×1μm程度の領域の像しか得られなかったが、探
針を1μm×1μmの領域に一本ずつ備えた、例えば10×
10、すなわち100本の探針を走査すれば、100倍の領域で
ある10μm×10μmの像を得ることができる。
Further, conventionally, due to the non-linearity of the piezo,
Only an image of an area of about 1 μm × 1 μm was obtained, but one probe was provided for each area of 1 μm × 1 μm, for example, 10 ×
By scanning 10 or 100 probes, it is possible to obtain an image of 10 μm × 10 μm, which is a 100 times larger area.

【0008】さらに、固体表面上の原子一つ一つを記録
媒体として走査型プローブ顕微鏡で記録および読み出し
を行う場合には、それらが高速でできることになる。
Furthermore, when recording and reading are performed by a scanning probe microscope using each atom on the solid surface as a recording medium, these can be performed at high speed.

【0009】[0009]

【実施例】以下、本発明を実施例に基づき詳細に説明す
る。
EXAMPLES The present invention will be described in detail below based on examples.

【0010】〈実施例1〉最初に、走査型トンネル顕微
鏡において、複数個同時に走査可能な探針(マルチチッ
プ)の作製方法について説明する。
Example 1 First, a method of manufacturing a plurality of probes (multi-tips) capable of simultaneously scanning a plurality of scanning tunnel microscopes will be described.

【0011】まず、図2に示すように、従来の一本の探
針を有する走査型トンネル顕微鏡を用いて、1〜数十個
の金原子を操作して、SiO2(二酸化珪素)基板上に0.1
μmおきに10×10の二次元に配置する。金原子の具体的
な操作は、次のようにして行う。清浄な表面を維持する
ために、超高真空中で動作可能な走査型トンネル顕微鏡
13を使用した。探針は電解研磨したW(タングステン)を
用いた。金原子14を探針の先に付着させるには、探針を
金表面に近づけ、探針に正の電圧を印加し、探針をSi
2表面上12の所定の位置に配置した後、今度は探針に
負の電圧を印加して、探針の先に付着している金原子を
SiO2表面上に移す。同様にして、再度金原子を操作し
て、SiO2表面上に先の金原子と0.1μm離して配置す
る。これを100回繰返し、0.1μmおきに10×10の二次元
に配置する。配置する原子は、金原子以外でも有効で、
Si、Ge、Sb、Ga等の半導体元素やAg、Al、W等の
金属原子でもかまわない。
First, as shown in FIG. 2, a conventional scanning tunneling microscope having a single probe is used to manipulate one to several tens of gold atoms to form a SiO 2 (silicon dioxide) substrate. To 0.1
Two-dimensionally arrange 10 × 10 every μm. The specific operation of the gold atom is performed as follows. Scanning tunneling microscope capable of operating in ultra high vacuum to maintain a clean surface
13 was used. The probe used was electrolytically polished W (tungsten). To attach the gold atom 14 to the tip of the probe, bring the probe close to the gold surface, apply a positive voltage to the probe, and move the probe to Si.
After arranging at a predetermined position on the O 2 surface 12, a negative voltage is applied to the probe this time, and gold atoms attached to the tip of the probe are transferred onto the SiO 2 surface. In the same manner, the gold atom is manipulated again and placed on the surface of SiO 2 at a distance of 0.1 μm from the previous gold atom. This process is repeated 100 times, and two-dimensional arrangement of 10 × 10 is made every 0.1 μm. Atoms to be arranged are valid other than gold atoms,
A semiconductor element such as Si, Ge, Sb, Ga or a metal atom such as Ag, Al or W may be used.

