JPH05203632A - Ultrasonic flaw detection device - Google Patents

Ultrasonic flaw detection device

Info

Publication number
JPH05203632A
JPH05203632A JP4010280A JP1028092A JPH05203632A JP H05203632 A JPH05203632 A JP H05203632A JP 4010280 A JP4010280 A JP 4010280A JP 1028092 A JP1028092 A JP 1028092A JP H05203632 A JPH05203632 A JP H05203632A
Authority
JP
Japan
Prior art keywords
ultrasonic
flaw detection
waveform
receiving
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4010280A
Other languages
Japanese (ja)
Inventor
Ichiro Furumura
一朗 古村
Satoshi Nagai
敏 長井
Taiji Hirasawa
泰治 平澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4010280A priority Critical patent/JPH05203632A/en
Publication of JPH05203632A publication Critical patent/JPH05203632A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To improve flaw detection signals and noise S-N ratio for metal materials comprising coarse crystal grains, austenite-based heat-resistant materials, etc., and improve a defect detection ability. CONSTITUTION:A device comprises an ultrasonic probe having an ultrasonic transmitting/receiving means capable of moving an ultrasonic transmitting/ receiving position, filter circuits 10-1, 10-2, 10-3,... 10-n for giving zone characteristics of which specified center frequencies are different from each other to plural detection waveforms obtained by ultrasonic transmission/ reception at the ultrasonic transmitting/receiving positions by the ultrasonic transmitting/receiving means of the ultrasonic probe respectively, and an A/D coverter 13 to digitize the detection waveforms passing through the filter circuit. In addition, a signal processing circuit 16 is provided for comparing data at the same sample point among plural waveform data obtained by the A/D converter 13, and repeating a process of taking the minimum value of them for the data at the sample point for plural sample points.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は粗大結晶粒からなる金属
材料やオーステナイト系耐熱材料等の探傷に最適な超音
波探傷装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flaw detector which is most suitable for flaw detection of metal materials such as coarse crystal grains and austenite heat resistant materials.

【0002】[0002]

【従来の技術】金属材料等の被検査体の内部に素材製造
時から存在する割れ、巣および非金属介在物等の欠陥、
あるいは機器・構造物とした後に様々な外的要因のため
に発生する亀裂等の欠陥を検査する手法として、X線検
査とともに、超音波探傷法が多く用いられている。
2. Description of the Related Art Defects such as cracks, cavities and non-metal inclusions existing inside a test object such as a metallic material since the material was manufactured,
Alternatively, as a method for inspecting defects such as cracks that are generated due to various external factors after being made into a device / structure, an ultrasonic flaw detection method is often used together with an X-ray inspection.

【0003】しかるに超音波探傷法においては、材料の
結晶粒径が大きい材料やオーステナイト系材料等のよう
に材料組織に依存したノイズエコーに対する比率が一般
的な鋼材等と比較して悪い場合、ノイズエコーレベルよ
りも振幅値が十分に高くないことから、ノイズであるか
欠陥であるかを識別することが困難である。この結果、
検出可能な欠陥寸法が大きなものに限られ、欠陥検出能
力が著しく悪化してしまうことがあった。
However, in the ultrasonic flaw detection method, if the ratio of noise echoes depending on the material structure such as a material having a large crystal grain size or an austenitic material is poor as compared with a general steel material, noise is detected. Since the amplitude value is not sufficiently higher than the echo level, it is difficult to distinguish between noise and defect. As a result,
The defect size that can be detected is limited to a large size, and the defect detection capability may be significantly deteriorated.

【0004】そこで、このような電気的な信号・波形の
計測におけるノイズ除去を目的とする手法として加算平
均法が知られている。ところが、この手法は電気ノイズ
のように時間的に全くランダムに侵入してくるノイズに
対しては効果はあるが、上述した材料組織に依存したノ
イズエコーのように個々のノイズは材料組織と同じくラ
ンダムであっても、それらが微視組織という超音波反射
源から生じることから時間的にランダムではなく、超音
波の送受信に伴って同じ位置に発生する場合には効果が
ない。
Therefore, an averaging method is known as a method for removing noise in such electrical signal / waveform measurement. However, this method is effective for noise that enters at random in time, such as electrical noise, but individual noise is the same as the material structure, such as the noise echo that depends on the material structure described above. Even if they are random, they are not temporally random because they are generated from the ultrasonic reflection source called microscopic tissue, and there is no effect if they occur at the same position as ultrasonic waves are transmitted and received.

【0005】また、超音波の進行方向、つまりビーム路
程方向に沿ってはランダムであるが、時間的にはランダ
ムでない材料ノイズから欠陥エコーを抽出するための信
号処理の一つに探触子位置を僅かづつ変えながら複数個
収録した探傷波形を加算し、平均化することにより一つ
の探傷波形を得るという方法がある。具体的には探触子
駆動機構を用いた自動探傷で微小に超音波送受信位置を
変えた複数個の探傷波形を加算平均したり、多数個の微
小振動子を有するアレイ探触子のなかで用いる振動子を
切換えて得た複数個の探傷波形を加算平均する方法が用
いられているが、加算平均だけでは材料ノイズが低減
し、S/N比を向上させるには十分な効果がえられない
ことが多い。
Further, the probe position is one of the signal processes for extracting the defect echo from the material noise which is random in the traveling direction of the ultrasonic wave, that is, in the beam path direction, but is not random in time. There is a method of obtaining a single flaw detection waveform by adding a plurality of flaw detection waveforms recorded while slightly changing the, and averaging. Specifically, in automatic flaw detection using a probe drive mechanism, the average of multiple flaw detection waveforms with minutely changed ultrasonic transmission / reception positions is used, and among array transducers that have many microvibrators. Although a method of averaging a plurality of flaw detection waveforms obtained by switching the oscillators used is used, material noise is reduced only by averaging, and a sufficient effect can be obtained to improve the S / N ratio. Often not.

