JPH051988A - Photo-acoustic signal detection method and device therefor - Google Patents

Photo-acoustic signal detection method and device therefor

Info

Publication number
JPH051988A
JPH051988A JP3152955A JP15295591A JPH051988A JP H051988 A JPH051988 A JP H051988A JP 3152955 A JP3152955 A JP 3152955A JP 15295591 A JP15295591 A JP 15295591A JP H051988 A JPH051988 A JP H051988A
Authority
JP
Japan
Prior art keywords
modulation frequency
signal
intensity
detection
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3152955A
Other languages
Japanese (ja)
Other versions
JP3000729B2 (en
Inventor
Toshihiko Nakada
俊彦 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3152955A priority Critical patent/JP3000729B2/en
Priority to US07/886,014 priority patent/US5377006A/en
Priority to US07/994,150 priority patent/US5479259A/en
Publication of JPH051988A publication Critical patent/JPH051988A/en
Application granted granted Critical
Publication of JP3000729B2 publication Critical patent/JP3000729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable the internal and external information of a sample to be stably detected and quantitatively analyzed by correcting effectively signal detection sensitivity according to each modulated frequency in such a way as keeping the sensitivity constant for the frequency. CONSTITUTION:There is applied a method for changing, the intensity of primary diffracted light 85 or excited light from a photoacoustic modulation element 83 via the change of amplitude of a frequency outputted from an oscillator 69. In detecting a photoacoustic signal by changing a modulated frequency variously, the amplitude of rectangular waveform of a frequency outputted from the oscillator 69, is changed in proportion to 3/2 power of the frequency under control by a computer 74, thereby changing the amplitude of a modulated signal further. Consequently, the intensity of excited light 85 and 92 can be changed in proportion to 3/2 power of a frequency at every modulation. In addition, the intensity of a photo-acoustic signal finally becomes constant in each modulated frequency, and modulated frequency characteristics for a detection signal can be corrected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光音響効果を利用して
試料の表面及び内部情報を検出する光音響信号検出方法
及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoacoustic signal detecting method and apparatus for detecting surface and internal information of a sample by utilizing photoacoustic effect.

【0002】[0002]

【従来の技術】光音響効果は、1881年チンダル、ベ
ル、レントゲンらによって発見された。即ち、図18に
示すように、強度変調した光(断続光)19を励起光と
して、レンズ5により試料7上に集光して照射すると、
光吸収領域Vop21で熱が発生し、熱拡散長μs22で
与えられる熱拡散領域Vth23を周期的に拡散し、この
熱歪波によって弾性波(超音波)が発生する現象であ
る。この超音波、即ち、光音響信号をマイクロホン(音
響電気変換器)や圧電素子あるいは光干渉計を用いて検
出し、励起光の変調周波数と同期した信号成分を求める
ことにより、試料の表面及び内部の情報を得ることがで
きる。光音響信号の検出方法に関しては、例えば、文献
「非破壊検査;第36巻第10号,p.730〜p.7
36(昭和62年10月)」や「アイ・イー・イー・イ
ー1986ウルトラ・ソニックス・シンポジウム;p.
515〜526(1986年)(IEEE1986UL
TRA‐SONICS SYMPOSIUM;p.51
5〜526(1986)」において論じられている。
Photoacoustic effects were discovered in 1881 by Tyndall, Bell, Roentgen and others. That is, as shown in FIG. 18, when the intensity-modulated light (intermittent light) 19 is used as excitation light and is focused on the sample 7 by the lens 5 and is irradiated,
This is a phenomenon in which heat is generated in the light absorption region V op 21 and is periodically diffused in the heat diffusion region V th 23 given by the heat diffusion length μ s 22, and an elastic wave (ultrasonic wave) is generated by this thermal strain wave. is there. This ultrasonic wave, that is, a photoacoustic signal is detected by using a microphone (acoustoelectric converter), a piezoelectric element, or an optical interferometer, and a signal component synchronized with the modulation frequency of the excitation light is obtained to obtain the surface and the inside of the sample. Information can be obtained. Regarding the detection method of the photoacoustic signal, for example, the document “Non-destructive inspection; Vol. 36, No. 10, p. 730 to p. 7” is used.
36 (October 1987) "and" I-E-E-1986 Ultra Sonics Symposium; p.
515-526 (1986) (IEEE 1986 UL
TRA-SONICS SYMPOSIUM; p. 51
5-526 (1986) ".

【0003】その一例を図17に基づいて説明する。レ
ーザ1から出射した平行光を音響光学変調素子(AO変
調器)2により強度変調し、その断続光、即ち励起光を
ビームエキスパンダ3により所望のビーム径の平行光1
9とした後、ハーフミラー4で反射させ、レンズ5によ
りXYステージ6上の試料7の表面に集光させる。試料
7上の集光部21から生じた熱歪波により超音波が発生
し、同時に試料7表面に微小変位が生じる。この微小変
位を以下に述べるマイケルソン干渉計で検出する。レー
ザ8から出射した平行光をビームエキスパンダ9により
所望のビーム径に拡大した後、ハーフミラー10で二つ
の光路に分離し、一方はプローブ光24としてレンズ5
により試料7上の集光部21に集光させる。他方は参照
ミラー11に照射させる。試料7からの反射光と参照ミ
ラー11からの反射光とは、ハーフミラー10上で互い
に干渉し、この干渉光がレンズ12によりホトダイオー
ド等の光電変換素子13上に集光される。光電変換され
た干渉強度信号はプリアンプ14で増幅された後、ロッ
クインアンプ16に送られる。ロックインアンプ16で
は、音響光学変調素子2の駆動に用いる発振器15から
の変調周波数信号を参照信号として、干渉強度信号に含
まれる変調周波数成分だけが抽出される。この周波数成
分がその周波数に応じた試料7の表面あるいは内部の情
報を持つ。変調周波数を変えることにより熱拡散長μs
21を変えることができ、試料の様々な深さの情報を得
ることができる。熱拡散領域Vth23内にクラック等の
欠陥があれば、干渉強度信号中の変調周波数成分に信号
変化が現われるので、その存在を知ることができる。X
Yステージ移動信号とロックインアンプ16からの出力
信号は計算機17で処理され、試料上の各点における光
音響信号がモニタテレビジョン等の表示器18に二次元
画像情報として出力される。
An example thereof will be described with reference to FIG. The collimated light emitted from the laser 1 is intensity-modulated by an acousto-optic modulator (AO modulator) 2, and the intermittent light, that is, excitation light, is collimated by a beam expander 3 into a collimated light 1 having a desired beam diameter.
After setting to 9, the light is reflected by the half mirror 4 and is focused on the surface of the sample 7 on the XY stage 6 by the lens 5. An ultrasonic wave is generated by the thermal strain wave generated from the light condensing part 21 on the sample 7, and at the same time, a minute displacement is generated on the surface of the sample 7. This minute displacement is detected by the Michelson interferometer described below. The parallel light emitted from the laser 8 is expanded to a desired beam diameter by the beam expander 9, and then split into two optical paths by the half mirror 10, and one of them is used as the probe light 24 by the lens 5
The light is focused on the light collecting portion 21 on the sample 7 by. The other side irradiates the reference mirror 11. The reflected light from the sample 7 and the reflected light from the reference mirror 11 interfere with each other on the half mirror 10, and the interference light is condensed by a lens 12 on a photoelectric conversion element 13 such as a photodiode. The photoelectrically converted interference intensity signal is amplified by the preamplifier 14 and then sent to the lock-in amplifier 16. The lock-in amplifier 16 extracts only the modulation frequency component contained in the interference intensity signal, using the modulation frequency signal from the oscillator 15 used to drive the acousto-optic modulator 2 as a reference signal. This frequency component has information on the surface or inside of the sample 7 according to the frequency. By changing the modulation frequency, the thermal diffusion length μ s
21 can be varied to obtain information on different depths of the sample. If there is a crack or other defect in the thermal diffusion region V th 23, a signal change appears in the modulation frequency component in the interference intensity signal, so that its presence can be known. X
The Y stage movement signal and the output signal from the lock-in amplifier 16 are processed by the computer 17, and the photoacoustic signal at each point on the sample is output to the display 18 such as a monitor television as two-dimensional image information.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術は、非接
触・非破壊で光音響信号を検出できる極めて有効な手段
であるが、以下に示すような課題をもっている。
The above-mentioned prior art is an extremely effective means for detecting a photoacoustic signal in a non-contact and non-destructive manner, but has the following problems.

【0005】即ち、一般に、光音響信号の信号強度は励
起光の強度変調周波数に逆比例するという性質を持って
おり、また図16に示すマイケルソン干渉計の検出感度
は表面変位の変動周波数(励起光の強度変調周波数)を
fとすると、√fに逆比例するという性質を持ってい
る。また、光音響信号の検出にPZT素子を用いた場合
も、PZT素子の周波数特性により、検出感度は様々に
変化する。従って、従来の光音響信号検出装置では、励
起光の強度変調周波数を色々変化させて、試料内部の様
々な深さの欠陥を検出した場合、検出された光音響信号
から欠陥の大きさを判別しようとしても、光音響信号の
信号強度が上述のように変調周波数に応じて様々に変化
するため、欠陥の大きさの定量的な把握が困難である。
That is, generally, the signal intensity of the photoacoustic signal has a property of being inversely proportional to the intensity modulation frequency of the excitation light, and the detection sensitivity of the Michelson interferometer shown in FIG. It has a property of being inversely proportional to √f, where f is the intensity modulation frequency of the excitation light. Further, even when the PZT element is used for detecting the photoacoustic signal, the detection sensitivity changes variously depending on the frequency characteristic of the PZT element. Therefore, in the conventional photoacoustic signal detection device, when the intensity modulation frequency of the excitation light is variously changed and defects of various depths inside the sample are detected, the size of the defect is determined from the detected photoacoustic signal. Even if an attempt is made, since the signal intensity of the photoacoustic signal changes variously according to the modulation frequency as described above, it is difficult to quantitatively grasp the size of the defect.