【0012】次に、清浄に表面を保ったまま、化学気相
成長により選択的にWを金原子の部分にのみ成長させ
た。具体的には、WF6(六フッ化タングステン)とSiH
4(シラン)とを用いた低圧化学気相成長法により、形成
温度300℃でW結晶を成長させた。使用したガスは、W
6、SiH4の他に、キャリアガスとしてArとN2を用
いた。ガス流量については、WF6とSiH4が80sccm
で、キャリアガスが1100sccmで行った。全圧は0.65Torr
であった。SiH4のかわりにSiH22(二フッ化シラ
ン)やH2を用いても同様に形成できる。W結晶を形成し
た結果、図1のように、100本のW針状結晶が10×10の
二次元に配列した探針群すなわち、マルチチップが作製
できた。若干の探針の長さの違いは、電解研磨や電子ビ
ームによる加工、FIM、FEMによる電界蒸発によっ
て先端を揃えることができる。
Next, while keeping the surface clean, W was selectively grown only on the gold atom portion by chemical vapor deposition. Specifically, WF 6 (tungsten hexafluoride) and SiH
A W crystal was grown at a forming temperature of 300 ° C. by a low pressure chemical vapor deposition method using 4 (silane). The gas used is W
In addition to F 6 and SiH 4 , Ar and N 2 were used as carrier gases. Regarding gas flow rate, WF 6 and SiH 4 are 80sccm
The carrier gas was 1100 sccm. Total pressure is 0.65 Torr
Met. It can be similarly formed by using SiH 2 F 2 (difluorinated silane) or H 2 instead of SiH 4 . As a result of forming the W crystal, as shown in FIG. 1, a probe group in which 100 W needle crystals were two-dimensionally arranged in 10 × 10, that is, a multi-chip was manufactured. The slight difference in the length of the probe can be achieved by aligning the tip by electrolytic polishing, processing by electron beam, or field evaporation by FIM or FEM.

【0013】作製した100本の探針に信号線を配線し
て、走査型トンネル顕微鏡の探針として使用し動作させ
た。図3に示したように、超高真空中で探針をSi(111)
表面16に近づけ、トンネル電流が検知された所でマルチ
チップの接近を停止させた。100本の探針それぞれから
トンネル電流が検知されるように、ピエゾ素子15を動作
することでSi表面を微動させて調整した。調整が完了
した後、個々の探針が0.1μm×0.1μmの領域を走査する
ようにして、すべての探針から得られる像を組み合わせ
て、CRT上で合成した。その結果、1μm×1μmの領
域のSi(111)表面の原子像を得た。同じ分解能であれ
ば、一本の探針を使用したときに比べて、マルチチップ
の場合は100倍の速度で原子像が得られた。
A signal line was wired to the 100 manufactured probes, and the probe was used as a probe of a scanning tunneling microscope and operated. As shown in Fig. 3, the probe is made of Si (111) in ultra high vacuum.
Approaching the surface 16, the multi-chip approach was stopped when the tunnel current was detected. The Si surface was finely adjusted by operating the piezo element 15 so that the tunnel current was detected from each of the 100 probes. After the adjustment was completed, the images obtained from all the probes were combined and combined on the CRT so that each probe scans a region of 0.1 μm × 0.1 μm. As a result, an atomic image of the Si (111) surface in the area of 1 μm × 1 μm was obtained. With the same resolution, an atomic image was obtained 100 times faster in the case of multichip than in the case of using a single probe.

【0014】本実施例では、100本のマルチチップにつ
いて説明したが、これに限定されることはない。
In this embodiment, 100 multi-chips have been described, but the present invention is not limited to this.

【0015】〈実施例2〉実施例1で作製したマルチチ
ップ11を用いて、新たにマルチチップを作製する方法に
ついて説明する。超高真空中で動作可能な走査型トンネ
ル顕微鏡13に、実施例1で作製したマルチチップ11を取
り付けた。Si単結晶を予め走査型トンネル顕微鏡の探
針として使用できるように針状に加工しておき、図4の
ように、その先端部分(111)面22に新たにマルチチップ2
1を作製する。
<Embodiment 2> A method for newly producing a multi-chip using the multi-chip 11 produced in Embodiment 1 will be described. The multi-tip 11 manufactured in Example 1 was attached to a scanning tunneling microscope 13 that can operate in an ultrahigh vacuum. The Si single crystal was previously processed into a needle shape so that it could be used as a probe of a scanning tunneling microscope, and as shown in FIG.
Make 1.

【0016】まず、このSi単結晶を走査型トンネル顕
微鏡の試料台に固定した。Si(111)表面上にマルチチッ
プを近づけ、トンネル電流が検知された所で接近を停止
させた。100本の探針それぞれからトンネル電流が検知
されるように、ピエゾ素子15を動作してSi表面を微動
させて調整した。
First, this Si single crystal was fixed on a sample stage of a scanning tunneling microscope. The multi-chip was brought close to the Si (111) surface, and the approach was stopped when the tunnel current was detected. The piezoelectric element 15 was operated to finely adjust the surface of Si so that the tunnel current was detected from each of the 100 tips.