【0006】さらに、特定の超音波送受信位置で得た一
つの探傷波形を周波数解析し、欠陥と材料ノイズの周波
数スペクトルの違いを利用してS/N比を向上させる方
法が研究されている。その一例としてV.L.Newhouseらの
研究(Flaw-to-grain EchoEnhancement by SPlit-spect
rum Processing:Ultrasonics,Vol 20,No.2,1982)が良く
知られている。この一連の研究では図8に示す解析処理
のブロック図のように被検体1の表面に接触させた超音
波探触子2により検出され、超音波送受信器21で増幅
された信号波形wはA/Dコンバータ22でディジタル
化され、このディジタル化されたデータS1を周波数解
析手段23で周波数解析し、これを中心周波数の異なる
複数個のフィルター24で周波数分割し、これら分割さ
れた個々の周波数スペクトルを逆フーリエ変換手段25
により逆フーリエ変換して得られた複数個の波形S2を
データ処理部26に渡して数種のデータ処理を施し、最
終的にS/N比の改善された探傷波形S3を得る解析処
理を行っている。
Further, a method of frequency-analyzing one flaw detection waveform obtained at a specific ultrasonic wave transmitting / receiving position and utilizing the difference between frequency spectra of defects and material noise to improve the S / N ratio has been studied. As an example, a study by VL Newhouse et al. (Flaw-to-grain EchoEnhancement by SPlit-spect
rum Processing: Ultrasonics, Vol 20, No. 2, 1982) is well known. In this series of studies, as shown in the block diagram of the analysis process shown in FIG. 8, the signal waveform w detected by the ultrasonic probe 2 in contact with the surface of the subject 1 and amplified by the ultrasonic transceiver 21 is A The D / D converter 22 digitizes the digitized data S1 and the frequency analysis means 23 frequency-analyzes the frequency-divided data into a plurality of filters 24 having different center frequencies. Inverse Fourier transform means 25
The plurality of waveforms S2 obtained by the inverse Fourier transform are passed to the data processing unit 26 to be subjected to several kinds of data processing, and finally an analysis processing for obtaining a flaw detection waveform S3 with an improved S / N ratio is performed. ing.

【0007】しかし、この方法では一つの超音波送受信
位置における探傷波形のS/N比改善に効果はあるが、
コンピュータのソフトウェア処理であるため、一点の探
傷波形を処理するのに時間がかかるため、手動探傷や広
い面の検査をする自動探傷にこの手法を採用することは
できなかった。
However, this method is effective in improving the S / N ratio of the flaw detection waveform at one ultrasonic wave transmitting / receiving position,
Since it is a software process of a computer, it takes time to process one flaw detection waveform, and therefore this method cannot be adopted for manual flaw detection or automatic flaw detection for inspecting a wide surface.

【0008】[0008]

【発明が解決しようとする課題】以上述べた従来の超音
波探傷法は、僅かに異なった超音波送受信位置で得た探
傷波形を加算処理するために探触子駆動機構を必要とす
る自動探傷装置や、コンピュータを用いた解析時間を必
要とするソフトウェア処理を用いているので、S/N比
を改善でき、材料ノイズから欠陥エコーを抽出すること
が可能であるが、実際の機器に多く用いられ、検査員が
ノイズエコーであるか、欠陥エコーであるかの判別に苦
労する手作業を基本とする超音波探傷装置においては、
上述した自動探傷における処理やソフトウェア処理やソ
ウトウエア処理のように材料ノイズの信号レベルを低減
させ、欠陥エコーを明瞭に抽出できるものは見当たらな
かった。
The conventional ultrasonic flaw detection method described above requires an automatic flaw detection method that requires a probe driving mechanism to add the flaw detection waveforms obtained at slightly different ultrasonic transmission / reception positions. Since it uses software processing that requires analysis time using a device or computer, it is possible to improve the S / N ratio and extract defect echoes from material noise, but it is often used in actual equipment. In an ultrasonic flaw detector based on manual work in which the inspector has a hard time distinguishing between a noise echo and a defect echo,
There is no such thing as the above-mentioned processing in automatic flaw detection, software processing, or software processing that can reduce the signal level of material noise and clearly extract a defect echo.

【0009】本発明は、粗大結晶粒からなる金属材料や
オーステナイト系耐熱材料等の探傷信号とノイズのS/
N比を改善し、欠陥検出能力を高めることができる超音
波探傷装置を提供することを目的とする。
According to the present invention, S / of a flaw detection signal and noise of a metal material composed of coarse crystal grains, an austenitic heat resistant material, etc.
It is an object of the present invention to provide an ultrasonic flaw detector capable of improving the N ratio and enhancing the defect detection capability.