【0006】本発明の目的は、励起光の強度変調周波数
によらず常に検出感度が一定となるよう各変調周波数に
応じて光音響信号の信号強度を実効的に補正し、試料の
表面及び内部情報の安定検出と定量的解析を可能とする
光音響信号検出方法及びその装置を提供することにあ
る。
An object of the present invention is to effectively correct the signal intensity of a photoacoustic signal according to each modulation frequency so that the detection sensitivity is always constant irrespective of the intensity modulation frequency of the excitation light, and the surface and inside of the sample It is an object of the present invention to provide a photoacoustic signal detection method and apparatus capable of stable detection and quantitative analysis of information.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、強度変調した光を試料上に集光し、試料
表面あるいは内部で光音響効果あるいは光熱効果を発生
させ、前記光音響効果あるいは光熱効果によって生じた
試料表面の熱歪を検出し、検出した検出信号の中から前
記強度変調周波数の周波数成分を検出し、前記周波数成
分より変調周波数に応じた試料の表面及び内部情報を抽
出する光音響信号検出装置において、前記検出信号の検
出感度が各変調周波数に対して一定となるように、各変
調周波数に応じて検出感度を実効的に補正することによ
り、試料の表面及び内部情報の安定検出と定量的解析を
可能とした。
In order to achieve the above object, the present invention collects intensity-modulated light on a sample to generate a photoacoustic effect or a photothermal effect on the surface of or inside the sample. Detects the thermal strain of the sample surface caused by the acoustic effect or the photothermal effect, detects the frequency component of the intensity modulation frequency from the detected detection signal, and the sample surface and internal information according to the modulation frequency from the frequency component In the photoacoustic signal detection device for extracting, so that the detection sensitivity of the detection signal is constant for each modulation frequency, by effectively correcting the detection sensitivity according to each modulation frequency, the surface of the sample and It enabled stable detection of internal information and quantitative analysis.

【0008】また、上記目的を達成するために、本発明
は、検出感度が各変調周波数に対して一定となるよう
に、前記強度変調した光の強度を各変調周波数に応じて
調節することにより、非光学的雑音の影響を低減させ
た。
To achieve the above object, the present invention adjusts the intensity of the intensity-modulated light according to each modulation frequency so that the detection sensitivity becomes constant for each modulation frequency. , Reduced the effects of non-optical noise.

【0009】また、上記目的を達成するために、本発明
は、検出感度が各変調周波数に対して一定となるよう
に、前記検出信号の強度を各変調周波数に応じて調節す
ることにより、光学系の安定度を増加させた。
In order to achieve the above object, the present invention adjusts the intensity of the detection signal according to each modulation frequency so that the detection sensitivity becomes constant for each modulation frequency. The stability of the system was increased.

【0010】また、上記目的を達成するために、本発明
は、前記熱歪を検出する熱歪検出手段の変調周波数特性
を含めて検出感度が各変調周波数に対して一定となるよ
うに、補正することにより、検出信号の定量性をより向
上させた。
In order to achieve the above object, the present invention corrects the detection sensitivity including the modulation frequency characteristic of the thermal strain detecting means for detecting the thermal strain so as to be constant for each modulation frequency. By doing so, the quantitativeness of the detection signal was further improved.

【0011】また、上記目的を達成するために、本発明
は、試料表面の熱歪を光干渉を用いて検出することによ
り、光音響信号の検出を非接触で実行可能としたもので
ある。
Further, in order to achieve the above object, the present invention makes it possible to detect a photoacoustic signal in a non-contact manner by detecting the thermal strain of the sample surface using optical interference.

【0012】また、上記目的を達成するために、本発明
は、試料表面の熱歪を圧電素子を用いて検出することに
より、検出系の構成を簡略化し、信号検出の安定度を向
上させた。
Further, in order to achieve the above object, according to the present invention, the thermal strain on the sample surface is detected by using a piezoelectric element, so that the structure of the detection system is simplified and the stability of signal detection is improved. .

【0013】また、上記目的を達成するために、本発明
は、強度変調した光を試料上に集光し、試料表面あるい
は内部で光音響効果あるいは光熱効果を発生させる励起
手段を共焦点光学系として構成することにより、光音響
信号の横方向分解能、検出感度及び信号SN比を向上さ
せた。
Further, in order to achieve the above object, the present invention contemplates a confocal optical system as an excitation means for condensing intensity-modulated light on a sample and generating a photoacoustic effect or a photothermal effect on the surface or inside the sample. With this configuration, the lateral resolution of the photoacoustic signal, the detection sensitivity, and the signal-to-noise ratio are improved.

【0014】また、上記目的を達成するために、本発明
は、光音響効果あるいは光熱効果により生じた試料表面
の熱歪を検出する光干渉検出手段を、共焦点光学系とし
て構成することにより、光音響信号の横方向分解能、検
出感度及び信号SN比を向上させた。
Further, in order to achieve the above object, the present invention comprises an optical interference detecting means for detecting a thermal strain of a sample surface caused by a photoacoustic effect or a photothermal effect as a confocal optical system. The lateral resolution, detection sensitivity, and signal-to-noise ratio of the photoacoustic signal were improved.

【0015】[0015]

【作用】光音響信号検出装置において、検出感度補正手
段を設け、光音響検出信号の検出感度が各変調周波数に
対して一定となるように、各変調周波数に応じて検出感
度を実効的に補正することにより、試料の表面及び内部
情報の安定検出と定量的解析が可能となる。
In the photoacoustic signal detection device, the detection sensitivity correction means is provided, and the detection sensitivity is effectively corrected according to each modulation frequency so that the detection sensitivity of the photoacoustic detection signal becomes constant for each modulation frequency. By doing so, stable detection and quantitative analysis of the surface and internal information of the sample becomes possible.

【0016】また、検出感度補正手段は、検出感度が各
変調周波数に対して一定となるように、強度変調した光
の強度を各変調周波数に応じて調節するので、非光学的
雑音の影響を低減できる。
Further, the detection sensitivity correction means adjusts the intensity of the intensity-modulated light according to each modulation frequency so that the detection sensitivity becomes constant for each modulation frequency, so that the influence of non-optical noise is affected. It can be reduced.

【0017】また、検出感度補正手段は、検出感度が各
変調周波数に対して一定となるように、検出信号の強度
を各変調周波数に応じて調節するので、光学系の安定度
が増加する。
Further, the detection sensitivity correction means adjusts the intensity of the detection signal according to each modulation frequency so that the detection sensitivity becomes constant for each modulation frequency, so that the stability of the optical system increases.

【0018】また、検出感度補正手段は、上記熱歪を検
出する熱歪検出手段の変調周波数特性を含めて、検出感
度が各変調周波数に対して一定となるように感度補正す
るので、検出信号の定量性がより向上する。
Further, the detection sensitivity correction means corrects the sensitivity so that the detection sensitivity becomes constant with respect to each modulation frequency, including the modulation frequency characteristic of the thermal distortion detection means for detecting the above-mentioned thermal distortion. Quantitatively improves.

【0019】また、熱歪検出手段は、光干渉検出手段を
用いて試料表面の熱歪を検出するので、光音響信号の検
出が非接触で実行可能となる。
Further, since the thermal strain detecting means detects the thermal strain on the sample surface by using the optical interference detecting means, the photoacoustic signal can be detected in a non-contact manner.

【0020】また、熱歪検出手段は、圧電素子を用いて
試料表面の熱歪を検出するので、検出系の構成が簡略化
され、信号検出の安定度が向上する。
Further, since the thermal strain detecting means detects the thermal strain on the sample surface by using the piezoelectric element, the structure of the detection system is simplified and the stability of signal detection is improved.

【0021】また、強度変調した光を試料上に集光し、
試料表面あるいは内部にて光音響効果あるいは光熱効果
を発生させる励起手段を、共焦点光学系として構成する
ので、光音響信号の横方向分解能、検出感度及び信号S
N比が向上する。
Further, the intensity-modulated light is condensed on the sample,
Since the excitation means for generating the photoacoustic effect or the photothermal effect on the sample surface or inside is configured as a confocal optical system, the lateral resolution of the photoacoustic signal, the detection sensitivity and the signal S.
The N ratio is improved.

【0022】また、光音響効果あるいは光熱効果により
生じた試料表面の熱歪を検出する光干渉検出手段を、共
焦点光学系として構成するので、光音響信号の横方向分
解能、検出感度及び信号SN比が向上する。
Further, since the optical interference detecting means for detecting the thermal strain of the sample surface caused by the photoacoustic effect or the photothermal effect is constructed as a confocal optical system, the lateral resolution of the photoacoustic signal, the detection sensitivity and the signal SN. The ratio is improved.

【0023】[0023]

【実施例】本発明の実施例を図1から図16に基づいて
説明する。
Embodiments of the present invention will be described with reference to FIGS.

【0024】まず、本発明の第一の実施例を図1から図
11に基づいて説明する。図1は第一の実施例における
光音響検出光学系を示す。本光学系は、励起光学系30
1、光音響信号を検出するためのヘテロダイン形マッハ
ツェンダ干渉光学系302及び信号処理系300からな
る。励起光学系301のArレーザ81(波長515n
m)から出射した平行ビーム82を音響光学変調素子8
3に入射する。今、図1において、発振器68から図2
(a)に示す周波数fBの正弦波100を、また発振器
69から同図(b)に示す周波数fL(fL<fB)の矩
形波101を各々信号合成器70に入力し、両波形の積
をとることにより同図(c)に示す変調信号102を作
り、音響光学変調素子83に入力する。その結果、音響
光学変調素子83からはfBだけ周波数シフトした一次
回折光85が周波数fLで断続的に出力される。即ち、
励起光として、fBだけ周波数シフトした変調周波数fL
の強度変調ビームが得られる。尚、0次光84は絞り8
6で遮光される。強度変調ビーム85をビームエキスパ
ンダ87により所望のビーム径に拡大した後、レンズ8
8によりその後側焦点位置89に集光させる。後側焦点
位置89にはピンホール90が設置されており、図3
(a)に示すように、集光スポットのピーク部105の
周辺に存在する高次回折光成分105a及び105bを
遮光する。その結果、ピンホール90通過後の光強度分
布は図3(b)に示すように、ピーク部105だけにな
る。焦点位置89はレンズ91の前側焦点位置になって
いるので、ピンホール90通過後の光束はレンズ91通
過後平行光92になる。平行光92はダイクロイックプ
リズム(波長600nm以下は反射、波長600nm以
上は透過)93で反射された後、λ/4板47通過後対
物レンズ48によりその前側焦点位置50、即ち、試料
51上に集光され、図3(b)に示すと同様の光強度分
布をもつ光スポットになる。即ち、レンズ91の前側焦
点位置89と対物レンズ48の前側焦点位置50とは、
共役であると同時に共焦点の関係にある。試料51上の
集光部50で光音響効果に基づいて生じた熱歪波により
超音波(熱弾性波)が発生し、同時に試料51表面の集
光部50に微小変位が生じる。この微小変位は励起光9
2の強度変調周波数fLで周期的に変化する。
First, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a photoacoustic detection optical system in the first embodiment. This optical system is an excitation optical system 30.
1. A heterodyne type Mach-Zehnder interference optical system 302 for detecting a photoacoustic signal and a signal processing system 300. Ar laser 81 of excitation optical system 301 (wavelength 515n
m), the parallel beam 82 emitted from the acousto-optic modulator 8
It is incident on 3. Now, referring to FIG.
The sine wave 100 having the frequency f B shown in (a) and the rectangular wave 101 having the frequency f L (f L <f B ) shown in FIG. By taking the product of the waveforms, the modulated signal 102 shown in FIG. 7C is created and input to the acousto-optic modulator 83. As a result, the acousto-optic modulator 83 intermittently outputs the first-order diffracted light 85 whose frequency is shifted by f B at the frequency f L. That is,
As the excitation light, the modulation frequency f L frequency-shifted by f B
Intensity modulated beam of is obtained. The 0th order light 84 is used for the diaphragm 8
It is shaded at 6. After the intensity-modulated beam 85 is expanded to a desired beam diameter by the beam expander 87, the lens 8
8 is used to focus the light on the rear focus position 89. A pinhole 90 is installed at the rear focal position 89, as shown in FIG.
As shown in (a), the high-order diffracted light components 105a and 105b existing around the peak portion 105 of the focused spot are shielded. As a result, the light intensity distribution after passing through the pinhole 90 is only the peak portion 105, as shown in FIG. Since the focus position 89 is the front focus position of the lens 91, the light flux after passing through the pinhole 90 becomes parallel light 92 after passing through the lens 91. The parallel light 92 is reflected by a dichroic prism (reflected at a wavelength of 600 nm or less and transmitted at a wavelength of 600 nm or more) 93, and then passes through the λ / 4 plate 47 and is collected by the objective lens 48 on its front focal position 50, that is, the sample 51. It becomes a light spot that has the same light intensity distribution as shown in FIG. That is, the front focus position 89 of the lens 91 and the front focus position 50 of the objective lens 48 are
It is conjugate and at the same time confocal. Ultrasonic waves (thermoelastic waves) are generated by the thermal strain wave generated on the sample 51 on the basis of the photoacoustic effect, and at the same time, the condenser 50 on the surface of the sample 51 is slightly displaced. This small displacement is caused by the excitation light 9
It changes periodically with an intensity modulation frequency f L of 2.