【0017】調整が完了した後、Si表面を通電加熱し
て、600℃の高温状態にした。この温度を維持したま
ま、探針を0.2V、数nAの条件で保持した。その結果、
Si(111)表面上の探針の近づけた部分にSi原子の突起2
1が形成された。すなわち、10×10の二次元に配列した
Siのマルチチップが作製できた。
After the adjustment was completed, the Si surface was electrically heated to a high temperature of 600 ° C. While maintaining this temperature, the probe was held under the conditions of 0.2 V and several nA. as a result,
Protrusion of Si atom 2 on the surface of Si (111) near the probe
1 was formed. That is, a 10 × 10 two-dimensionally arranged Si multi-chip could be manufactured.

【0018】次に、SiO2をスパッタリング法により突
起以外の部分に堆積させた。突起が鋭い場合は、突起部
分にはほとんどSiO2は堆積しなかった。その後、化学
気相成長法により、実施例1で説明した条件で、WをS
i原子の突起の表面に堆積させた。化学気相成長法では
突起部分に堆積できた。
Next, SiO 2 was deposited on the portions other than the protrusions by the sputtering method. When the projections were sharp, almost no SiO 2 was deposited on the projections. After that, by the chemical vapor deposition method, W is changed to S under the conditions described in Example 1.
The i atom was deposited on the surface of the protrusion. The chemical vapor deposition method was able to deposit on the protrusions.

【0019】これで、100本のWのマルチチップが作製
できた。これを、実施例1の図3と同様にして走査型ト
ンネル顕微鏡の探針としての性能を調べた結果、同じよ
うにSi(111)表面の原子像が高速に得られた。本実施例
の発明により、マルチチップの大量生産が可能になっ
た。1本の探針を複数回(本実施例では100回)接近させ
ても、同様に作製することができたが、100倍の時間を
必要とした。
Thus, 100 W multi-chips could be manufactured. As a result of examining the performance as a probe of a scanning tunneling microscope in the same manner as in FIG. 3 of Example 1, an atomic image of the Si (111) surface was similarly obtained at high speed. The invention of this embodiment enables multi-chip mass production. Even if one probe was brought a plurality of times (100 times in this embodiment) to approach, the same production was possible, but it required 100 times longer time.

【0020】〈実施例3〉実施例1で作製したマルチチ
ップ11を用いて、新たにマルチチップを作製するもう一
つの方法について説明する。
<Embodiment 3> Another method for producing a new multichip using the multichip 11 produced in Embodiment 1 will be described.

【0021】超高真空中で動作可能な走査型トンネル顕
微鏡に、実施例1乃至2で作製したマルチチップを取り
付けた。Si単結晶を予め走査型トンネル顕微鏡の探針
として使用できるように針状に加工しておき、その先端
部分(111)面22に新たにマルチチップを作製する。
The multi-tips produced in Examples 1 and 2 were attached to a scanning tunneling microscope capable of operating in an ultrahigh vacuum. A Si single crystal is processed in advance into a needle shape so that it can be used as a probe of a scanning tunneling microscope, and a multichip is newly formed on the tip portion (111) surface 22.

【0022】まず、このSi単結晶を走査型トンネル顕
微鏡の試料台に固定した。Si(111)表面上にマルチチッ
プ11を近づけ、トンネル電流が検知された所で接近を停
止させた。100本の探針それぞれからトンネル電流が検
知されるように、ピエゾ素子15を動作してSi表面を微
動させて調整した。調整が完了した後、Si表面を通電
加熱して200℃の温度にした。この温度を維持したま
ま、探針を0.2V、数nAの条件で保持した。次に、金を
Si(111)表面上に電子ビームにより蒸着した。金原子は
Si表面を移動して探針の先端に集まり、金原子の突起2
1が形成され、10×10の二次元に配列した金の100本のマ
ルチチップが作製できた。
First, this Si single crystal was fixed on a sample stage of a scanning tunneling microscope. The multichip 11 was brought close to the surface of Si (111), and the approach was stopped when the tunnel current was detected. The piezoelectric element 15 was operated to finely adjust the surface of Si so that the tunnel current was detected from each of the 100 tips. After the adjustment was completed, the Si surface was electrically heated to a temperature of 200 ° C. While maintaining this temperature, the probe was held under the conditions of 0.2 V and several nA. Next, gold was deposited by electron beam on the Si (111) surface. Gold atoms move on the Si surface and gather at the tip of the probe, and the gold atom protrusions 2
1 was formed, and 100 multi-chips of gold arranged in a 10 × 10 two-dimensional array could be manufactured.