【0010】[0010]

【課題を解決するための手段】本発明は上記の目的を達
成するため、被検体に超音波を送信する超音波送信手段
および被検体からの超音波を異なる受信位置で受信する
複数の超音波受信手段を有し、且つこれら超音波送受信
位置が移動可能な超音波探触子と、この超音波探触子の
超音波送受信手段による各超音波送受信位置での超音波
の送受信により得られる複数の探傷波形の各々に対して
指定した中心周波数が各々異なる帯域特性を与えるフィ
ルター回路と、このフィルタ回路を通過した探傷波形を
ディジタル化し複数のサンプル点での波形データに変換
するディジタル変換手段と、このディジタル変換手段よ
り得られる複数の波形データに対して同一サンプル点で
のデータをそれぞれ比較すると共にその中で最小の値を
そのサンプル点でのデータとする処理を複数のサンプル
点について繰返して一つの探傷波形を得る信号処理手段
とを具備している。
In order to achieve the above object, the present invention provides an ultrasonic wave transmitting means for transmitting ultrasonic waves to an object and a plurality of ultrasonic waves for receiving ultrasonic waves from the object at different receiving positions. An ultrasonic probe having receiving means and capable of moving the ultrasonic wave transmitting / receiving positions, and a plurality of ultrasonic waves obtained by transmitting / receiving ultrasonic waves at the ultrasonic wave transmitting / receiving positions by the ultrasonic wave transmitting / receiving means of the ultrasonic probe. A filter circuit that gives different band characteristics with different center frequencies specified for each of the flaw detection waveforms, and digital conversion means that digitizes the flaw detection waveform that has passed through this filter circuit and converts it into waveform data at a plurality of sample points, The data at the same sample point is compared with a plurality of waveform data obtained by this digital conversion means, and the minimum value among them is sampled at that sample point. The process of the data is repeated for a plurality of sample points and a signal processing means for obtaining a single flaw detection waveform.

【0011】[0011]

【作用】このような構成の超音波探傷装置にあっては、
超音波受信位置の異なる位置で受信された複数の超音波
を中心周波数の異なるフィルタ特性を通すことにより、
卓越周波数が反射源毎に異なるノイズ波形と、探傷位置
の微小なずれではほとんど変化せず、且つ周波数特性も
比較的広い範囲に渡っている欠陥波形を含んだ複数の探
傷波形が得られ、これらをリアルタイムの信号処理によ
り一つの探傷波形にまとめることによって、粗大結晶材
料やオ−ステナイト系材料のように材料組織に依存した
ノイズエコーレベルの高い材料においても、欠陥エコー
の振幅はそのままで、材料組織に依存したノイズエコー
のみを低減させることが可能となり、欠陥エコー検出の
ためのS/N比の改善が可能となるとともに、欠陥検出
能の高い探傷を自動走査装置やコンピュータソフトウェ
アを必要とすることなく、通常最も多く行われている可
搬性、機動性が要求される手操作による探傷をも容易に
実現することができる。
In the ultrasonic flaw detector having such a structure,
By passing a plurality of ultrasonic waves received at different ultrasonic receiving positions through filter characteristics with different center frequencies,
It is possible to obtain a plurality of flaw detection waveforms including a noise waveform whose dominant frequency is different for each reflection source, and a flaw waveform with a frequency characteristic that hardly changes with a slight deviation of the flaw detection position and whose frequency characteristics are in a relatively wide range. By combining the two into a single flaw detection waveform by real-time signal processing, the defect echo amplitude remains the same even in materials with high noise echo levels that depend on the material structure, such as coarse crystal materials and austenite materials. Only the tissue-dependent noise echo can be reduced, the S / N ratio for defect echo detection can be improved, and the flaw detection with high defect detection ability requires an automatic scanning device and computer software. Without doing so, it is possible to easily carry out the manual flaw detection, which is usually the most frequently performed, which requires portability and mobility. That.

【0012】[0012]

【実施例】以下本発明の一実施例を図面を参照して説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0013】図1は本発明による超音波探傷装置に用い
られる超音波探触子の構成例を示す縦断面図であり、図
2は同じく超音波探触子の横断面図である。図1および
図2において、2は被検体1の表面に載置される超音波
探触子である。この超音波探触子2は、ケース2a内部
の中心位置に送信用超音波振動子3が配置され、この送
信用超音波振動子3の周囲に複数個の受信用超音波振動
子4−1,4−2,4−3,…4−nが配置されてい
る。またケース2a内部の振動子間の隙間には、超音波
波形特性を整えるためのバッキング材5が充填され、さ
らにケース2aの開口面に振動子と被検体の音響インピ
ーダンスを整えるためのマッチングプレート6が設けら
れている。そして、送信用超音波振動子3と受信用超音
波振動子4−1,4−2,4−3,…4−nには、各々
独立に信号線7および8−1,8−2,8−3,…8−
nがそれぞれ接続されている。
FIG. 1 is a longitudinal sectional view showing a structural example of an ultrasonic probe used in an ultrasonic flaw detector according to the present invention, and FIG. 2 is a transverse sectional view of the ultrasonic probe. 1 and 2, reference numeral 2 denotes an ultrasonic probe mounted on the surface of the subject 1. In this ultrasonic probe 2, a transmitting ultrasonic transducer 3 is arranged at a central position inside the case 2a, and a plurality of receiving ultrasonic transducers 4-1 are arranged around the transmitting ultrasonic transducer 3. , 4-2, 4-3, ... 4-n are arranged. A backing material 5 for adjusting the ultrasonic waveform characteristics is filled in a gap between the transducers inside the case 2a, and a matching plate 6 for adjusting the acoustic impedances of the transducer and the subject is further provided on the opening surface of the case 2a. Is provided. The signal lines 7 and 8-1, 8-2, and 8-1, 8-2, are independently provided to the transmitting ultrasonic transducer 3 and the receiving ultrasonic transducers 4-1, 4-2, 4-3, ... 4-n. 8-3, ... 8-
n are connected to each other.