【0025】一方、マッハツェンダ干渉光学系302に
おいて、He−Neレーザ31(波長633nm)から
出射する直線偏光ビーム32の偏向方向を図4の106
のようにx軸及びy軸に対し45°方向に設定する。こ
こで、図1の紙面に対し、垂直方向をx軸とし、それと
直交する方向をy軸とする。偏光ビームスプリッタ33
により、入射光ビーム32のうち図4の107で示すp
偏光成分34は偏光ビームスプリッタ33を透過し、音
響光学変調素子76に入射する。また、図4の108で
示すs偏光成分35は偏光ビームスプリッタ33で反射
される。音響光学変調素子76には発振器115より図
2(a)に示す周波数fBの正弦波100が入力され
る。その結果、音響光学変調素子76からはfBだけ周
波数シフトした一次回折光37が出力される。尚、0次
光36は絞り38で遮光される。一次回折光37をビー
ムエキスパンダ39により所望のビーム径に拡大した
後、レンズ40によりその後側焦点位置41に集光させ
る。後側焦点位置41にはピンホール42が設置されて
おり、図3(a)に示すように、集光スポットのピーク
部105の周辺に存在する高次回折光成分105a及び
105bを遮光する。その結果、ピンホール42通過後
の光強度分布は図3(b)に示すように、ピーク部10
5だけになる。焦点位置41はレンズ43の前側焦点位
置になっているので、ピンホール42通過後の光束はレ
ンズ43通過後平行光になる。平行光はp偏光成分から
成るので、偏光ビームスプリッタ45をそのまま透過し
ミラー46で反射された後、ダイクロイックプリズム9
3及びλ/4板47通過後円偏光となり、さらに対物レ
ンズ48によりその前側焦点位置50、即ち、試料51
上に集光され、図3(b)に示すと同様の光強度分布を
もつ光スポットになる。即ち、レンズ43の前側焦点位
置41と対物レンズ48の前側焦点位置50とは、共役
であると同時に共焦点の関係にある。試料51上の集光
部50からの反射光は試料51表面で生じた微小変位量
を位相情報としてもっており、対物レンズ48通過後平
行光となり、さらにλ/4板47通過後s偏光ビームと
なる。このs偏光ビームは再び同一光路を経た後偏光ビ
ームスプリッタ45で反射され、無偏光ビームスプリッ
タ60を通過する。
On the other hand, in the Mach-Zehnder interference optical system 302, the deflection direction of the linearly polarized beam 32 emitted from the He-Ne laser 31 (wavelength 633 nm) is 106 in FIG.
The angle is set to 45 ° with respect to the x-axis and the y-axis. Here, the direction perpendicular to the plane of the paper of FIG. 1 is the x-axis, and the direction orthogonal thereto is the y-axis. Polarizing beam splitter 33
Of the incident light beam 32, p shown by 107 in FIG.
The polarization component 34 passes through the polarization beam splitter 33 and enters the acousto-optic modulator 76. Further, the s-polarized component 35 indicated by 108 in FIG. 4 is reflected by the polarization beam splitter 33. The sine wave 100 having the frequency f B shown in FIG. 2A is input from the oscillator 115 to the acousto-optic modulator 76. As a result, the acousto-optic modulator 76 outputs the first-order diffracted light 37 frequency-shifted by f B. The 0th order light 36 is blocked by the diaphragm 38. The first-order diffracted light 37 is expanded to a desired beam diameter by the beam expander 39, and then is focused at the rear focal position 41 by the lens 40. A pinhole 42 is provided at the rear focal position 41, and as shown in FIG. 3A, the high-order diffracted light components 105a and 105b existing around the peak portion 105 of the focused spot are shielded. As a result, the light intensity distribution after passing through the pinhole 42 is at the peak portion 10 as shown in FIG.
Only 5 Since the focus position 41 is the front focus position of the lens 43, the light flux after passing through the pinhole 42 becomes parallel light after passing through the lens 43. Since the parallel light is composed of the p-polarized light component, it passes through the polarization beam splitter 45 as it is, is reflected by the mirror 46, and then is reflected by the dichroic prism 9.
After passing through the 3 and λ / 4 plate 47, it becomes circularly polarized light, and is further focused by the objective lens 48 on the front focus position 50, that is, the sample 51.
The light spot is condensed above and has a light intensity distribution similar to that shown in FIG. That is, the front focus position 41 of the lens 43 and the front focus position 50 of the objective lens 48 are conjugate and confocal at the same time. The reflected light from the condensing unit 50 on the sample 51 has a minute displacement amount generated on the surface of the sample 51 as phase information, becomes parallel light after passing through the objective lens 48, and becomes an s-polarized beam after passing through the λ / 4 plate 47. Become. The s-polarized beam passes through the same optical path again, is then reflected by the polarization beam splitter 45, and passes through the non-polarization beam splitter 60.

【0026】一方、参照光である、偏光ビームスプリッ
タ33で反射されたs偏光ビーム35をミラー53で反
射した後、ビームエキスパンダ54により所望のビーム
径に拡大した後、レンズ55によりその後側焦点位置5
6に集光させる。後側焦点位置56にはピンホール57
が設置されており、図3(a)に示すように、集光スポ
ットのピーク部105の周辺に存在する高次回折光成分
105a及び105bを遮光する。その結果、ピンホー
ル57通過後の光強度分布は図3(b)に示すように、
ピーク部105だけになる。焦点位置56はレンズ58
の前側焦点位置になっているので、ピンホール57通過
後の光束はレンズ58通過後平行参照光59になる。参
照光59は、無偏光ビームスプリッタ60で反射された
後、無偏光ビームスプリッタ60を通過してきた試料5
1の表面からの反射光61と互いに干渉する。この、干
渉光62には、光音響効果により試料51の表面で生じ
た微小変位量が光位相情報として含まれている。干渉光
62をレンズ63によりその後側焦点位置64に集光
し、ホトダイオード等の光電変換素子67で検出する。
このマッハツェンダ干渉光学系302で、レンズ43の
前側焦点位置41、レンズ58の前側焦点位置56、対
物レンズ48の前側焦点位置50及びレンズ63の後側
焦点位置64とは、互いに共役であると同時に共焦点の
関係にある。さらに、レンズ63の後側焦点位置64に
はピンホール65が設置されている。その結果、対物レ
ンズ48内で発生した迷光や試料上の透明薄膜内で発生
した干渉成分やあるいは試料表面の微小な凹凸により発
生した高次回折光成分を遮光することができる。
On the other hand, after the s-polarized beam 35, which is the reference light, reflected by the polarization beam splitter 33 is reflected by the mirror 53, it is expanded to a desired beam diameter by the beam expander 54, and then the rear focus is obtained by the lens 55. Position 5
Focus on 6. A pinhole 57 is provided at the rear focal position 56.
Is installed, and blocks the higher-order diffracted light components 105a and 105b existing around the peak portion 105 of the focused spot, as shown in FIG. 3 (a). As a result, the light intensity distribution after passing through the pinhole 57 is as shown in FIG.
Only the peak portion 105 is provided. The focal position 56 is the lens 58
Since it is at the front focus position of, the light flux after passing through the pinhole 57 becomes the parallel reference light 59 after passing through the lens 58. The reference light 59 is reflected by the non-polarizing beam splitter 60 and then passes through the non-polarizing beam splitter 60.
The reflected light 61 from the surface of No. 1 interferes with each other. The interference light 62 contains, as optical phase information, a minute displacement amount generated on the surface of the sample 51 due to the photoacoustic effect. The interference light 62 is condensed on the rear focal position 64 by the lens 63 and detected by the photoelectric conversion element 67 such as a photodiode.
In the Mach-Zehnder interference optical system 302, the front focal position 41 of the lens 43, the front focal position 56 of the lens 58, the front focal position 50 of the objective lens 48, and the rear focal position 64 of the lens 63 are conjugate with each other and at the same time. There is a confocal relationship. Further, a pinhole 65 is provided at the rear focal position 64 of the lens 63. As a result, stray light generated in the objective lens 48, interference components generated in the transparent thin film on the sample, or high-order diffracted light components generated by minute unevenness on the sample surface can be shielded.

【0027】今、入射光32の波長をλ、試料51表面
からの反射光61の強度をIs、参照光59の強度を
r、二つの光路間の位相差を時間変動を含めてφ(t)、
試料51表面で生じた微小変位の振幅をa、位相をθと
すると、光電変換素子67で検出される干渉光の強度I
は式(1)で表される。
Now, the wavelength of the incident light 32 is λ, the intensity of the reflected light 61 from the surface of the sample 51 is I s , the intensity of the reference light 59 is I r , and the phase difference between the two optical paths including time variation is φ. (t),
Assuming that the amplitude of the minute displacement generated on the surface of the sample 51 is a and the phase is θ, the intensity I of the interference light detected by the photoelectric conversion element 67.
Is represented by formula (1).

【0028】[0028]

【数1】 [Equation 1]

【0029】さらに、a≪λより上式は近似的に式
(2)の形に改められる。
Further, the equation above a << λ can be approximately changed to the equation (2).