【0023】ここでは、電子ビーム蒸着法で行ったが、
スパッタリング法、化学気相成長法、分子線エピタキシ
ー法、抵抗加熱による蒸着法、電子ビーム蒸着等の成膜
技術に用いられる方法いずれでもかまわない。固体表面
上の探針先端付近に材料が供給できることが可能であれ
ばよい。
Although the electron beam evaporation method is used here,
Any method used for film forming techniques such as sputtering method, chemical vapor deposition method, molecular beam epitaxy method, vapor deposition method by resistance heating, and electron beam vapor deposition may be used. It is sufficient that the material can be supplied near the tip of the probe on the solid surface.

【0024】このようにして作製したマルチチップを、
実施例1の図3と同様にして走査型トンネル顕微鏡の探
針としての性能を調べた結果、同じようにSi(111)表面
の原子像が高速に得られた。本実施例の発明により、マ
ルチチップの大量生産が可能になった。
The multichip thus manufactured is
As a result of investigating the performance as a probe of the scanning tunneling microscope in the same manner as in FIG. 3 of Example 1, an atomic image of the Si (111) surface was similarly obtained at high speed. The invention of this embodiment enables multi-chip mass production.

【0025】〈実施例4〉マルチチップの他の作製方法
について説明する。最初に、図5のようにSi基板上に
0.1μm周期で、WとSiを10回ずつ積層した多層膜23を
作製した。周期が探針の間隔になり、Wの積層数が探針
の数になるので、これらの値は適当に変えることが可能
である。多層膜の作製方法は、スパッタリング法、化学
気相成長法、電子ビーム蒸着法、レーザー蒸着法などい
ずれでもかまわない。
<Embodiment 4> Another method of manufacturing a multi-chip will be described. First, on the Si substrate as shown in FIG.
A multi-layer film 23 in which W and Si were laminated 10 times at a cycle of 0.1 μm was produced. Since the period is the interval between the probes and the number of W layers is the number of the probes, these values can be changed appropriately. The method for producing the multilayer film may be any of a sputtering method, a chemical vapor deposition method, an electron beam vapor deposition method, a laser vapor deposition method and the like.

【0026】次に、多層膜を膜面に垂直な面で削り、W
が細線になるように加工した。そしてSiをエッチング
してWの細線10本のみが出た形にした。エッチングは、
フッ酸1に対して硝酸10混合したフッ硝酸を用いた。さ
らにWを2%NaOH(水酸化ナトリウム)水溶液により
電解研磨して先端をとがらせて探針に加工した。W先端
の加工は、電子ビームによる加工やFIM、FEMによ
る電界蒸発でも可能であった。
Next, the multilayer film is ground by a surface perpendicular to the film surface, and W
Was processed to be a thin line. Then, Si was etched to form only 10 thin W wires. Etching
Fluorine nitric acid, which was a mixture of 10 parts of nitric acid with 1 part of hydrofluoric acid was used. Further, W was electrolytically polished with a 2% NaOH (sodium hydroxide) aqueous solution to make the tip sharp and processed into a probe. The W tip can be processed by electron beam processing or field evaporation using FIM or FEM.

【0027】これで、図6のように10本のWのマルチチ
ップ24が作製できた。これを、実施例1の図3と同様に
して走査型トンネル顕微鏡の探針としての性能を調べた
結果、同じようにSi(111)表面の原子像が高速に得られ
た。
As a result, 10 W multi-chips 24 were produced as shown in FIG. As a result of examining the performance as a probe of a scanning tunneling microscope in the same manner as in FIG. 3 of Example 1, an atomic image of the Si (111) surface was similarly obtained at high speed.

【0028】〈実施例5〉広い領域、例えば10μm×10
μmの領域を、従来の1μm×1μmの領域の像を得るの
と同様の速度で得る方法について説明する。探針の方向
のみに伸び縮みするZピエゾ31の先端にW等の探針32を
取り付け、これを1μmの太さに加工する。
<Embodiment 5> Wide area, for example, 10 μm × 10
A method for obtaining a μm region at the same speed as that for obtaining an image of a conventional 1 μm × 1 μm region will be described. A probe 32 such as W is attached to the tip of a Z piezo 31 that expands and contracts only in the direction of the probe, and this is processed to a thickness of 1 μm.