【0014】図3は本発明による超音波探傷装置の回路
構成例を示すものである。図3において、9は超音波を
励振するための高圧パルスを超音波探触子2の中心に存
在する送信用超音波振動子3に繰返し印加する超音波送
信器である。また、11は超音波探触子2の複数個の受
信用超音波振動子4−1,4−2,4−3,…4−nに
より受信され、電気信号に変換された超音波信号が各々
の振動子に接続された各々異なる中心周波数を有する帯
域通過フィルタ10−1,10−2,10−3,…10
−nを通してそれぞれ入力される振動子切換器で、この
振動子切換器11は送信用超音波振動子3に励振用高圧
パルスが与えられる毎に受信用超音波振動子からの入力
を切換えてその超音波信号を超音波受信器12に与え
る。この超音波受信器12は、振動子切換器11の切換
により選択された超音波信号を増幅し、A/Dコンバー
タ13に入力する。このA/Dコンバータ13は、超音
波受信器12からの超音波信号をディジタル波形データ
に変換し、振動子切換器11と同期して切換動作する波
形メモリ切換器14を通して受信用超音波振動子4−
1,4−2,4−3,…4−nに対応する波形メモリ1
5−1,15−2,15−3,…15−nに各々格納さ
れる。したがって、これら波形メモリ15−1,15−
2,15−3,…15−nには受信用超音波振動子4−
1,4−2,4−3,…4−nの個数に等しい回数の超
音波送受信で得られた超音波伝播経路が僅かづつ異な
り、さらに周波数特性も僅かに異なる波形に分解された
複数個の探傷波形が記憶されることになる。
FIG. 3 shows an example of the circuit configuration of the ultrasonic flaw detector according to the present invention. In FIG. 3, reference numeral 9 denotes an ultrasonic transmitter that repeatedly applies a high-voltage pulse for exciting an ultrasonic wave to a transmitting ultrasonic oscillator 3 existing at the center of the ultrasonic probe 2. Reference numeral 11 denotes an ultrasonic signal received by the plurality of receiving ultrasonic transducers 4-1, 4-2, 4-3, ... 4-n of the ultrasonic probe 2 and converted into an electric signal. Bandpass filters 10-1, 10-2, 10-3, ... 10 having different center frequencies connected to the respective transducers
Each of the transducer switching devices is input via -n. The transducer switching device 11 switches the input from the receiving ultrasonic transducer every time a high voltage pulse for excitation is applied to the transmitting ultrasonic transducer 3. The ultrasonic signal is provided to the ultrasonic receiver 12. The ultrasonic receiver 12 amplifies the ultrasonic signal selected by the switching of the transducer switching unit 11 and inputs it to the A / D converter 13. The A / D converter 13 converts the ultrasonic signal from the ultrasonic receiver 12 into digital waveform data, and transmits the ultrasonic wave for reception through a waveform memory switcher 14 that operates in synchronization with the vibrator switcher 11. 4-
Waveform memory 1 corresponding to 1, 4-2, 4-3, ... 4-n
5-1, 15-2, 15-3, ... 15-n are respectively stored. Therefore, these waveform memories 15-1, 15-
2, 15-3, ... 15-n include ultrasonic transducers for reception 4-
The number of ultrasonic wave propagation paths obtained by ultrasonic wave transmission / reception that is equal to the number of 1,4-2, 4-3, ... The flaw detection waveform of will be stored.

【0015】一方、波形メモリ15−1,15−2,1
5−3,…15−nに記録された複数個の探傷波形は、
最小化信号処理回路16に送られる。この最小化信号処
理回路16は、波形メモリ15−1,15−2,15−
3,…15−nに格納された超音波伝播経路が僅かづつ
異なり、さらに周波数特性も僅かに異なる波形に分解さ
れた複数個の探傷波形にまとめられ、材料ノイズを低減
させた一つの探傷波形を得る。そして、この最小化信号
処理回路16で処理された探傷波形は、D/Aコンバー
タ17に送られ、ここでアナログ波形に戻されて波形表
示用CRT18に送られる。この波形表示用CRT18
は、通常の探傷器と同様のAスコープ探傷波形を描くよ
うになっている。なお、19は上述した各構成要素の一
連の動作を制御するための探傷制御回路である。次に上
記のように構成された超音波探傷装置の作用について述
べる。
On the other hand, the waveform memories 15-1, 15-2, 1
The plurality of flaw detection waveforms recorded in 5-3, ...
It is sent to the minimized signal processing circuit 16. The minimization signal processing circuit 16 includes waveform memories 15-1, 15-2, 15-
The ultrasonic wave propagation paths stored in 3, ... 15-n are slightly different, and the frequency characteristics are also combined into a plurality of flaw detection waveforms which are decomposed into waveforms, and one flaw detection waveform in which material noise is reduced To get The flaw detection waveform processed by the minimization signal processing circuit 16 is sent to the D / A converter 17, where it is converted back to an analog waveform and sent to the waveform display CRT 18. This CRT18 for waveform display
Draws an A-scope flaw detection waveform similar to that of a normal flaw detector. Reference numeral 19 is a flaw detection control circuit for controlling a series of operations of each of the above-mentioned components. Next, the operation of the ultrasonic flaw detector constructed as described above will be described.