【0030】[0030]

【数2】 [Equation 2]

【0031】ここで、a・cos(2πfLt+θ)が
光音響効果に基づいて生じた試料51表面の微小変位を
表す項である。尚、本実施例では、fB=40MHz,
L=100kHzとした。
Here, a · cos (2πf L t + θ) is a term representing a minute displacement of the surface of the sample 51 caused by the photoacoustic effect. In this embodiment, f B = 40 MHz,
f L = 100 kHz.

【0032】以下では、信号処理系300によって、式
(1)で表される干渉光から、光音響効果に基づいて変
調周波数fLで生じた試料51表面の微小変位の振幅a
及び位相θを求める方法について説明する。光電変換さ
れた干渉強度信号はプリアンプ71で増幅された後、位
相検波回路72に送られる。位相検波回路72では、図
5に示すように位相保持分波器94により、検出された
干渉強度信号が分離され、一方は中心周波数fBのバン
ドパスフィルタ95を通った後、位相シフタ96より位
相がπ/2遅延される。位相シフタ96からの出力信号
はアンプ97で増幅された後、ミキサ98に送られ、位
相保持分波器94により分離された他方の干渉強度信号
との積が出力される。他方の干渉強度信号ID1は式
(3)で、またアンプ97からの出力信号ID2は式
(4)で、さらにミキサ98からの出力信号IDは式
(5)で各々表される。
In the following, the signal processing system 300 uses the interference light expressed by the equation (1) to generate an amplitude a of a minute displacement of the surface of the sample 51 generated at the modulation frequency f L based on the photoacoustic effect.
And a method of obtaining the phase θ will be described. The photoelectrically converted interference intensity signal is amplified by the preamplifier 71 and then sent to the phase detection circuit 72. In the phase detection circuit 72, the detected interference intensity signal is separated by the phase holding demultiplexer 94 as shown in FIG. 5, one of which is passed through the bandpass filter 95 of the center frequency f B , and then the phase shifter 96. The phase is delayed by π / 2. The output signal from the phase shifter 96 is amplified by the amplifier 97, then sent to the mixer 98, and the product with the other interference intensity signal separated by the phase holding demultiplexer 94 is output. The other interference intensity signal I D1 is expressed by the formula (3), the output signal I D2 from the amplifier 97 is expressed by the formula (4), and the output signal I D from the mixer 98 is expressed by the formula (5).

【0033】[0033]

【数3】 [Equation 3]

【0034】[0034]

【数4】 [Equation 4]

【0035】[0035]

【数5】 [Equation 5]

【0036】式(5)は、a≪λより近似的に次式の形
に改められる。
Expression (5) can be approximated to the following expression from a << λ.

【0037】[0037]

【数6】 [Equation 6]

【0038】式(6)の、第一項は直流成分、第二項は
求めるべきfLの周波数成分、第三項及び第四項はfB
周波数成分、第五項及び第六項は2fBの周波数成分で
ある。今fL≪fBとして、ミキサ98からの出力信号
を、fB以上の周波数成分を遮断するローパスフィルタ
99に通した後、図1のロックインアンプ73に入力す
る。ローパスフィルタ99では、直流成分及びfLの周
波数成分だけが取り出され、さらにロックインアンプ7
3では、発振器69から出力される周波数fLの矩形波
信号を参照信号として、最終的にfLの周波数成分の振
幅と位相が取り出される。この振幅及び位相から試料5
1表面の微小変位の振幅a及び位相θが求まるわけであ
る。また、この振幅a及び位相θが、その変調周波数f
Lで定義される熱拡散領域Vth内の熱的及び弾性的情報
をもつ。従って、熱拡散領域Vth内にクラック等の内部
欠陥があれば、振幅a及び位相θが変化し、その存在を
知ることができる。XYステージ52の移動信号とロッ
クインアンプ73からの出力信号は計算機74で処理さ
れ、試料51上の各点における光音響信号がモニタTV
75上に二次元光音響画像として出力される。また、発
振器69から出力される変調信号の周波数fLを計算機
74で制御すれば、様々な変調周波数に設定することが
でき、試料51の様々な深さの内部情報を検出すること
ができる。
In the equation (6), the first term is the direct current component, the second term is the frequency component of f L to be obtained, the third and fourth terms are the frequency components of f B , and the fifth and sixth terms are It is a frequency component of 2f B. As now f L «f B, the output signal from the mixer 98, passed through a low-pass filter 99 for cutting off the frequency components above f B, is input to the lock-in amplifier 73 of FIG. 1. The low-pass filter 99 extracts only the DC component and the frequency component of f L , and further, the lock-in amplifier 7
In 3, the amplitude and phase of the frequency component of f L are finally extracted using the rectangular wave signal of frequency f L output from the oscillator 69 as a reference signal. From this amplitude and phase, sample 5
The amplitude a and the phase θ of the minute displacement on one surface are obtained. Further, the amplitude a and the phase θ are the modulation frequencies f
It has thermal and elastic information within the thermal diffusion region V th defined by L. Therefore, if there is an internal defect such as a crack in the thermal diffusion region V th , the amplitude a and the phase θ change and the existence thereof can be known. The movement signal of the XY stage 52 and the output signal from the lock-in amplifier 73 are processed by the computer 74, and the photoacoustic signal at each point on the sample 51 is monitored by the monitor TV.
It is output as a two-dimensional photoacoustic image on 75. Further, if the frequency f L of the modulation signal output from the oscillator 69 is controlled by the computer 74, various modulation frequencies can be set, and internal information at various depths of the sample 51 can be detected.

【0039】ここで例えば、試料が光学的に透明でかつ
熱的に薄い場合、図6に示すように、光音響信号の信号
強度a(fL)は励起光の強度変調周波数fLに逆比例する
という周波数特性110を持つ。また、図7に示すよう
に、マッハツェンダ干渉光学系302の検出感度b
(fL)は表面変位の変動周波数(励起光の強度変調周波
数)fLに対し、√fLに逆比例するという周波数特性1
11を持つ。従って、従来の光音響信号検出装置では、
励起光の強度変調周波数fLを色々変化させて、試料内
部の様々な深さの欠陥を検出した場合、検出された光音
響信号から欠陥の大きさを判別しようとしても、光音響
信号の検出感度が変調周波数に応じて様々に変化するた
め、欠陥の大きさの定量的な把握が困難である。そこ
で、本実施例では、以下の手段により、この課題を解決
している。まず初めに、光音響信号及び干渉計の各変調
周波数特性を予め各試料ごとに理論的あるいは実験的に
求めておく。今の場合、最終的に得られる光音響信号の
信号強度は上記のように、変調周波数fLの−3/2乗
((−1)+(−1/2))に比例するので、各変調周
波数における検出感度を一定にするには、変調周波数特
性の逆数である変調周波数fLの3/2乗に比例して、
励起光の強度Ieを変化させればよい。励起光の強度Ie
を変化させる方法として、本実施例では図8に示すよう
に、発振器69から出力される図2(b)に示す周波数
Lの矩形波101の振幅VMを変化させて、音響光学変
調素子83から出力される一次回折光85、即ち、励起
光の強度Ieを変化させる方法を用いている。従って、
変調周波数fLを色々変えて光音響信号を検出する時
は、計算機74の制御により変調周波数fLの3/2乗
に比例して発振器69から出力される図2(b)に示す
周波数fLの矩形波101の振幅VMを変化させ、さらに
同図(c)に示す変調信号102の振幅VMを変化させ
る。その結果、図9に示すように、各変調周波数ごとに
変調周波数fLの3/2乗に比例して励起光85(9
2)の強度Ieを変化させることができ、最終的に図1
0に示すように光音響信号の信号強度Iが各変調周波数
において一定となり、検出感度の変調周波数特性を補正
することができる。
Here, for example, when the sample is optically transparent and thermally thin, as shown in FIG. 6, the signal intensity a (f L ) of the photoacoustic signal is inverse to the intensity modulation frequency f L of the excitation light. It has a frequency characteristic 110 of being proportional. Further, as shown in FIG. 7, the detection sensitivity b of the Mach-Zehnder interference optical system 302
(f L ) is a frequency characteristic 1 that is inversely proportional to √ f L with respect to the fluctuating frequency of the surface displacement (excitation light intensity modulation frequency) f L.
Have 11. Therefore, in the conventional photoacoustic signal detection device,
When the intensity modulation frequency f L of the excitation light is variously changed to detect defects at various depths inside the sample, even if an attempt is made to determine the size of the defect from the detected photoacoustic signal, the photoacoustic signal is detected. Since the sensitivity changes variously depending on the modulation frequency, it is difficult to quantitatively grasp the size of the defect. Therefore, in this embodiment, this problem is solved by the following means. First, the modulation frequency characteristics of the photoacoustic signal and the interferometer are obtained in advance theoretically or experimentally for each sample. In this case, the signal intensity of the finally obtained photoacoustic signal is proportional to the modulation frequency f L −3/2 ((−1) + (− 1/2)), as described above. In order to make the detection sensitivity at the modulation frequency constant, in proportion to the 3/2 power of the modulation frequency f L which is the reciprocal of the modulation frequency characteristic,
The intensity I e of the excitation light may be changed. Excitation light intensity I e
In the present embodiment, as shown in FIG. 8, the amplitude V M of the rectangular wave 101 of the frequency f L shown in FIG. A method of changing the intensity I e of the first-order diffracted light 85 output from 83, that is, the excitation light is used. Therefore,
When the photoacoustic signal is detected by changing the modulation frequency f L variously, the frequency f shown in FIG. 2B output from the oscillator 69 in proportion to the 3/2 power of the modulation frequency f L under the control of the computer 74. The amplitude V M of the L rectangular wave 101 is changed, and further the amplitude V M of the modulated signal 102 shown in FIG. As a result, as shown in FIG. 9, the excitation light 85 in proportion to the 3/2 power of the modulation frequency f L for each modulation frequency (9
The intensity I e of 2) can be changed, and finally, as shown in FIG.
As shown by 0, the signal intensity I of the photoacoustic signal becomes constant at each modulation frequency, and the modulation frequency characteristic of the detection sensitivity can be corrected.

【0040】本実施例によれば、励起光の強度変調周波
数によらず常に光音響信号の検出感度が一定となるた
め、変調周波数を変えて試料の様々な深さの欠陥を検出
した場合、検出された光音響信号から欠陥の大きさを定
量的に判別することが可能となると共に、試料の表面及
び内部情報の安定検出、また変調周波数を変えて検出し
た試料の様々な深さの内部情報の定量的解析が可能とな
る。
According to this embodiment, the detection sensitivity of the photoacoustic signal is always constant regardless of the intensity modulation frequency of the excitation light. Therefore, when the modulation frequency is changed and defects of various depths are detected, It becomes possible to quantitatively determine the size of the defect from the detected photoacoustic signal, stable detection of the surface and internal information of the sample, and the inside of various depths of the sample detected by changing the modulation frequency. It enables quantitative analysis of information.