【0029】これを100本束ねた構造にして、図7のよ
うにマルチチップとして使用する。一つの探針が1μm
×1μmの領域に備えられており、100本の探針を同時に
走査すれば、100倍の領域の像を得ることができる。
A structure in which 100 pieces are bundled is formed and used as a multi-chip as shown in FIG. One probe is 1 μm
It is provided in an area of × 1 μm, and an image of 100 times the area can be obtained by scanning 100 probes at the same time.

【0030】作製した100本の探針に信号線を配線し
て、走査型トンネル顕微鏡の探針として使用し動作させ
た。超高真空中で探針をSi(111)表面16に近づけ、トン
ネル電流が検知された所でマルチチップの接近を停止さ
せた。トンネル電流が検知された探針のZピエゾを縮
め、さらにマルチチップをSi(111)表面に近づける。次
に他の探針からトンネル電流が検知されたら、その探針
のZピエゾを縮め、さらにマルチチップをSi表面に近
づける。
A signal line was wired to the 100 manufactured probes and used as a probe of a scanning tunneling microscope and operated. The probe was brought close to the Si (111) surface 16 in an ultrahigh vacuum, and the approach of the multichip was stopped when the tunnel current was detected. The Z piezo of the probe in which the tunnel current is detected is contracted, and the multichip is brought closer to the Si (111) surface. Next, when a tunnel current is detected from another probe, the Z piezo of that probe is contracted, and the multichip is brought closer to the Si surface.

【0031】これを繰返し、100本の探針全てがトンネ
ル電流を検知されるようにする。Si表面が傾いている
ときは、試料ホルダーのピエゾ素子15を動作することで
Si表面を微動させて調整した。調整が完了した後、個
々の探針が1μm×1μmの領域を走査するようにして、
すべての探針から得られる像を組み合わせて、CRT上
で合成した。
By repeating this, the tunnel current is detected by all 100 probes. When the Si surface is inclined, the piezoelectric element 15 of the sample holder is operated to finely adjust the Si surface for adjustment. After the adjustment is completed, each probe scans the area of 1 μm × 1 μm,
Images from all tips were combined and synthesized on a CRT.

【0032】その結果、10μm×10μmの領域のSi(111)
表面の像を得た。同じ分解能であれば、一本の探針を使
用したときに比べて、マルチチップの場合は100倍の速
度で原子像が得られた。また、一本の探針で操作する
と、画像がはじの部分でひずむことがあるが、そのよう
なことは起こらなかった。
As a result, Si (111) in the area of 10 μm × 10 μm
An image of the surface was obtained. With the same resolution, an atomic image was obtained 100 times faster in the case of multichip than in the case of using a single probe. Further, when the operation is performed with one probe, the image may be distorted at the edge portion, but such a phenomenon did not occur.

【0033】〈実施例6〉マルチチップを用いて記録及
び読み出しを行う方法について説明する。記録媒体とし
ては、へき開したMoS2(二硫化モリブデン)34の清浄な
硫黄原子表面(0001)を用いる。まず、これを走査型トン
ネル顕微鏡の試料台に取り付け、次に100本のマルチチ
ップ11を硫黄原子表面に接近させた。
<Embodiment 6> A method of recording and reading using a multi-chip will be described. As the recording medium, a clean sulfur atom surface (0001) of cleaved MoS 2 (molybdenum disulfide) 34 is used. First, this was attached to a sample stage of a scanning tunneling microscope, and then 100 multichips 11 were brought close to the surface of sulfur atoms.

【0034】トンネル電流が検知された所で、マルチチ
ップの接近を停止させた。100本の探針からトンネル電
流が検知されるように、MoS2をピエゾ素子15を動作さ
せることにより微動させて調整した。マルチチップのピ
エゾ素子13を動作させて調整してもかまわない。
When the tunnel current was detected, the approach of the multichip was stopped. MoS 2 was finely adjusted by operating the piezo element 15 so that the tunnel current could be detected from 100 probes. The multi-chip piezo element 13 may be operated and adjusted.