【0016】いま、図4に示すように送信用超音波振動
子3から被検体1に超音波が放射されると、この超音波
は送信用超音波振動子3の周囲に配置された受信用超音
波振動子4−1,4−2,4−3,…4−nとの相対位
置関係に応じた超音波伝播経路l1 ,l2 ,l3 ,…l
n を通過し、受信用超音波振動子4−1,4−2,4−
3,…4−nにより受信される。この際、本発明で対象
としている粗大結晶粒材料やオーステナイト系材料のよ
うに材料組織に依存するノイズエコーレベルの高い材料
においては、図5に示す如く材料ノイズの含んだ探傷波
形w1 ,w2 ,w3 ,…wn が受信されるが、各々の探
傷波形毎に超音波伝播経路が僅かづつ異なるため、各探
傷波形に含まれる材料ノイズはビーム路程方向に対して
はランダムであり、また探傷波形毎に僅かづつ異なって
いる。他方、材料ノイズの原因となる結晶粒界よりも大
きな欠陥に対しては、欠陥寸法に対する超音波伝播経路
の違いが相対的に小さいので、全ての受信用超音波振動
子4−1,4−2,4−3,…4−nで、ほぼ同等の欠
陥エコーが受信される。
When ultrasonic waves are radiated from the ultrasonic transducer 3 for transmission to the subject 1 as shown in FIG. 4, the ultrasonic waves for reception are arranged around the ultrasonic transducer 3 for transmission. ultrasonic transducer 4-1, 4-2, 4-3, ... ultrasonic propagation path corresponding to the relative positional relationship between the 4-n l 1, l 2 , l 3, ... l
After passing n , ultrasonic transducers for reception 4-1, 4-2, 4-
3, ... 4-n. At this time, in a material having a high noise echo level depending on the material structure such as a coarse crystal grain material or an austenitic material which is the object of the present invention, as shown in FIG. 5, flaw detection waveforms w 1 and w containing material noise are obtained. 2 , w 3 , ... W n are received, but because the ultrasonic wave propagation path is slightly different for each flaw detection waveform, the material noise included in each flaw detection waveform is random with respect to the beam path direction, Further, the flaw detection waveforms are slightly different. On the other hand, for a defect larger than the crystal grain boundary that causes material noise, the difference in the ultrasonic wave propagation path with respect to the defect size is relatively small. At 2, 4-3, ... 4-n, almost equal defect echoes are received.

【0017】他方、ノイズエコーおよび欠陥エコーの周
波数特性に注目して見ると以下のようになる。すなわ
ち、ビーム路L付近の欠陥エコーの周波数特性は図6に
示すように周波数に対して比較的平坦であり、広い範囲
の周波数成分を含んでいるが、ビーム路L' 付近のノイ
ズエコーを例に取り上げて見ると、その周波数特性は図
6に示す如く平坦ではなく、卓越した周波数成分が存在
し、またビーム路L''付近のノイズエコーはビーム路
L' 付近のノイズエコーとは異なった卓越した周波数成
分が存在するのが一般的である。
On the other hand, focusing on the frequency characteristics of the noise echo and the defect echo, the following is obtained. That is, the frequency characteristic of the defect echo near the beam path L is relatively flat with respect to the frequency as shown in FIG. 6 and includes a wide range of frequency components, but a noise echo near the beam path L'is an example. As shown in FIG. 6, the frequency characteristics are not flat, and there are excellent frequency components, and the noise echo near the beam path L ″ is different from the noise echo near the beam path L ′. It is common for there to be outstanding frequency components.

【0018】したがって、このような周波数特性を有す
るノイズエコーおよび欠陥エコーが中心周波数の異なる
帯域通過フィルタ10−1,10−2,10−3,…1
0−nを通過した後の信号波形w' 1 ,w' 2 ,w'
3 ,…w' n は、図7に示すように受信波形w1 ,w
2 ,w3 ,…wn に比較し、ノイズエコーの振幅値がお
おむね小さくなる。
Therefore, the noise echo and the defective echo having such frequency characteristics have different center frequencies. The band pass filters 10-1, 10-2, 10-3, ... 1
0-n signal waveform after passing through the w '1, w' 2, w '
3, ... w 'n, the received waveform as shown in FIG. 7 w 1, w
Compared with 2 , w 3 , ... W n , the amplitude value of the noise echo is generally smaller.

【0019】次に上述の帯域通過フィルタ10により処
理された探傷波形w' 1 ,w' 2 ,w' 3 ,…w' n
対して、最小化信号処理回路16では、以下の処理が実
行される。すなわち、i番目の振動子により検出された
探傷波形はディジタル化によりm個のサンプリング点に
より構成される波形データからなり、w' (1・2…j
…m)で現される。そして、j番目のサンプリング点に
注目してw'(j)1 ,w'(j)2 ,w'(j)3 ,…w'(j)n
中から絶対値が最小の値min{w'(j)i=1 ... n
を、n個の振動子により検出された探傷波形のビーム路
程上のj番目のサンプル点の代表値として採用する。
[0019] Next flaw detection waveform w processed by the band-pass filter 10 described above '1, w' 2, w against '3, ... w' n, the minimum signal processing circuit 16, the following processing is executed To be done. That is, the flaw detection waveform detected by the i-th transducer is composed of waveform data constituted by m sampling points by digitization, and w ′ (1.2 ... j
... m). Then, paying attention to the jth sampling point, the minimum absolute value min {out of w '(j) 1 , w' (j) 2 , w '(j) 3 , ... w' (j) n. w '(j) i = 1 ... n }
Is adopted as a representative value of the j-th sample point on the beam path of the flaw detection waveform detected by the n transducers.

【0020】この操作を探傷波形の1番目のサンプル点
から最後の、すなわちm番目のサンプル点まで繰返し行
うことにより、受信用超音波振動子4−1,4−2,4
−3,…4−nで検出された複数個の探傷波形を1つに
集約した探傷波形W=[min{w'(J)i=1 ... n }]
j=1 ... n を得ることになる。
By repeating this operation from the first sample point of the flaw detection waveform to the last sample point, that is, the m-th sample point, the ultrasonic transducers for reception 4-1, 4-2, 4 are obtained.
-3, ... 4-n, the flaw detection waveforms obtained by integrating the plurality of flaw detection waveforms detected by W = [min {w ′ (J) i = 1 ... n }]
You will get j = 1 ... n .