【0041】また、本実施例によれば以下のような大き
な効果がある。例えば図11に示すように、光音響信号
の信号強度a(fL)の周波数特性が110であるのに対
し、非光学的雑音、例えば、装置のステージの振動雑音
等の周波数特性が130のようである場合、変調周波数
LNにおいて、光音響信号a(fLN)は雑音n(fLN)より
も小さくなり、検出が不可能となってしまう。このよう
な場合でも、本実施例によれば、励起光の強度Ieを変
化させ、特にfLN付近で光音響信号強度が増加し、かつ
110pのように変調周波数fLに対し一定となるよう
に調節すれば、非光学的雑音強度n(fLN)はそのままで
光音響信号強度a(fLN)だけを増加させることができ、
変調周波数fLNにおいて、光音響信号a(fLN)の検出が
可能となる。
Further, according to this embodiment, the following great effects are obtained. For example, as shown in FIG. 11, the frequency characteristic of the signal intensity a (f L ) of the photoacoustic signal is 110, whereas the frequency characteristic of non-optical noise, for example, vibration noise of the stage of the device is 130. If so, at the modulation frequency f LN , the photoacoustic signal a (f LN ) becomes smaller than the noise n (f LN ) and detection becomes impossible. Even in such a case, according to the present embodiment, the intensity I e of the excitation light is changed, the photoacoustic signal intensity increases particularly near f LN , and becomes constant with respect to the modulation frequency f L like 110 p. Adjustment, it is possible to increase only the photoacoustic signal intensity a (f LN ) while maintaining the non-optical noise intensity n (f LN ),
The photoacoustic signal a (f LN ) can be detected at the modulation frequency f LN .

【0042】また、本実施例では、励起光の強度Ie
変化させる手段として、励起光の強度変調用に用いてい
る音響光学変調素子83の変調信号102の振幅VM
変化させる方法を採用しているので、従来の光学系がそ
のまま使えるという効果がある。
Further, in this embodiment, as a means for changing the intensity I e of the excitation light, a method of changing the amplitude V M of the modulation signal 102 of the acousto-optic modulator 83 used for intensity modulation of the excitation light is used. Since it is adopted, there is an effect that the conventional optical system can be used as it is.

【0043】また、本実施例によれば、励起光学系と干
渉光学系を共焦点光学系として構成することにより、試
料上及び干渉光検出手段上に、不要な高次回折光成分の
存在しない理想的なピーク部をもつスポット光を形成す
ることができ、さらに対物レンズ48内で発生した迷光
や試料上の透明薄膜内で発生した干渉成分やあるいは試
料表面の微小な凹凸により発生した高次回折光成分を遮
光することができる。よって、光音響信号の横方向分解
能、検出感度及び信号SN比が向上する。
Further, according to this embodiment, by constructing the excitation optical system and the interference optical system as a confocal optical system, an ideal high-order diffracted light component does not exist on the sample and the interference light detection means. High-order diffracted light generated by stray light generated in the objective lens 48, interference components generated in the transparent thin film on the sample, or minute unevenness on the sample surface can be formed. The components can be shielded from light. Therefore, the lateral resolution, detection sensitivity, and signal-to-noise ratio of the photoacoustic signal are improved.

【0044】本発明の第二の実施例を図12及び図13
に基づいて説明する。図12は第二の実施例における光
音響検出光学系を示すものである。本光学系は、励起光
学系303、ヘテロダイン形マッハツェンダ干渉光学系
302及び信号処理系300から成る。基本構成とその
機能は図1に示す第一の実施例における光音響検出光学
系と同じであるので、詳細な説明は省略する。第一の実
施例では、図2(c)に示す変調信号102の振幅VM
を変化させて音響光学変調素子83から出力される一次
回折光85即ち変調周波数fLの励起光の強度Ieを変化
させることにより、検出される光音響信号強度Iの変調
周波数特性を補正している。これに対し、第二の実施例
では、図12に示すように、励起光学系303の音響光
学変調素子83の手前に、図13(b)の123に示す
ように、一方向に連続的な透過率変化を有する連続可変
形NDフィルタ120を挿入し、これをパルスモータ及
びクランク機構(図示せず)から成る駆動機構121と
コントローラ122により、矢印方向に微動させること
により励起光の強度Ieを変化させる構成としている。
即ち、変調周波数fLを色々変えて光音響信号を検出す
る時は、各変調周波数ごとにこの連続可変形NDフィル
タ120を微動することにより、図9に示すように変調
周波数fLの3/2乗に比例して励起光の強度Ieを変化
させ、光音響信号の変調周波数特性を補正してやれば、
最終的に第一の実施例と同様、図10に示すように光音
響信号(信号強度I)、即ち、検出感度の変調周波数特
性を一定にすることができる。
Second Embodiment of the Present Invention FIGS. 12 and 13
It will be described based on. FIG. 12 shows a photoacoustic detection optical system in the second embodiment. This optical system includes an excitation optical system 303, a heterodyne type Mach-Zehnder interference optical system 302, and a signal processing system 300. The basic configuration and the function thereof are the same as those of the photoacoustic detection optical system in the first embodiment shown in FIG. 1, so detailed description will be omitted. In the first embodiment, the amplitude V M of the modulation signal 102 shown in FIG.
By changing the intensity I e of the primary diffracted light 85 output from the acousto-optic modulator 83, that is, the excitation light of the modulation frequency f L , to correct the modulation frequency characteristic of the detected photoacoustic signal intensity I. ing. On the other hand, in the second embodiment, as shown in FIG. 12, in front of the acousto-optic modulator 83 of the excitation optical system 303, as shown by 123 in FIG. A continuously variable ND filter 120 having a change in transmittance is inserted, and a driving mechanism 121 including a pulse motor and a crank mechanism (not shown) and a controller 122 finely move the ND filter 120 in the arrow direction to excite the intensity I e of the excitation light. Is changed.
That is, when detecting the photoacoustic signal by variously changing the modulation frequency f L, by fine movement of the continuous-variable ND filter 120 for each modulation frequency, the modulation frequency f L as shown in FIG. 9 3 / If the intensity I e of the excitation light is changed in proportion to the square and the modulation frequency characteristic of the photoacoustic signal is corrected,
Finally, similarly to the first embodiment, as shown in FIG. 10, the photoacoustic signal (signal intensity I), that is, the modulation frequency characteristic of the detection sensitivity can be made constant.

【0045】本実施例によれば、第一の実施例と同様、
励起光の変調周波数によらず常に光音響信号の検出感度
が一定となるため、変調周波数を変えて試料の様々な深
さの欠陥を検出した場合、検出された光音響信号から欠
陥の大きさを定量的に判別することが可能となると共
に、試料の表面及び内部情報の安定検出、また変調周波
数を変えて検出した試料の様々な深さの内部情報の定量
的解析が可能となる。
According to this embodiment, as in the first embodiment,
Since the detection sensitivity of the photoacoustic signal is always constant regardless of the modulation frequency of the excitation light, when the defects of various depths in the sample are detected by changing the modulation frequency, the size of the defect is detected from the detected photoacoustic signal. It becomes possible to quantitatively discriminate among the samples, and it is possible to stably detect the surface and internal information of the sample, and to quantitatively analyze the internal information of various depths of the sample detected by changing the modulation frequency.

【0046】また、本実施例によれば、第一の実施例と
同様、以下のような大きな効果がある。例えば図11に
示すように、光音響信号の信号強度a(fL)の周波数特
性が110であるのに対し、非光学的雑音、例えば装置
のステージの振動雑音等の周波数特性が130のようで
ある場合、変調周波数fLNにおいて、光音響信号a
(fLN)は雑音n(fLN)よりも小さくなり、検出が不可能
となってしまう。このような場合も、本実施例によれ
ば、励起光の強度Ieを変化させ、光音響信号の信号強
度を110pのように変調周波数fLに対し一定となる
ように調節すれば、変調周波数fLNでも、光音響信号a
(fLN)の検出が可能となる。
Further, according to this embodiment, similar to the first embodiment, the following great effects are obtained. For example, as shown in FIG. 11, the frequency characteristic of the signal intensity a (f L ) of the photoacoustic signal is 110, while the frequency characteristic of non-optical noise, such as vibration noise of the stage of the device, is 130. , The photoacoustic signal a at the modulation frequency f LN
(f LN ) becomes smaller than noise n (f LN ) and detection becomes impossible. Even in such a case, according to the present embodiment, if the intensity I e of the excitation light is changed and the signal intensity of the photoacoustic signal is adjusted to be constant with respect to the modulation frequency f L like 110 p, the modulation is performed. Even at the frequency f LN , the photoacoustic signal a
(f LN ) can be detected.

【0047】また、本実施例では、励起光の強度Ie
変化させる手段として、励起光学系303の光路中に別
途設けた連続可変形NDフィルタ120を用いているの
で、発振器69において図2(b)に示す周波数fL
矩形波101の振幅VMの制御が不要となるため、回路
構成が容易になるという効果がある。
Further, in this embodiment, since the continuously variable ND filter 120 separately provided in the optical path of the excitation optical system 303 is used as a means for changing the intensity I e of the excitation light, the oscillator 69 shown in FIG. Since it is not necessary to control the amplitude V M of the rectangular wave 101 having the frequency f L shown in (b), there is an effect that the circuit configuration becomes easy.

【0048】また、本実施例によれば、第一の実施例と
同様、励起光学系と干渉光学系を共焦点光学系として構
成することにより、試料上及び干渉光検出手段上に、不
要な高次回折光成分の存在しない理想的なピーク部をも
つスポット光を形成することができ、さらに対物レンズ
48内で発生した迷光や試料上の透明薄膜内で発生した
干渉成分や、あるいは、試料表面の微小な凹凸により発
生した高次回折光成分を遮光することができる。よっ
て、光音響信号の横方向分解能、検出感度及び信号SN
比が向上する。
Further, according to the present embodiment, as in the first embodiment, by constructing the excitation optical system and the interference optical system as a confocal optical system, it is unnecessary on the sample and the interference light detecting means. It is possible to form a spot light having an ideal peak portion in which a higher-order diffracted light component does not exist, and further, stray light generated in the objective lens 48, an interference component generated in the transparent thin film on the sample, or the sample surface. It is possible to block the high-order diffracted light component generated by the minute unevenness of. Therefore, the lateral resolution of the photoacoustic signal, the detection sensitivity, and the signal SN
The ratio is improved.