【0035】調整が完了した後、個々の探針が0.1μm×
0.1μmの領域を走査するようにして、すべての探針から
得られる像を組み合わせて、CRT上で合成した。その
結果、1μm×1μmの領域の硫黄(0001)表面の原子像を
得た。同じ分解能であれば、一本の探針を使用したとき
に比べて、マルチチップの場合は100倍の速度で原子像
が得られた。
After the adjustment is completed, each probe is 0.1 μm ×
The images obtained from all the probes were combined so as to scan a region of 0.1 μm, and were combined on a CRT. As a result, an atomic image of the sulfur (0001) surface in the region of 1 μm × 1 μm was obtained. With the same resolution, an atomic image was obtained 100 times faster in the case of multichip than in the case of using a single probe.

【0036】次に記録を行う。マルチチップを走査する
際に、記録したい位置の原子に来たら、探針と硫黄原子
との距離を0.3nm程度まで接近させ、70ミリ秒時間、−
5.5Vのパルス35を探針に入力した。
Next, recording is performed. When scanning the multi-chip, when it comes to the atom at the position you want to record, bring the probe and the sulfur atom close to a distance of about 0.3 nm for 70 milliseconds, −
A 5.5V pulse 35 was input to the probe.

【0037】すべての探針にパルスをかけると、探針の
数100本分同時に記録された。硫黄原子が存在する場所"
1"としない場所"0"を形成することにより、自由に高
速に記録することができた。読み出しはマルチチップを
走査して原子の存在を確認すればよく、高速読み出しが
できた。
When pulses were applied to all the probes, several 100 probes were simultaneously recorded. Where Sulfur Atom Exists "
It was possible to freely record at high speed by forming a place "0" which was not set to 1 ". For reading, high-speed reading could be performed by scanning a multi-chip to confirm the existence of atoms.

【0038】消去は硫黄原子を再度付着させることによ
り可能である。
Erasing is possible by redepositing sulfur atoms.

【0039】本実施例では、一例として100本のマルチ
チップについて説明したが、これに限定されることはな
い。
In this embodiment, 100 multi-chips have been described as an example, but the present invention is not limited to this.

【0040】以上、本発明を走査型トンネル顕微鏡の実
施例で説明したが、原子間力顕微鏡等の他の探針を用い
た走査型プローブ顕微鏡にも適用することが十分に可能
である。例えば原子間力顕微鏡の探針は、フォトリソグ
ラフィ法を用いて作製されているが、同時に複数個の探
針を作製すればよい。探針の接近方法や走査方法は、走
査型トンネル顕微鏡と同様に、各探針のフォースカーブ
を測定してすべての探針の原子間力を検知して行う。
Although the present invention has been described with reference to the embodiment of the scanning tunneling microscope, it can be sufficiently applied to a scanning probe microscope using another probe such as an atomic force microscope. For example, the probe of the atomic force microscope is manufactured by using the photolithography method, but a plurality of probes may be manufactured at the same time. The approaching and scanning methods of the probes are performed by measuring the force curve of each probe and detecting the atomic force of all the probes, as in the scanning tunneling microscope.

【0041】[0041]

【発明の効果】本発明によれば、走査型プローブ顕微鏡
の探針を複数個、同時に走査することにより、走査範囲
を拡大する効果がある。また、探針の数が多ければ多い
ほど、画像を形成する時間は、それに比例して短縮する
効果がある。
According to the present invention, the scanning range can be expanded by simultaneously scanning a plurality of probes of the scanning probe microscope. Also, the larger the number of probes, the more effectively the time for forming an image is shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による複数個同時に走査可能な探針(マ
ルチチップ)の図
FIG. 1 is a diagram of a plurality of probes (multi-tips) capable of simultaneously scanning according to the present invention.

【図2】走査型プローブ顕微鏡による金属または半導体
原子群の操作を示す図
FIG. 2 is a diagram showing the operation of metal or semiconductor atomic groups by a scanning probe microscope.

【図3】マルチチップで固体表面を走査する原理を示す
FIG. 3 is a diagram showing a principle of scanning a solid surface with a multi-chip.

【図4】マルチチップで新たにマルチチップを作製する
方法を示した図
FIG. 4 is a diagram showing a method for newly producing a multi-chip with multi-chips.

【図5】W/Si多層膜を作製した図FIG. 5 is a diagram showing a W / Si multilayer film.