【0021】この結果、材料ノイズに対しては結晶粒界
等の材料組織に起因するノイズは結晶粒界等の構成配列
そのものがランダムな特性を有しているので、僅かに異
なる複数個の探傷波形の同一ビーム路程の振幅値の最小
値を採用することにより、小さな値で代表させることが
できるという効果と、各々の探傷波形が中心周波数の異
なる通過帯域フィルタにより個々のノイズの卓越周波数
と合致しないフィルタを通過したノイズ波形は振幅値が
小さくなり、中心周波数の異なる帯域通過フィルタから
の信号波形の振幅値の最小値を採用することができると
いう効果が相乗することになり、ノイズエコーを減少さ
せることができる。
As a result, with respect to the material noise, the noise caused by the material structure such as the crystal grain boundaries has a random characteristic in the arrangement arrangement itself such as the crystal grain boundaries. By adopting the minimum value of the amplitude value of the same beam path of the waveform, it can be represented by a small value, and each flaw detection waveform matches the predominant frequency of each noise by the pass band filter with different center frequency. The noise waveform that has passed through the filter will have a small amplitude value, and the effect of being able to adopt the minimum value of the amplitude value of the signal waveform from the band-pass filters with different center frequencies will be synergistic, reducing noise echo. Can be made

【0022】一方、欠陥エコーに関しては超音波伝播経
路の僅かな違いによる複数個の探傷波形の同一ビーム路
程の振幅値に対する影響が小さく、また中心周波数の異
なる帯域通過フィルタを通過してもフィルタ周波数毎の
欠陥エコーの振幅値に対する影響も小さいので、それら
の値の中で最小値をとっても、あるビーム路程上の代表
値データが著しく小さくなることはない。このことか
ら、m個のサンプル点により構成されている複数個の波
形データw' 1 ,w' 2 ,w' 3 ,…w' n の全てのサ
ンプル点に対しそれぞれ最小値を求める操作を繰返せ
ば、材料ノイズの振幅値レベルは小さくなるが、欠陥エ
コーの振幅値は変化しない。
On the other hand, regarding the defect echo, the influence of a plurality of flaw detection waveforms on the amplitude value of the same beam path due to a slight difference in the ultrasonic wave propagation path is small, and even when passing through a band pass filter having a different center frequency, the filter frequency is reduced. Since the effect on the amplitude value of each defect echo is small, the representative value data on a certain beam path does not become extremely small even if the minimum value among those values is taken. Therefore, a plurality of waveform data w that is composed of m sample points '1, w' 2, w '3, ... w' Repetitive operation for each determining the minimum value for all sample points n If returned, the amplitude value level of the material noise becomes small, but the amplitude value of the defect echo does not change.

【0023】このことは粗大結晶材料やオーステナイト
系材料の探傷において、通常の探傷ではノイズエコーに
埋もれて存在を確認することが困難な欠陥エコーの振幅
はそのままで、材料組織に依存したノイズエコーの振幅
値を低減させることができるので、欠陥エコーを検出す
るためのS/N比の改善を自動走査装置やコンピュータ
ソフトウェアを必要とすることなく、手作業による探傷
をも容易に実現することができる。
This means that in the flaw detection of a coarse crystal material or an austenite material, the amplitude of the defect echo, which is buried in the noise echo and difficult to confirm its existence in the normal flaw detection, remains unchanged, and the noise echo depending on the material structure remains. Since the amplitude value can be reduced, the S / N ratio for detecting the defect echo can be improved easily without requiring an automatic scanning device or computer software, and also by manual flaw detection. ..

【0024】なお、図1および図2に示されている送信
および受信用超音波振動子は円板型であるが、要するに
超音波の伝播経路を僅かに変化させた複数個の探傷波形
を得て信号処理するための目的に合致するものであれ
ば、必ずしも円板型である必要がなく、短冊形の振動子
を用いるアレイ探触子等を用いてもよい。また、図3の
例では振動子切換器11に受信用超音波振動子4−1,
4−2,4−3,…4−nの個数に等しいn回の超音波
信号で信号処理に必要な全ての探傷波形を収録している
が、超音波受信器およびA/Dコンバータ13の個数を
受信用超音波振動子の個数と同数設ければ、一回の超音
波送信で短時間に探傷波形を記憶することも可能であ
る。
Although the ultrasonic transducers for transmission and reception shown in FIGS. 1 and 2 are disk type, in short, a plurality of flaw detection waveforms obtained by slightly changing the propagation path of ultrasonic waves are obtained. It is not always necessary to use the disk type as long as it meets the purpose for performing signal processing, and an array probe or the like using a strip-shaped transducer may be used. Further, in the example of FIG.
Although all the flaw detection waveforms necessary for signal processing are recorded by n times of ultrasonic signals equal to the number of 4-2, 4-3, ... 4-n, the ultrasonic receiver and the A / D converter 13 By providing the same number as the number of receiving ultrasonic transducers, it is possible to store the flaw detection waveform in a short time with one ultrasonic transmission.

【0025】[0025]