【0049】本発明の第三の実施例を図14に基づいて
説明する。図14は第三の実施例における光音響検出光
学系を示すものである。本光学系は、励起光学系30
4、ヘテロダイン形マッハツェンダ干渉光学系302及
び信号処理系305からなる。基本構成とその機能は図
1に示す第一の実施例における光音響検出光学系と同じ
であるので、詳細な説明は省略する。第一の実施例で
は、図2(c)に示す変調信号102の振幅VMを変化
させて音響光学変調素子83から出力される一次回折光
85即ち励起光の強度Ieを変化させることにより、検
出される光音響信号強度Iの変調周波数特性を補正して
いる。これに対し、第三の実施例では、光音響信号強度
Iの変調周波数特性の補正を、励起光の強度Ieの調節
で行うのではなく、信号処理系305に新たに設けたア
ナログ乗算器124により行う。即ち、変調周波数fL
を色々変えて光音響信号を検出する時は、各変調周波数
ごとに計算機74からアナログ乗算器124に図9に対
応した補正用の電圧信号を入力し、検出した干渉強度信
号に掛けあわせてやれば、最終的に第一の実施例と同
様、図10に示すように光音響信号(信号強度I)、即
ち検出感度の変調周波数特性を一定にすることができ
る。
A third embodiment of the present invention will be described with reference to FIG. FIG. 14 shows a photoacoustic detection optical system in the third embodiment. This optical system is an excitation optical system 30.
4. A heterodyne type Mach-Zehnder interference optical system 302 and a signal processing system 305. The basic configuration and the function thereof are the same as those of the photoacoustic detection optical system in the first embodiment shown in FIG. 1, so detailed description will be omitted. In the first embodiment, the amplitude V M of the modulation signal 102 shown in FIG. 2C is changed to change the intensity I e of the first-order diffracted light 85 output from the acousto-optic modulator 83, that is, the excitation light. , The modulation frequency characteristic of the detected photoacoustic signal intensity I is corrected. On the other hand, in the third embodiment, the modulation frequency characteristic of the photoacoustic signal intensity I is not corrected by adjusting the intensity I e of the excitation light, but an analog multiplier newly provided in the signal processing system 305. 124. That is, the modulation frequency f L
When the photoacoustic signal is detected by changing various values, input the correction voltage signal corresponding to FIG. 9 from the computer 74 to the analog multiplier 124 for each modulation frequency, and multiply it by the detected interference intensity signal. For example, finally, as in the first embodiment, the photoacoustic signal (signal intensity I), that is, the modulation frequency characteristic of the detection sensitivity can be made constant as shown in FIG.

【0050】本実施例によれば、第一の実施例と同様、
励起光の変調周波数によらず常に光音響信号の検出感度
が一定となるため、変調周波数を変えて試料の様々な深
さの欠陥を検出した場合、検出された光音響信号から欠
陥の大きさを定量的に判別することが可能となると共
に、試料の表面及び内部情報の安定検出、また変調周波
数を変えて検出した試料の様々な深さの内部情報の定量
的解析が可能となる。
According to this embodiment, as in the first embodiment,
Since the detection sensitivity of the photoacoustic signal is always constant regardless of the modulation frequency of the excitation light, when the defects of various depths in the sample are detected by changing the modulation frequency, the size of the defect is detected from the detected photoacoustic signal. It becomes possible to quantitatively discriminate among the samples, and it is possible to stably detect the surface and internal information of the sample, and to quantitatively analyze the internal information of various depths of the sample detected by changing the modulation frequency.

【0051】また、本実施例では、光音響信号強度Iの
変調周波数特性を補正する手段として、信号処理系30
5に設けたアナログ乗算器124を用いて電気的に行っ
ているので、励起光学系304に励起光強度の制御機能
を設ける必要がなくなり、光学系の安定度が増すという
効果がある。
In this embodiment, the signal processing system 30 is used as means for correcting the modulation frequency characteristic of the photoacoustic signal intensity I.
Since it is electrically performed using the analog multiplier 124 provided in FIG. 5, there is no need to provide the pumping light intensity control function in the pumping optical system 304, and the stability of the optical system is increased.

【0052】また、本実施例によれば、第一の実施例と
同様、励起光学系と干渉光学系を共焦点光学系として構
成することにより、試料上及び干渉光検出手段上に、不
要な高次回折光成分の存在しない理想的なピーク部をも
つスポット光を形成することができ、さらに対物レンズ
48内で発生した迷光や試料上の透明薄膜内で発生した
干渉成分やあるいは試料表面の微小な凹凸により発生し
た高次回折光成分を遮光することができる。よって、光
音響信号の横方向分解能、検出感度及び信号SN比が向
上する。
Further, according to the present embodiment, as in the first embodiment, by constructing the excitation optical system and the interference optical system as a confocal optical system, it is unnecessary on the sample and the interference light detecting means. It is possible to form a spot light having an ideal peak portion in which a high-order diffracted light component does not exist, and further, stray light generated in the objective lens 48, an interference component generated in the transparent thin film on the sample, or a minute amount on the sample surface. Higher-order diffracted light components generated by such unevenness can be shielded. Therefore, the lateral resolution, detection sensitivity, and signal-to-noise ratio of the photoacoustic signal are improved.

【0053】本発明の第四の実施例を図15及び図16
に基づいて説明する。図15は第四の実施例における光
音響検出光学系を示すものである。本光学系は、励起光
学系306と光音響信号を検出するためのPZT素子1
26を含めた信号処理系307からなる。励起光学系3
06の構成は、図1に示す第一の実施例における励起光
学系301と同じであるので、詳細な説明は省略する。
尚、ダイクロイックプリズム93の代わりにミラー12
5を用いている。第一から第三の実施例では、光音響信
号の検出にヘテロダイン形マッハツェンダ干渉光学系を
用いているが、本実施例では、試料51の裏面に装着し
たPZT素子126を用いている。PZT素子126か
らの出力電圧はプリアンプ127で増幅された後、ロッ
クインアンプ73に送られる。ロックインアンプ73で
は、発振器69から出力される周波数fLの矩形波信号
を参照信号として、PZT素子126の出力信号の中か
らfLの周波数成分の振幅と位相が取り出される。この
振幅及び位相から試料51表面の微小変位の振幅a及び
位相θが求まるわけである。また、この振幅a及び位相
θが、その変調周波数fLで定義される熱拡散領域Vth
内の熱的及び弾性的情報をもつ。従って、熱拡散領域V
th内にクラック等の内部欠陥があれば、振幅a及び位相
θが変化し、その存在を知ることができる。第一の実施
例と同様、XYステージ52の移動信号とロックインア
ンプ73からの出力信号は計算機74で処理され、試料
51上の各点における光音響信号がモニタTV75上に
二次元光音響画像として出力される。また、発振器69
から出力される変調信号の周波数fLを計算機74で制
御すれば、様々な変調周波数に設定することができ、試
料51の様々な深さの内部情報を検出することができ
る。
Fourth Embodiment of the Present Invention FIGS. 15 and 16
It will be described based on. FIG. 15 shows a photoacoustic detection optical system in the fourth embodiment. This optical system includes an excitation optical system 306 and a PZT element 1 for detecting a photoacoustic signal.
It includes a signal processing system 307 including 26. Excitation optical system 3
Since the configuration of 06 is the same as that of the excitation optical system 301 in the first embodiment shown in FIG. 1, detailed description thereof will be omitted.
The mirror 12 is used instead of the dichroic prism 93.
5 is used. In the first to third embodiments, the heterodyne type Mach-Zehnder interference optical system is used to detect the photoacoustic signal, but in this embodiment, the PZT element 126 mounted on the back surface of the sample 51 is used. The output voltage from the PZT element 126 is amplified by the preamplifier 127 and then sent to the lock-in amplifier 73. The lock-in amplifier 73 extracts the amplitude and phase of the frequency component of f L from the output signal of the PZT element 126 using the rectangular wave signal of the frequency f L output from the oscillator 69 as a reference signal. From the amplitude and the phase, the amplitude a and the phase θ of the minute displacement on the surface of the sample 51 can be obtained. Further, the amplitude a and the phase θ are the thermal diffusion region V th defined by the modulation frequency f L.
It has thermal and elastic information inside. Therefore, the thermal diffusion region V
If there is an internal defect such as a crack within th , the amplitude a and the phase θ change and the existence thereof can be known. Similar to the first embodiment, the movement signal of the XY stage 52 and the output signal from the lock-in amplifier 73 are processed by the computer 74, and the photoacoustic signal at each point on the sample 51 is displayed on the monitor TV 75 as a two-dimensional photoacoustic image. Is output as. Also, the oscillator 69
By controlling the frequency f L of the modulation signal output from the computer 74, it is possible to set various modulation frequencies, and it is possible to detect internal information at various depths of the sample 51.

【0054】本実施例では、光音響信号を検出するため
にPZT素子126を用いているため、図6に示す光音
響信号強度a(fL)の変調周波数特性110と図16に
示すPZT素子の感度p(fL)の変調周波数特性128
の両者を補正している。補正方法は、第一の実施例と同
様、まず初めに、予め図6に示す光音響信号強度a
(fL)の変調周波数特性110と図16に示すPZT素
子の感度p(fL)の変調周波数特性128を理論的ある
いは実験的に測定しておく。次に、図10に示すように
各変調周波数における検出感度が一定となるように、測
定した各周波数特性の逆数(補正係数)を計算機74で
求める。次に、発振器69から出力される図2(b)に
示す変調信号101の振幅VMをこの補正係数に基づい
て計算機74で制御し、同図(c)に示す変調信号10
2の振幅VMを変化させることにより、音響光学変調素
子83から出力される一次回折光85、即ち、励起光の
強度Ieを変化させ、検出される光音響信号強度Iの変
調周波数特性を補正する。
In this embodiment, since the PZT element 126 is used to detect the photoacoustic signal, the modulation frequency characteristic 110 of the photoacoustic signal intensity a (f L ) shown in FIG. 6 and the PZT element shown in FIG. Modulation frequency characteristic of sensitivity p (f L ) of 128
Both are corrected. As in the first embodiment, the correction method is as follows: first, the photoacoustic signal intensity a shown in FIG.
(f L) is measured in advance a modulation frequency characteristic 128 theoretically or experimentally in the sensitivity of the PZT element shown to the modulation frequency characteristics 110 and FIG. 16 p (f L) of. Next, as shown in FIG. 10, the computer 74 obtains the reciprocal (correction coefficient) of each measured frequency characteristic so that the detection sensitivity at each modulation frequency becomes constant. Next, the amplitude V M of the modulation signal 101 shown in FIG. 2B output from the oscillator 69 is controlled by the computer 74 based on this correction coefficient, and the modulation signal 10 shown in FIG.
By changing the amplitude V M of 2, the intensity I e of the first-order diffracted light 85 output from the acousto-optic modulator 83, that is, the excitation light is changed to obtain the modulation frequency characteristic of the detected photoacoustic signal intensity I. to correct.