【図6】W/Si多層膜から形成したマルチチップを示し
た図
FIG. 6 is a diagram showing a multi-chip formed from a W / Si multilayer film.

【図7】広い領域を走査可能なマルチチップの構造を示
した図
FIG. 7 is a diagram showing a multi-chip structure capable of scanning a wide area.

【図8】マルチチップを用いて記録および読み出しを行
う原理を示した図
FIG. 8 is a diagram showing a principle of recording and reading using a multi-chip.

【符号の説明】[Explanation of symbols]

11…複数個の探針、12…探針支持部、13…走査型プロー
ブ顕微鏡のピエゾ素子を備えたプローブ部分、14…金属
または半導体原子群、15…ピエゾ素子、16…Si表面、2
1…新たに形成された複数個の探針、22…新たに形成さ
れた複数個の探針支持部、23…W/Si多層膜、31…Zピ
エゾ、32…探針、33…信号線、34…MoS2、(二硫化モ
リブデン)、35…探針に入力するパルス信号。
11 ... Plural probes, 12 ... Probe support part, 13 ... Probe part with piezo element of scanning probe microscope, 14 ... Metal or semiconductor atom group, 15 ... Piezo element, 16 ... Si surface, 2
1 ... Newly formed plural probes, 22 ... Newly formed plural probe supporting portions, 23 ... W / Si multilayer film, 31 ... Z piezo, 32 ... Probe, 33 ... Signal line , 34 ... MoS 2 , (molybdenum disulfide), 35 ... Pulse signal input to the probe.

フロントページの続き (72)発明者 永野 久志 埼玉県比企郡鳩山町赤沼2520番地 株式会 社日立製作所基礎研究所内 (72)発明者 梶山 博司 埼玉県比企郡鳩山町赤沼2520番地 株式会 社日立製作所基礎研究所内Continued front page (72) Inventor Hisashi Nagano 2520 Akanuma, Hatoyama-cho, Hiki-gun, Saitama, Ltd.Inside of Hitachi Research Laboratories, Inc. In the laboratory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】固体表面上に複数の探針を形成するととも
に、これらを一つの駆動体で同時に移動させることこと
を特徴とする走査型プローブ顕微鏡。
1. A scanning probe microscope characterized in that a plurality of probes are formed on a solid surface, and these are simultaneously moved by one driving body.
【請求項2】固体表面上に一つ以上の金属原子または半
導体原子を複数個所に配置し、その位置に結晶成長によ
り走査型プローブ顕微鏡用探針を成長させることを特徴
とする走査型プローブ顕微鏡用探針の製造方法。
2. A scanning probe microscope in which one or more metal atoms or semiconductor atoms are arranged at a plurality of positions on a solid surface, and a probe for a scanning probe microscope is grown at that position by crystal growth. Manufacturing method for medical probe.
【請求項3】固体表面上に複数個の探針を接近させ、も
しくは、一つの探針を複数回各回ごとに異なった位置に
接近させ、固体を高温に加熱することにより探針を接近
させた部分に新たに複数個の探針を成長させることを特
徴とする走査型プローブ顕微鏡用探針の製造方法。
3. A plurality of probes are made to approach each other on the surface of a solid, or one probe is made to approach a different position each time a plurality of times, and the probes are made to approach by heating the solid to a high temperature. A method for manufacturing a probe for a scanning probe microscope, wherein a plurality of probes are newly grown on the exposed portion.
【請求項4】固体表面上に複数個の探針を接近させ、固
体表面に新たに作製する探針の材料を配置し、この材料
から新たに複数個の探針を成長させることを特徴とする
走査型プローブ顕微鏡用探針の製造方法。
4. A plurality of probes are brought close to each other on a solid surface, a probe material to be newly produced is arranged on the solid surface, and a plurality of new probes are grown from this material. Method for manufacturing a probe for a scanning probe microscope.
【請求項5】複数の探針を独立に移動できるように隣接
して配列するとともに、これらを各探針ごとに独立に駆
動する手段を設けたことを特徴とする走査型プローブ顕
微鏡。
5. A scanning probe microscope, wherein a plurality of probes are arranged adjacent to each other so as to be independently movable, and means for independently driving each probe is provided.
【請求項6】複数の探針とこれに対向する固体表面上に
配置された所定の原子の有無によって、固体表面上に記
録および読み出しをすることを特徴とする走査型プロー
ブ顕微鏡。
6. A scanning probe microscope, wherein recording and reading are performed on a solid surface depending on the presence or absence of a predetermined atom arranged on the solid surface facing the plurality of probes.
JP4017455A 1992-02-03 1992-02-03 Scanning-type probe microscope and manufacture of probe thereof Pending JPH05215509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4017455A JPH05215509A (en) 1992-02-03 1992-02-03 Scanning-type probe microscope and manufacture of probe thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4017455A JPH05215509A (en) 1992-02-03 1992-02-03 Scanning-type probe microscope and manufacture of probe thereof

Publications (1)

Publication Number Publication Date
JPH05215509A true JPH05215509A (en) 1993-08-24

Family

ID=11944501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4017455A Pending JPH05215509A (en) 1992-02-03 1992-02-03 Scanning-type probe microscope and manufacture of probe thereof

Country Status (1)

Country Link
JP (1) JPH05215509A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167560A (en) * 2001-03-30 2010-08-05 Regents Of The Univ Of California Method of fabricating nanostructures and nanowires and device fabricated therefrom
JP2013188862A (en) * 2009-08-27 2013-09-26 Korea Univ Research & Business Foundation Nano pattern writer
RU172090U1 (en) * 2016-09-19 2017-06-28 федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" (Южный федеральный университет) ATOMICALLY POWER NANOLITHOGRAPHY PROBE

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167560A (en) * 2001-03-30 2010-08-05 Regents Of The Univ Of California Method of fabricating nanostructures and nanowires and device fabricated therefrom
US7834264B2 (en) 2001-03-30 2010-11-16 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
US9881999B2 (en) 2001-03-30 2018-01-30 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
JP2013188862A (en) * 2009-08-27 2013-09-26 Korea Univ Research & Business Foundation Nano pattern writer
US8920696B2 (en) 2009-08-27 2014-12-30 Korea University Research And Business Foundation Nano pattern writer
RU172090U1 (en) * 2016-09-19 2017-06-28 федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" (Южный федеральный университет) ATOMICALLY POWER NANOLITHOGRAPHY PROBE

Similar Documents

Publication Publication Date Title
JP3450349B2 (en) Cantilever probe
JP2923813B2 (en) Cantilever displacement element, scanning tunneling microscope using the same, and information processing apparatus
JP3060137B2 (en) How to make a cantilever probe
EP0309236B1 (en) Microprobe, preparation thereof and electronic device by use of said microprobe
JP2741629B2 (en) Cantilever probe, scanning tunneling microscope and information processing apparatus using the same
US6477132B1 (en) Probe and information recording/reproduction apparatus using the same
US5856672A (en) Single-crystal silicon cantilever with integral in-plane tip for use in atomic force microscope system
JPH05347439A (en) Fine displacement element and scanning tunneling microscope using said element and information processor
US5729026A (en) Atomic force microscope system with angled cantilever having integral in-plane tip
JPH05187867A (en) Probe drive mechanism, its production method, tonnel current detector, information processor, plezoelectric actuator using said mechanism and its production method
US5994698A (en) Microprobe, preparation thereof and electronic device by use of said microprobe
US5482002A (en) Microprobe, preparation thereof and electronic device by use of said microprobe
JPH0721968A (en) Cantilever type displacement element, cantilever type probe using the displacement element, and scanning type probe microscope and data processer using the probe
JPH05215509A (en) Scanning-type probe microscope and manufacture of probe thereof
JP2000067478A (en) Information reproduction probe, its manufacture, and information reproducing device using the same
JP2553661B2 (en) Microprog and method of manufacturing the same
JPH09243648A (en) Cantilever chip
Quate SCANNING TUNNELING MICROSCOPY
RU2240623C2 (en) Point structures, devices built around them, and their manufacturing methods
JP2001021478A (en) Probe for scanning probe microscope, its manufacture, and image drawing device
JP2003292315A (en) Production of carbon nanotube
JP2605621B2 (en) Semiconductor whisker probe and method of manufacturing the same
JPH04263142A (en) Probe device, information processor using the probe device and information processing method
JPH0271439A (en) Recording and reproducing device
JP3044425B2 (en) Thin film displacement element, scanning tunneling microscope and information processing apparatus using the same