【発明の効果】以上述べたように本発明によれば、超音
波受信位置の異なる位置で受信された複数の超音波を各
々中心周波数の異なるフィルタ特性を通すことにより、
卓越周波数が反射源毎に異なるノイズ波形と、探傷位置
の微小なずれではほとんど変化せず、且つ周波数特性も
比較的広い範囲に渡っている欠陥波形を含んだ複数の探
傷波形が得られ、これらをリアルタイムの信号処理によ
り一つの探傷波形にまとめることによって、粗大結晶材
料やオ−ステナイト系材料のように材料組織に依存した
ノイズエコーレベルの高い材料においても、欠陥エコー
の振幅はそのままで、材料組織に依存したノイズエコー
のみを低減させることが可能となる。したがって、欠陥
エコー検出のためのS/N比の改善が可能となるととも
に、欠陥検出能の高い探傷を自動走査装置やコンピュー
タソフトウェアを必要とすることなく、通常最も多く行
われている可搬性、機動性が要求される手操作による探
傷をも容易に実現することができる超音波探傷装置を提
供できる。
As described above, according to the present invention, a plurality of ultrasonic waves received at different ultrasonic wave reception positions are passed through filter characteristics having different center frequencies.
It is possible to obtain a plurality of flaw detection waveforms including a noise waveform whose dominant frequency is different for each reflection source, and a flaw waveform with a frequency characteristic that hardly changes with a slight deviation of the flaw detection position and whose frequency characteristics are in a relatively wide range. By combining the two into a single flaw detection waveform by real-time signal processing, the defect echo amplitude remains the same even in materials with high noise echo levels that depend on the material structure, such as coarse crystal materials and austenite materials. Only the tissue-dependent noise echo can be reduced. Therefore, it is possible to improve the S / N ratio for detecting the defect echo, and the portability, which is usually the most frequently used, does not require an automatic scanning device or computer software for flaw detection with high defect detection ability. It is possible to provide an ultrasonic flaw detector that can easily realize flaw detection by manual operation that requires mobility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による超音波探傷装置の一実施例におけ
る超音波探触子を示す縦断面図。
FIG. 1 is a vertical cross-sectional view showing an ultrasonic probe in an embodiment of the ultrasonic flaw detector according to the present invention.

【図2】同実施例における超音波探触子を示す横断面
図。
FIG. 2 is a cross-sectional view showing the ultrasonic probe according to the embodiment.

【図3】同実施例の回路構成を示すブロック回路図。FIG. 3 is a block circuit diagram showing the circuit configuration of the embodiment.

【図4】同実施例において、超音波探触子により送受さ
れる超音波の伝播経路を説明するため図。
FIG. 4 is a view for explaining a propagation path of ultrasonic waves transmitted and received by the ultrasonic probe in the embodiment.

【図5】同実施例における超音波探触子で受信されるノ
イズエコーレベルの高い材料の探傷波形を示す図。
FIG. 5 is a diagram showing a flaw detection waveform of a material having a high noise echo level, which is received by the ultrasonic probe in the embodiment.

【図6】同実施例におけるノイズエコーおよび欠陥エコ
ーの周波数特性図。
FIG. 6 is a frequency characteristic diagram of a noise echo and a defect echo in the example.

【図7】図6に示すような周波数特性を有するノイズエ
コーおよび欠陥エコーが中心周波数の異なる帯域通過フ
ィルタを通過した後の信号波形図。
7 is a signal waveform diagram after the noise echo and the defective echo having the frequency characteristics as shown in FIG. 6 have passed through the bandpass filters having different center frequencies.

【図8】従来の超音波探傷装置によるノイズ低減のため
の信号処理を説明するためのブロック図。
FIG. 8 is a block diagram for explaining signal processing for noise reduction by a conventional ultrasonic flaw detector.

【符号の説明】[Explanation of symbols]

1……被検体、2……超音波探触子、3……送信用超音
波振動子、4−1,4−2,4−3,…4−n……受信
用超音波探触子、9……超音波送信器、10−1,10
−2,10−3,…10−n……帯域通過フィルタ、1
1……振動子切換器、12……超音波受信器、13……
A/Dコンバータ、14……波形メモリ切換器、15−
1,15−2,15−3,…15−n…波形メモリ、1
6……最小値化信号処理回路、17……D/Aコンバー
タ、18……波形表示用CRT、19……探傷制御回
路。
1 ... Subject, 2 ... Ultrasonic probe, 3 ... Transmission ultrasonic transducer, 4-1,4-2,4-3, ... 4-n ... Reception ultrasonic probe , 9 ... Ultrasonic transmitter, 10-1, 10
-2, 10-3, ... 10-n ... band pass filter, 1
1 ... Transducer selector, 12 ... Ultrasonic receiver, 13 ...
A / D converter, 14 ... Waveform memory switcher, 15-
1, 15-2, 15-3, ... 15-n ... Waveform memory, 1
6 ... Minimization signal processing circuit, 17 ... D / A converter, 18 ... Waveform display CRT, 19 ... Flaw detection control circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被検体に超音波を送信する超音波送信手
段および被検体からの超音波を異なる受信位置で受信す
る複数の超音波受信手段を有し、且つこれら超音波送受
信位置が移動可能な超音波探触子と、この超音波探触子
の超音波送受信手段による各超音波送受信位置での超音
波の送受信により得られる複数の探傷波形の各々に対し
て指定した中心周波数が各々異なる帯域特性を与えるフ
ィルタ回路と、このフィルタ回路を通過した探傷波形を
ディジタル化し複数のサンプル点での波形データに変換
するディジタル変換手段と、このディジタル変換手段よ
り得られる複数の波形データに対して同一サンプル点で
のデータをそれぞれ比較すると共にその中で最小の値を
そのサンプル点でのデータとする処理を複数のサンプル
点について繰返して一つの探傷波形を得る信号処理手段
とを具備したことを特徴とする超音波探傷装置。
1. An ultrasonic wave transmitting means for transmitting ultrasonic waves to a subject and a plurality of ultrasonic wave receiving means for receiving ultrasonic waves from the subject at different receiving positions, and these ultrasonic wave transmitting / receiving positions are movable. Different ultrasonic probe and the center frequency specified for each of a plurality of flaw detection waveforms obtained by transmitting and receiving ultrasonic waves at each ultrasonic wave transmitting / receiving position by the ultrasonic wave transmitting / receiving means of the ultrasonic probe. A filter circuit that gives a band characteristic, digital conversion means that digitizes the flaw detection waveform that has passed through this filter circuit and converts it into waveform data at a plurality of sample points, and the same for a plurality of waveform data obtained by this digital conversion means Repeat the process of comparing the data at each sample point and setting the minimum value as the data at that sample point for multiple sample points. An ultrasonic flaw detector, comprising: a signal processing unit for obtaining one flaw detection waveform.
JP4010280A 1992-01-23 1992-01-23 Ultrasonic flaw detection device Pending JPH05203632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4010280A JPH05203632A (en) 1992-01-23 1992-01-23 Ultrasonic flaw detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4010280A JPH05203632A (en) 1992-01-23 1992-01-23 Ultrasonic flaw detection device

Publications (1)

Publication Number Publication Date
JPH05203632A true JPH05203632A (en) 1993-08-10

Family

ID=11745903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4010280A Pending JPH05203632A (en) 1992-01-23 1992-01-23 Ultrasonic flaw detection device

Country Status (1)

Country Link
JP (1) JPH05203632A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139479A (en) * 2000-11-02 2002-05-17 Ishikawajima Harima Heavy Ind Co Ltd Ultrasonic flaw detection method and device
JP2004325246A (en) * 2003-04-24 2004-11-18 Toshiba Corp Defect inspection apparatus
JP2005195487A (en) * 2004-01-08 2005-07-21 Kobe Steel Ltd Ultrasonic flaw scanning apparatus and ultrasonic flaw scanning method
CN104034804A (en) * 2014-06-19 2014-09-10 中航复合材料有限责任公司 Integrated impulse ultrasound-sound transmitting transducer for detecting composite materials
JP2014186029A (en) * 2013-02-20 2014-10-02 Toshiba Corp Ultrasonic test equipment and evaluation method thereof
CN104251888A (en) * 2013-06-28 2014-12-31 硕德(北京)科技有限公司 Grain characteristic-based improved split spectrum optimization realization method in cast iron ultrasonic flaw detection
JP2015148602A (en) * 2014-01-07 2015-08-20 株式会社神戸製鋼所 ultrasonic flaw detection method
CN106560706A (en) * 2016-04-25 2017-04-12 中兴新能源汽车有限责任公司 Flaw detection apparatus, wireless charging emitter, wireless charging receiver and vehicle
CN108562528A (en) * 2018-06-19 2018-09-21 长沙理工大学 A kind of composite material porosity evaluation method based on acoustic emission

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139479A (en) * 2000-11-02 2002-05-17 Ishikawajima Harima Heavy Ind Co Ltd Ultrasonic flaw detection method and device
JP2004325246A (en) * 2003-04-24 2004-11-18 Toshiba Corp Defect inspection apparatus
JP2005195487A (en) * 2004-01-08 2005-07-21 Kobe Steel Ltd Ultrasonic flaw scanning apparatus and ultrasonic flaw scanning method
JP2014186029A (en) * 2013-02-20 2014-10-02 Toshiba Corp Ultrasonic test equipment and evaluation method thereof
CN104251888A (en) * 2013-06-28 2014-12-31 硕德(北京)科技有限公司 Grain characteristic-based improved split spectrum optimization realization method in cast iron ultrasonic flaw detection
JP2015148602A (en) * 2014-01-07 2015-08-20 株式会社神戸製鋼所 ultrasonic flaw detection method
CN104034804A (en) * 2014-06-19 2014-09-10 中航复合材料有限责任公司 Integrated impulse ultrasound-sound transmitting transducer for detecting composite materials
CN106560706A (en) * 2016-04-25 2017-04-12 中兴新能源汽车有限责任公司 Flaw detection apparatus, wireless charging emitter, wireless charging receiver and vehicle
CN106560706B (en) * 2016-04-25 2023-09-01 中兴新能源汽车有限责任公司 Flaw detection device, wireless charging transmitter, wireless charging receiver and automobile
CN108562528A (en) * 2018-06-19 2018-09-21 长沙理工大学 A kind of composite material porosity evaluation method based on acoustic emission

Similar Documents

Publication Publication Date Title
US6672162B2 (en) Ultrasonic detection apparatus and ultrasonic detection method employing the same
US7752913B2 (en) Method and device for detecting discontinuities in a material region
Achenbach et al. Self-calibrating ultrasonic technique for crack depth measurement
US8033172B2 (en) Hand-held flaw detector imaging apparatus
JPS62102154A (en) Ultrasonic inspection device
JPS61185259A (en) Apparatus for examination of matter by ultrasonic echography
JPH05203632A (en) Ultrasonic flaw detection device
Blomme et al. Recent observations with air-coupled NDE in the frequency range of 650 kHz to 1.2 MHz
US6032534A (en) Ultrasonic apparatus and method of simultaneously inspecting microcomponents for defects
Karaojiuzt et al. Defect detection in concrete using split spectrum processing
JP2011047763A (en) Ultrasonic diagnostic device
EP0555298A1 (en) Detecting defects in concrete
US4596142A (en) Ultrasonic resonance for detecting changes in elastic properties
Bordier et al. The influence of multiple scattering in incoherent ultrasonic inspection of coarse grain stainless steel
Kachanov et al. Adaptive instruments for ultrasonic nondestructive testing of large objects with complex structures
Lei et al. Research on weak signal detection technique for electromagnetic ultrasonic inspection system
JP4135512B2 (en) Ultrasonic signal processing method and ultrasonic measurement apparatus
JPH03233353A (en) Ultrasonic inspector
Hinders et al. Ultrasonic Lamb wave tomographic scanning
JPH0212609Y2 (en)
JPH08201349A (en) Ultrasonic flaw detection method
Kerbrat et al. Detection and imaging in complex media with the DORT method
Higuti Ultrasonic image compounding method based on the instantaneous phase image
RU2011193C1 (en) Device for ultrasonic inspection of articles
Cerniglia et al. Analysis of laser-generated lamb waves with wavelet transform