【0055】本実施例によれば、第一の実施例と同様、
励起光の変調周波数によらず常に光音響信号の検出感度
が一定となるため、変調周波数を変えて試料の様々な深
さの欠陥を検出した場合、検出された光音響信号から欠
陥の大きさを定量的に判別することが可能となると共
に、試料の表面及び内部情報の安定検出、また変調周波
数を変えて検出した試料の様々な深さの内部情報の定量
的解析が可能となる。
According to this embodiment, as in the first embodiment,
Since the detection sensitivity of the photoacoustic signal is always constant regardless of the modulation frequency of the excitation light, when the defects of various depths in the sample are detected by changing the modulation frequency, the size of the defect is detected from the detected photoacoustic signal. It becomes possible to quantitatively discriminate among the samples, and it is possible to stably detect the surface and internal information of the sample, and to quantitatively analyze the internal information of various depths of the sample detected by changing the modulation frequency.

【0056】また、本実施例によれば、第一の実施例と
同様、以下のような大きな効果がある。例えば図11に
示すように、光音響信号の信号強度a(fL)の周波数特
性が110であるのに対し、非光学的雑音、例えば装置
のステージの振動雑音等の周波数特性が130のようで
ある場合、変調周波数fLNで、光音響信号a(fLN)は雑
音n(fLN)よりも小さくなり、検出が不可能となってし
まう。このような場合も、本実施例によれば、励起光の
強度Ieを変化させ、光音響信号の信号強度を110p
のように変調周波数fLに対し一定となるように調節す
れば、変調周波数fLNでも、光音響信号a(fLN)の検出
が可能となる。
Further, according to this embodiment, similar to the first embodiment, the following great effects are obtained. For example, as shown in FIG. 11, the frequency characteristic of the signal intensity a (f L ) of the photoacoustic signal is 110, while the frequency characteristic of non-optical noise, such as vibration noise of the stage of the device, is 130. In this case, at the modulation frequency f LN , the photoacoustic signal a (f LN ) becomes smaller than the noise n (f LN ) and detection becomes impossible. Even in such a case, according to the present embodiment, the intensity I e of the excitation light is changed to change the signal intensity of the photoacoustic signal to 110 p.
By adjusting to the modulation frequency f L as to be constant, even modulation frequency f LN, it is possible to detect the photoacoustic signal a (f LN).

【0057】また、本実施例では、励起光の強度Ie
変化させる手段として、励起光の強度変調用に用いてい
る音響光学変調素子83の変調信号102の振幅VM
変化させる方法を採用しているので、従来の光学系がそ
のまま使えるという効果がある。
Further, in this embodiment, as a means for changing the intensity I e of the excitation light, a method of changing the amplitude V M of the modulation signal 102 of the acousto-optic modulator 83 used for intensity modulation of the excitation light is used. Since it is adopted, there is an effect that the conventional optical system can be used as it is.

【0058】また、本実施例によれば、光音響信号の検
出にPZT素子を用いているので、光学系が簡略化さ
れ、光軸調整等が容易になる、あるいは光学系の安定度
が増すという効果がある。
Further, according to the present embodiment, since the PZT element is used for detecting the photoacoustic signal, the optical system is simplified and the optical axis adjustment is facilitated, or the stability of the optical system is increased. There is an effect.

【0059】また、本実施例によれば、励起光学系を共
焦点光学系として構成することにより、不要な高次回折
光成分の存在しない理想的なピーク部を有するスポット
光を試料上に形成することができるため、光音響信号の
横方向分解能、検出感度及び信号SN比が向上する。
Further, according to the present embodiment, by forming the excitation optical system as a confocal optical system, spot light having an ideal peak portion free of unnecessary higher-order diffracted light components is formed on the sample. Therefore, the lateral resolution of the photoacoustic signal, the detection sensitivity, and the signal-to-noise ratio are improved.

【0060】[0060]

【発明の効果】本発明によれば、光音響信号検出装置に
おいて、励起光の変調周波数によらず常に光音響信号の
検出感度が一定となるため、変調周波数を変えて試料の
様々な深さの欠陥を検出した場合、検出された光音響信
号から欠陥の大きさを定量的に判別することが可能とな
ると共に、試料の表面及び内部情報の安定検出、また変
調周波数を変えて検出した試料の様々な深さの内部情報
の定量的解析が可能となる。
According to the present invention, in the photoacoustic signal detecting apparatus, the detection sensitivity of the photoacoustic signal is always constant regardless of the modulation frequency of the excitation light, so that the modulation frequency is changed to various depths of the sample. When a defect of the sample is detected, it becomes possible to quantitatively determine the size of the defect from the detected photoacoustic signal, the surface of the sample and internal information are stably detected, and the sample detected by changing the modulation frequency is detected. It enables quantitative analysis of internal information at various depths.

【0061】また、励起光を試料上に集光する励起手段
と、光音響効果あるいは光熱効果により生じた試料表面
の微小変位(熱歪)を検出する光干渉検出手段とを、共
焦点光学系として構成することにより、試料上及び干渉
光検出手段上に、不要な高次回折光成分の存在しない理
想的なピーク部をもつスポット光を形成することがで
き、光音響信号の横方向分解能、検出感度及び信号SN
比が向上する。
Further, a confocal optical system is provided with an exciting means for collecting the exciting light on the sample and an optical interference detecting means for detecting a minute displacement (thermal strain) of the sample surface caused by the photoacoustic effect or the photothermal effect. With such a configuration, spot light having an ideal peak portion free of unnecessary higher-order diffracted light components can be formed on the sample and the interference light detection means, and lateral resolution and detection of the photoacoustic signal can be performed. Sensitivity and signal SN
The ratio is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例における光音響検出光学
系を示すブロック図、
FIG. 1 is a block diagram showing a photoacoustic detection optical system in a first embodiment of the present invention,

【図2】音響光学変調素子へ入力される変調信号の波形
図、
FIG. 2 is a waveform diagram of a modulation signal input to an acousto-optic modulator,

【図3】集光スポットの高次回折光成分が遮光される様
子を示す説明図、
FIG. 3 is an explanatory view showing a state in which a high-order diffracted light component of a focused spot is shielded,

【図4】第一から第三の実施例の干渉計における入射光
の偏光方向を示す説明図、
FIG. 4 is an explanatory view showing polarization directions of incident light in the interferometers of the first to third embodiments,

【図5】位相検波回路のブロック図、FIG. 5 is a block diagram of a phase detection circuit,

【図6】光音響信号強度の変調周波数特性図、FIG. 6 is a modulation frequency characteristic diagram of photoacoustic signal intensity,

【図7】干渉光学系の検出感度の変調周波数特性図、FIG. 7 is a modulation frequency characteristic diagram of detection sensitivity of the interference optical system,

【図8】変調信号の振幅と音響光学変調素子から出力さ
れる一次回折光強度との関係を示す特性図、
FIG. 8 is a characteristic diagram showing the relationship between the amplitude of a modulation signal and the intensity of first-order diffracted light output from an acousto-optic modulator.

【図9】光音響信号の変調周波数特性を補正するための
励起光強度の変調周波数特性図、
FIG. 9 is a modulation frequency characteristic diagram of the excitation light intensity for correcting the modulation frequency characteristic of the photoacoustic signal,

【図10】感度補正後の光音響信号強度の変調周波数特
性図、
FIG. 10 is a modulation frequency characteristic diagram of photoacoustic signal intensity after sensitivity correction,

【図11】感度補正前後の光音響信号強度の変調周波数
特性と非光学的雑音の変調周波数特性図、
FIG. 11 is a modulation frequency characteristic diagram of photoacoustic signal intensity before and after sensitivity correction and a modulation frequency characteristic diagram of non-optical noise.

【図12】本発明の第二の実施例における光音響検出光
学系を示すブロック図、
FIG. 12 is a block diagram showing a photoacoustic detection optical system according to a second embodiment of the invention.

【図13】第二の実施例における連続可変形NDフィル
タの透過率分布図、
FIG. 13 is a transmittance distribution diagram of the continuously variable ND filter according to the second embodiment,

【図14】本発明の第三の実施例における光音響検出光
学系を示すブロック図、
FIG. 14 is a block diagram showing a photoacoustic detection optical system according to a third embodiment of the invention.

【図15】本発明の第四の実施例における光音響検出光
学系を示すブロック図、
FIG. 15 is a block diagram showing a photoacoustic detection optical system according to a fourth embodiment of the present invention.

【図16】第四の実施例におけるPZT素子検出感度の
変調周波数特性図、
FIG. 16 is a modulation frequency characteristic diagram of PZT element detection sensitivity in the fourth embodiment;

【図17】従来の光音響検出光学系を説明するためのブ
ロック図、
FIG. 17 is a block diagram for explaining a conventional photoacoustic detection optical system,

【図18】光音響効果の原理図。FIG. 18 is a principle diagram of a photoacoustic effect.

【符号の説明】[Explanation of symbols]

1,8…レーザ、81…Arレーザ、31…He−Ne
レーザ、2,76,83…音響光学変調素子、42,5
7,90…ピンホール、5,48…対物レンズ、13,
67…光電変換素子、126…PZT素子、15,69
…発振器、72…位相検波回路、120…連続可変形N
Dフィルタ、124…アナログ乗算器、16,73…ロ
ックインアンプ、17,74…計算機、7,51…試
料。
1, 8 ... Laser, 81 ... Ar laser, 31 ... He-Ne
Laser, 2, 76, 83 ... Acousto-optic modulator, 42, 5
7, 90 ... Pinhole, 5, 48 ... Objective lens, 13,
67 ... Photoelectric conversion element, 126 ... PZT element, 15, 69
... Oscillator, 72 ... Phase detection circuit, 120 ... Continuous variable type N
D filter, 124 ... Analog multiplier, 16, 73 ... Lock-in amplifier, 17, 74 ... Calculator, 7, 51 ... Sample.

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】光源からの光を所望の周波数で強度変調
し、強度変調した光を試料上に集光し、試料表面あるい
は内部で光音響効果あるいは光熱効果を発生させ、光音
響効果あるいは光熱効果によって生じた試料表面の熱歪
を検出し、検出した検出信号の中から強度変調周波数の
周波数成分を検出し、周波数成分より変調周波数に応じ
た試料の表面及び内部情報を抽出する光音響信号検出方
法において、前記検出信号の検出感度が各変調周波数に
対して一定となるように、各変調周波数に応じて検出感
度を実効的に補正することを特徴とする光音響信号検出
方法。
Claim: What is claimed is: 1. A light source is intensity-modulated at a desired frequency, the intensity-modulated light is condensed on a sample, and a photoacoustic effect or a photothermal effect is generated on or inside the sample. A photoacoustic signal that detects the thermal strain on the sample surface caused by the effect, detects the frequency component of the intensity modulation frequency from the detected signal, and extracts the sample surface and internal information according to the modulation frequency from the frequency component. In the detection method, the detection sensitivity is effectively corrected according to each modulation frequency so that the detection sensitivity of the detection signal becomes constant for each modulation frequency.
【請求項2】請求項1において、前記検出感度の補正
は、検出感度が各変調周波数に対して一定となるよう
に、前記強度変調した光の強度を各変調周波数に応じて
調節する光音響信号検出方法。
2. The photoacoustic according to claim 1, wherein the detection sensitivity is corrected by adjusting the intensity of the intensity-modulated light according to each modulation frequency so that the detection sensitivity becomes constant for each modulation frequency. Signal detection method.
【請求項3】請求項1において、前記検出感度の補正
は、検出感度が各変調周波数に対して一定となるよう
に、前記検出信号の強度を各変調周波数に応じて調節す
ることにより実行される光音響信号検出方法。
3. The correction of the detection sensitivity according to claim 1, wherein the intensity of the detection signal is adjusted according to each modulation frequency so that the detection sensitivity becomes constant for each modulation frequency. Photoacoustic signal detection method.
【請求項4】請求項1において、前記検出感度の補正
は、熱歪を検出する熱歪検出手段の変調周波数特性を含
めて検出感度が各変調周波数に対して一定となるように
実行される光音響信号検出方法。
4. The correction of the detection sensitivity according to claim 1, wherein the detection sensitivity including the modulation frequency characteristic of the thermal strain detecting means for detecting thermal strain is constant for each modulation frequency. Photoacoustic signal detection method.
【請求項5】請求項1において、前記試料表面の熱歪
は、光干渉を用いて検出する光音響信号検出方法。
5. The method for detecting a photoacoustic signal according to claim 1, wherein the thermal strain on the surface of the sample is detected by using optical interference.
【請求項6】請求項1において、前記試料表面の熱歪
は、圧電素子を用いて検出する光音響信号検出方法。
6. The method for detecting a photoacoustic signal according to claim 1, wherein the thermal strain on the surface of the sample is detected by using a piezoelectric element.
【請求項7】請求項1において、前記強度変調した光を
試料上に集光し、試料表面あるいは内部で光音響効果あ
るいは光熱効果を発生させる励起方法を共焦点光学系と
して構成する光音響信号検出方法。
7. The photoacoustic signal according to claim 1, wherein the excitation method for condensing the intensity-modulated light on a sample to generate a photoacoustic effect or a photothermal effect on the sample surface or inside is a confocal optical system. Detection method.
【請求項8】請求項5において、前記試料表面の熱歪を
検出する光干渉検出手段を共集点光学系として構成する
光音響信号検出方法。
8. The photoacoustic signal detection method according to claim 5, wherein the optical interference detection means for detecting thermal strain on the sample surface is configured as a co-focusing optical system.
【請求項9】光源と、前記光源からの光を所望の周波数
で強度変調する変調手段と、前記強度変調した光を試料
上に集光し、試料表面あるいは内部で光音響効果あるい
は光熱効果を発生させる励起手段と、前記光音響効果あ
るいは光熱効果によって生じた試料表面の熱歪を検出す
る熱歪検出手段と、前記検出した検出信号の中から前記
強度変調周波数の周波数成分を検出する周波数成分検出
手段と、前記周波数成分より変調周波数に応じた試料の
表面及び内部情報を抽出する情報抽出手段から成る光音
響信号検出装置において、前記検出信号の検出感度が各
変調周波数に対して一定となるように、各変調周波数に
応じて検出感度を実効的に補正する検出感度補正手段を
設けたことを特徴とする光音響信号検出装置。
9. A light source, a modulation means for intensity-modulating the light from the light source at a desired frequency, and the intensity-modulated light is condensed on a sample to produce a photoacoustic effect or a photothermal effect on the sample surface or inside. Excitation means for generating, thermal strain detecting means for detecting thermal strain of the sample surface caused by the photoacoustic effect or photothermal effect, and a frequency component for detecting the frequency component of the intensity modulation frequency from the detected detection signal. In a photoacoustic signal detection device comprising a detection means and an information extraction means for extracting the surface and internal information of the sample according to the modulation frequency from the frequency component, the detection sensitivity of the detection signal is constant for each modulation frequency. As described above, the photoacoustic signal detection apparatus is provided with a detection sensitivity correction unit that effectively corrects the detection sensitivity according to each modulation frequency.
【請求項10】請求項9において、前記検出感度補正手
段は、検出感度が各変調周波数に対して一定となるよう
に、強度変調した光の強度を各変調周波数に応じて調節
する光音響信号検出装置。
10. The photoacoustic signal according to claim 9, wherein the detection sensitivity correction means adjusts the intensity of the intensity-modulated light according to each modulation frequency so that the detection sensitivity becomes constant for each modulation frequency. Detection device.
【請求項11】請求項9において、前記検出感度補正手
段は、検出感度が各変調周波数に対して一定となるよう
に、前記検出信号の強度を各変調周波数に応じて調節す
る光音響信号検出装置。
11. The photoacoustic signal detection according to claim 9, wherein the detection sensitivity correction means adjusts the intensity of the detection signal according to each modulation frequency so that the detection sensitivity becomes constant for each modulation frequency. apparatus.
【請求項12】請求項9において、前記検出感度補正手
段は、熱歪を検出する熱歪検出手段の変調周波数特性を
含めて検出感度が各変調周波数に対して一定となるよう
に、感度補正する光音響信号検出装置。
12. The sensitivity correction means according to claim 9, wherein the detection sensitivity including the modulation frequency characteristic of the thermal strain detecting means for detecting thermal strain is constant for each modulation frequency. Photoacoustic signal detector.
【請求項13】請求項9において、前記熱歪検出手段
は、光干渉検出手段を用いて試料表面の熱歪を検出する
光音響信号検出装置。
13. The photoacoustic signal detecting device according to claim 9, wherein the thermal strain detecting means detects thermal strain on the surface of the sample by using optical interference detecting means.
【請求項14】請求項9において、前記熱歪検出手段
は、圧電素子を用いて試料表面の熱歪を検出する光音響
信号検出装置。
14. The photoacoustic signal detecting device according to claim 9, wherein the thermal strain detecting means detects a thermal strain on the surface of the sample by using a piezoelectric element.
【請求項15】請求項9において、前記強度変調した光
を試料上に集光し、試料表面あるいは内部で光音響効果
あるいは光熱効果を発生させる励起手段を、共焦点光学
系として構成する光音響信号検出装置。
15. The photoacoustic system according to claim 9, wherein the excitation means for condensing the intensity-modulated light on a sample to generate a photoacoustic effect or a photothermal effect on the sample surface or inside is a confocal optical system. Signal detection device.
【請求項16】請求項13において、前記試料表面の熱
歪を検出する光干渉検出手段を、共焦点光学系として構
成する光音響信号検出装置。
16. The photoacoustic signal detection device according to claim 13, wherein the optical interference detection means for detecting thermal strain on the sample surface is configured as a confocal optical system.
JP3152955A 1991-05-20 1991-06-25 Photoacoustic signal detection method and device therefor Expired - Fee Related JP3000729B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3152955A JP3000729B2 (en) 1991-06-25 1991-06-25 Photoacoustic signal detection method and device therefor
US07/886,014 US5377006A (en) 1991-05-20 1992-05-20 Method and apparatus for detecting photoacoustic signal
US07/994,150 US5479259A (en) 1991-05-20 1992-12-21 Method and apparatus for detecting photoacoustic signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3152955A JP3000729B2 (en) 1991-06-25 1991-06-25 Photoacoustic signal detection method and device therefor

Publications (2)

Publication Number Publication Date
JPH051988A true JPH051988A (en) 1993-01-08
JP3000729B2 JP3000729B2 (en) 2000-01-17

Family

ID=15551818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3152955A Expired - Fee Related JP3000729B2 (en) 1991-05-20 1991-06-25 Photoacoustic signal detection method and device therefor

Country Status (1)

Country Link
JP (1) JP3000729B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003042686A1 (en) * 2001-11-14 2003-05-22 Kabushiki Kaisha Toshiba Ultrasonograph, ultrasonic transducer, examining instrument, and ultrasonographing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009050632A1 (en) * 2007-10-16 2009-04-23 Koninklijke Philips Electronics N.V. Apparatus, systems and methods for production and integration of compact illumination schemes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003042686A1 (en) * 2001-11-14 2003-05-22 Kabushiki Kaisha Toshiba Ultrasonograph, ultrasonic transducer, examining instrument, and ultrasonographing device
EP1462799A1 (en) * 2001-11-14 2004-09-29 Kabushiki Kaisha Toshiba Ultrasonograph, ultrasonic transducer, examining instrument, and ultrasonographing device
EP1462799A4 (en) * 2001-11-14 2005-10-05 Toshiba Kk Ultrasonograph, ultrasonic transducer, examining instrument, and ultrasonographing device
US7421900B2 (en) 2001-11-14 2008-09-09 Kabushiki Kaisha Toshiba Ultrasonograph, ultrasonic transducer, examining instrument, and ultrasonographing device

Also Published As

Publication number Publication date
JP3000729B2 (en) 2000-01-17

Similar Documents

Publication Publication Date Title
US5377006A (en) Method and apparatus for detecting photoacoustic signal
JP2718705B2 (en) Photoacoustic signal detection method and device
JP4753947B2 (en) Phase sensitive heterodyne coherent anti-Stokes Raman scattering microspectroscopy, and microscopy system and method
US7474411B2 (en) System and method to reduce laser noise for improved interferometric laser ultrasound detection
WO2014125729A1 (en) Measuring device and measuring method
JP5847821B2 (en) Method and apparatus for non-resonant background reduction in coherent anti-Stokes Raman scattering (CARS) spectroscopy
JPH07311182A (en) Evaluation of sample by measurement of thermo-optical displacement
JP2004301520A (en) Photothermal conversion measuting instrument and its method
US7050174B2 (en) Ultra high frequency imaging acoustic microscope
JPH08211132A (en) Voltage measuring apparatus
US7286239B2 (en) Laser scanner with amplitude and phase detection
JP2846079B2 (en) Photoacoustic signal detection method and apparatus
CN107219191B (en) Oblique incidence light reflection difference device based on Fourier transform
WO2008081374A2 (en) Reflection or single scattering spectroscopy and imaging
JPS6319822B2 (en)
JP3379180B2 (en) Photoacoustic signal detection method and device
JPH051988A (en) Photo-acoustic signal detection method and device therefor
JP3261704B2 (en) Photoacoustic signal detection method and apparatus
JP3200902B2 (en) Photoacoustic signal detection method and apparatus
JP2923779B1 (en) Optical interference device for ultrasonic detection
US6836336B2 (en) Inspection system calibration methods
JP3082208B2 (en) Photoacoustic signal detection method and apparatus, and semiconductor element internal defect detection method
JPH06308095A (en) Phtothermic displacement signal detection method and device
JP3340792B2 (en) Microstructure measuring device
JP2806131B2 (en) Ultrasonic non-contact detection method and device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees