JPH05196815A - Optically anisotropic substance and production of optically anisotropic substance as well as liquid crystal device having optically anisotropic substance - Google Patents

Optically anisotropic substance and production of optically anisotropic substance as well as liquid crystal device having optically anisotropic substance

Info

Publication number
JPH05196815A
JPH05196815A JP4009537A JP953792A JPH05196815A JP H05196815 A JPH05196815 A JP H05196815A JP 4009537 A JP4009537 A JP 4009537A JP 953792 A JP953792 A JP 953792A JP H05196815 A JPH05196815 A JP H05196815A
Authority
JP
Japan
Prior art keywords
liquid crystal
polymer
substrate
transparent substrate
optically anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4009537A
Other languages
Japanese (ja)
Inventor
Kazuo Aoki
和雄 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP4009537A priority Critical patent/JPH05196815A/en
Publication of JPH05196815A publication Critical patent/JPH05196815A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the inexpensive formation of the liquid crystal device having a high visual field angle, high contrast and the excellent uniformity of black and white display performance and to obtain the liquid crystal display which can be simultaneously reduced in size, weight and cost by chemically bonding a specific liquid crystal high polymer and a substrate at the boundary thereof. CONSTITUTION:The liquid crystal high polymer and substrate of the optically anisotropic substance forming the liquid crystal high polymer contg. at least one component of the repeating unit expressed by formula are chemically bonded. Namely, the surface of the high-polymer substrate is activated by a plasma treatment, etc., and a monomer which is the precursor of the high polymer exhibiting crystallinity is graft polymerized. The liquid crystal high polymer is a high polymer which consists of an acrylic chain or has the methacrylic chain mainly in the skeleton and has room temp. or above of the glass transition temp. The surface of the transparent substrate is subjected to uniaxial orientation or the optically active component consisting of at least one component is incorporated therein and the substrate is subjected to a twist orientation having a spiral axis in the normal direction of the substrate. In the formula, n denotes 2 to 6; R1 denotes H and CH3; R2 denotes OCH3, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光学異方体と光学異方
体を備えた液晶装置とその製造方法に関し、特に白黒、
またはカラー表示の可能とする光学異方体と光学異方体
を備えた液晶装置とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical anisotropic body, a liquid crystal device having the optical anisotropic body, and a method for manufacturing the same, and in particular, black and white,
Further, the present invention relates to an optical anisotropic body capable of color display, a liquid crystal device including the optical anisotropic body, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来の白黒液晶装置に用いる光学異方体
としては、図1(a)に示したように、2層型スーパー
ツイストネマチック液晶装置(以下DSTNと呼ぶ)で
用いる液晶セル、図1(b)に示したようにフィルム補
償型液晶装置の延伸フィルム1枚、図1(c)に示した
ようにフィルム補償型液晶装置の延伸フィルム2枚が知
られている。図1において、電極を有する透明な基板1
−1がスペーサー1−2を介して張り合わせてあり、液
晶1−3が注入されている。以下これらをまとめて表示
セル1−6と呼ぶ。表示セル1−6は、230度左捻れ
STNセルである。いずれの液晶装置においても、偏光
板1−4、及び光学異方体をその構成要素として含んで
いる。
2. Description of the Related Art As an optically anisotropic body used in a conventional black and white liquid crystal device, a liquid crystal cell used in a two-layer type super twist nematic liquid crystal device (hereinafter referred to as DSTN), as shown in FIG. One stretched film of a film compensation type liquid crystal device as shown in FIG. 1 (b) and two stretched films of a film compensation type liquid crystal device as shown in FIG. 1 (c) are known. In FIG. 1, a transparent substrate 1 having electrodes
-1 is stuck together via the spacer 1-2, and the liquid crystal 1-3 is injected. Hereinafter, these are collectively referred to as a display cell 1-6. The display cell 1-6 is a left twist STN cell of 230 degrees. Each of the liquid crystal devices includes the polarizing plate 1-4 and the optically anisotropic body as its constituent elements.

【0003】これらの光学異方体は、偏光板を通過した
直線偏光の、STN液晶セルの複屈折性と旋光性とが原
因となる楕円偏光への変化を補償し、入射白色直線偏光
に戻す役割をはたし、その結果液晶表示の白黒表示が可
能となっている。
These optical anisotropic bodies compensate for the change of the linearly polarized light which has passed through the polarizing plate into the elliptically polarized light which is caused by the birefringence and the optical rotatory power of the STN liquid crystal cell, and returns to the incident white linearly polarized light. It plays a role, and as a result, black and white liquid crystal display is possible.

【0004】[0004]

【発明が解決しようとする課題】図1(a)に示したよ
うに、DSTNにおいては、光学異方体が表示セルの捻
れ方向と逆捻れの液晶セル1−5であり、また、△nd
が表示セルのそれとほぼ等しく設定してある。したがっ
て、DSTN液晶装置は高コントラスト、高視野角、白
黒表示特性等が優れている。しかしながらDSTN液晶
装置は液晶セルを2枚用いるため、表示体のコスト高に
つながり、また、厚い、重い等の課題を有する。
As shown in FIG. 1 (a), in the DSTN, the optically anisotropic body is a liquid crystal cell 1-5 having a twist direction opposite to the twist direction of the display cell, and .DELTA.nd.
Is set almost equal to that of the display cell. Therefore, the DSTN liquid crystal device is excellent in high contrast, wide viewing angle, black and white display characteristics, and the like. However, since the DSTN liquid crystal device uses two liquid crystal cells, the cost of the display body increases, and there are problems such as being thick and heavy.

【0005】図1(b)は、前述したDSTN液晶装置
の欠点を補う為に開発されたフィルム補償型液晶装置
(以下FTN1と呼ぶ)である。この方式は、光学異方
体に複屈折性一軸延伸フィルム1−7を用いており、低
コスト、薄い、軽い等の特徴を有する。しかしながら、
一軸延伸フィルム1−7が1枚では、STN液晶セルの
旋光性による色付きの補償は充分ではなく、若干青味が
かった表示となってしまい、コントラストが低い、視野
角が狭い等の課題を有する。
FIG. 1 (b) shows a film compensation type liquid crystal device (hereinafter referred to as FTN1) developed to compensate for the above-mentioned drawbacks of the DSTN liquid crystal device. This system uses a birefringent uniaxially stretched film 1-7 as an optically anisotropic body, and has features such as low cost, thinness, and lightness. However,
With one uniaxially stretched film 1-7, the compensation of coloring due to the optical rotatory power of the STN liquid crystal cell is not sufficient, resulting in a slightly bluish display, and there are problems such as low contrast and narrow viewing angle. ..

【0006】この様な状況の中で、フィルム補償型液晶
セルの薄いという特徴を残し、さらに高視野角、高コン
トラストな表示特性を有するFTN2モードも実用化さ
れている。図1(c)に示したように、FTN2モード
は一軸延伸フィルム1−7を2枚重ねて用いる事を特徴
としている。FTN2は一軸延伸フィルム1−7一枚で
は補償しきれなかった旋光性についても、フィルムの延
伸軸をずらすことにより補償され、高コントラスト高視
野角化が実現できている。しかしながら、表示特性はN
TNモードの表示特性には及ばないのが現状である。ま
た、一軸延伸フィルム1−7を2枚用いるため、低コス
ト化はなかなか困難であるという課題を有する。
Under such circumstances, the FTN2 mode, which has the characteristic that the film-compensation type liquid crystal cell is thin and has a high viewing angle and a high contrast display characteristic, has been put into practical use. As shown in FIG. 1C, the FTN2 mode is characterized in that two uniaxially stretched films 1-7 are used in a stacked manner. FTN2 is also able to achieve high contrast and a wide viewing angle by compensating for the optical rotatory power that could not be compensated by one uniaxially stretched film 1-7 by shifting the stretching axis of the film. However, the display characteristic is N
At present, it does not reach the display characteristics of the TN mode. Further, since two uniaxially stretched films 1-7 are used, there is a problem that cost reduction is difficult.

【0007】一方最近、特開平3−17121、EUR
OPEAN PATENT APPLICATION
0380338、に、液晶高分子を用いた光学位相差板
が示された。この光学位相差板に於いては、液晶高分子
材料の配向温度が200℃前後と高く、光学位相差板を
ベース材に形成する場合その光学異方体の基材に耐熱性
が要求され、材料が限定されてしまう、また、ベース材
の内部応力の熱による緩和によって縮み、そり、はがれ
等が生じ安いという課題を有する。
On the other hand, recently, JP-A-3-17121, EUR
OPEN PATENT APPLICATION
No. 0380338 shows an optical retardation plate using a liquid crystal polymer. In this optical retardation plate, the orientation temperature of the liquid crystal polymer material is as high as about 200 ° C., and when the optical retardation plate is formed on the base material, the optical anisotropic base material is required to have heat resistance, There are problems that the material is limited, and that the internal stress of the base material is relaxed by heat, so that shrinkage, warpage, peeling, and the like are easily generated.

【0008】[0008]

【課題を解決するための手段】本発明は上記課題を解決
する為のもので、量産性、薄型化、軽量化、表示特性を
飛躍的に向上させる液晶表示装置を安価に提供でる。有
機高分子の薄膜、またはフィルムは、その表面を、U
V、プラズマ等で処理することによって、基板表面の高
分子鎖もしくは高分子鎖を形成している結合が切れ、ラ
ジカルが発生することは良く知られている。それらの応
用として、基板表面の濡れ性改良や、ハイブリットフィ
ルムの実用もなされている。本発明は、この技術を応用
したものであり、我々の検討の結果本発明に至った。す
なわち、本発明は以下の点に特徴がある。すなわち、 1)透明な基板上に、一般式
SUMMARY OF THE INVENTION The present invention is intended to solve the above problems, and provides a liquid crystal display device at a low cost, which is capable of mass production, thinning, weight reduction, and dramatically improving display characteristics. The surface of the organic polymer thin film or film is U
It is well known that the polymer chains on the substrate surface or the bonds forming the polymer chains are broken and radicals are generated by the treatment with V, plasma or the like. As their applications, improvement of wettability of the substrate surface and practical use of hybrid film have been made. The present invention is an application of this technique, and as a result of our study, the present invention has been achieved. That is, the present invention is characterized by the following points. That is, 1) General formula on a transparent substrate

【0009】[0009]

【化2】 [Chemical 2]

【0010】で表される繰り返し単位を少なくとも一成
分含む液晶高分子を形成した光学異方体において、上記
液晶高分子と基板とが化学的に結合しており、前記液晶
高分子が、アクリル鎖或いはメタクリル鎖を主に骨格に
有するガラス転移温度が室温以上である高分子であり、
前記透明な基板上に一軸性配向または、少なくとも一成
分の光学活性化合物を含み基板法線方向に螺旋軸をもっ
た捻れ配向していることを特徴とする。
In an optically anisotropic body formed with a liquid crystal polymer containing at least one component represented by the repeating unit, the liquid crystal polymer and the substrate are chemically bonded, and the liquid crystal polymer is an acrylic chain. Or a polymer having a glass transition temperature of room temperature or higher mainly having a methacrylic chain in the skeleton,
The transparent substrate is uniaxially oriented or twisted with at least one component of an optically active compound and having a helical axis in a direction normal to the substrate.

【0011】2)前記透明な基板が有機高分子または、
有機高分子を一軸或いは2軸延伸したフィルムであるこ
とを特徴とする。
2) The transparent substrate is an organic polymer or
It is characterized in that it is a film obtained by uniaxially or biaxially stretching an organic polymer.

【0012】3)透明な基板上に一軸配向或いは、捻れ
配向した液晶重合体を形成した光学異方体の製造方法に
おいて、前記透明な基板上に配向処理を行う工程と、前
記基板表面を活性化する工程、または配向処理と基板表
面の活性化を同時に行う工程の何れかと、活性化した透
明基板を重合性モノマーの溶液に浸し、重合体を透明基
板表面に積層する工程と、乾燥する工程と、積層した重
合体を配向させる工程と、前記透明基板を配向処理温度
から冷却する工程とを含み、前記配向処理を行う工程が
ラビング方法であるか、または、前記基板表面を活性化
と、配向処理を同時に行う工程が、表面活性化のエネル
ギー源から基板表面までの距離を表面上の2点で異なる
ように配置し、活性化エネルギー源から基板表面までの
距離に長短の差をつけ、液晶の配向能力を液晶セルの基
板表面に付与する工程であることを特徴とする。
3) In the method for producing an optically anisotropic body in which a liquid crystal polymer having a uniaxially oriented or twisted orientation is formed on a transparent substrate, a step of performing an orientation treatment on the transparent substrate and activating the substrate surface. Either the step of activating, or the step of simultaneously performing the alignment treatment and the activation of the substrate surface, the step of immersing the activated transparent substrate in the solution of the polymerizable monomer, laminating the polymer on the transparent substrate surface, and the step of drying And a step of orienting the laminated polymer, and a step of cooling the transparent substrate from the orientation treatment temperature, the step of performing the orientation treatment is a rubbing method, or the substrate surface is activated, In the process of performing the alignment treatment at the same time, the distance from the surface activation energy source to the substrate surface is arranged so as to be different at two points on the surface, and the distance from the activation energy source to the substrate surface is changed to a long or short difference. Only, characterized in that the liquid crystal alignment ability is a step of applying to the substrate surface of the liquid crystal cell.

【0013】4)電極を形成した基板に液晶を挟んでな
る液晶セルと、少なくとも1つの光学異方体と、少なく
とも1枚の偏光板と、液晶駆動用ドライバーと液晶駆動
用回路からなる液晶装置において、前記光学異方体を液
晶セルの少なくとも一方の面に密着するか、或いは、設
置した事を特徴とする。
4) A liquid crystal device comprising a liquid crystal cell in which a liquid crystal is sandwiched between substrates on which electrodes are formed, at least one optically anisotropic body, at least one polarizing plate, a liquid crystal driving driver and a liquid crystal driving circuit. In above, the optical anisotropic body is closely attached to at least one surface of the liquid crystal cell, or is installed.

【0014】[0014]

【作用】本発明に於いては、高分子基板上をプラズマ処
理等により表面を活性化し、液晶性を示す高分子の前駆
体である単量体をグラフト重合することにより、平坦性
の悪い高分子基板や、フィルム等の上に均一な液晶高分
子層を形成できる。また、プラズマ発生領域内のイオン
が電位差により、方向性をもってイオンが基板に衝突
し、表面近傍の化学結合種が活性化され、遊離安定ラジ
カルが発生する。このラジカルは、比較的安定であり、
通常の溶液ラジカル重合の開始剤の効果と共に重合核の
発生源の役割をはたし高分子基板に他の高分子をグラフ
ト化することができる。
In the present invention, the surface of a polymer substrate is activated by plasma treatment or the like, and a monomer, which is a precursor of a polymer exhibiting liquid crystallinity, is graft-polymerized to improve the flatness. A uniform liquid crystal polymer layer can be formed on a molecular substrate or a film. Also, due to the potential difference of the ions in the plasma generation region, the ions collide with the substrate with directivity to activate the chemically bound species near the surface and generate free stable radicals. This radical is relatively stable,
In addition to the effect of an ordinary initiator of solution radical polymerization, it plays a role of a generation source of polymerization nuclei, and other polymers can be grafted on the polymer substrate.

【0015】光学異方体は、その位相差と厚みの積(以
下△ndと呼ぶ)を厳密に制御する必要があり、本発明
の光学異方体の製造方法は、他の方法、例えば、スピン
コート法や印刷法によって液晶高分子層を形成するよ
り、より膜厚精度の高い膜を形成することができる。同
時に加熱することにより更に高度な配向状態を得ること
もできる。このようにして得られた光学異方体を本発明
の液晶装置に用いることにより、一対の偏光板の一方を
通過してきた直線偏光は、表示セルと光学異方体の少な
くとも2層を通過することで、約400nmから700
nmの範囲の波長域では長軸方向のほぼ揃った楕円偏光
となる。したがって、もう一方の偏光板を通過したとき
には特定の波長域が遮断されることはなく、結果的には
偏光板を通過した後の光は白色に近い色となる。以下に
本発明の実施例を示す。
The optical anisotropic body needs to strictly control the product of the phase difference and the thickness (hereinafter referred to as Δnd), and the method for producing the optical anisotropic body of the present invention is not limited to other methods, for example, It is possible to form a film with higher film thickness accuracy than forming the liquid crystal polymer layer by spin coating or printing. By heating at the same time, a higher degree of alignment can be obtained. By using the thus obtained optically anisotropic substance in the liquid crystal device of the present invention, linearly polarized light that has passed through one of the pair of polarizing plates passes through at least two layers of the display cell and the optically anisotropic substance. Therefore, about 400 nm to 700
In the wavelength range of nm, the elliptically polarized light is substantially uniform in the major axis direction. Therefore, when passing through the other polarizing plate, the specific wavelength range is not blocked, and as a result, the light after passing through the polarizing plate becomes a color close to white. Examples of the present invention will be shown below.

【0016】[0016]

【実施例】本発明の光学異方体の透明基板は、フィルム
形成時の配向歪があってもよいが、その光学異方性の影
響により光学的に異方性の無い物が最も望ましい。例え
ば、キャスト方法によって得られた無定型高分子フィル
ムや延伸方法によって得られる、光学的異方性が正の材
料と光学的な異方性が負の材料を重ね合わせたフィル
ム、または、延伸によって光学的な異方性が非常に小さ
いフィルム、例えば光学的異方性が正の材料と光学的な
異方性が負の材料の混合物を延伸したフィルム等が特に
望ましい。
EXAMPLES The optically anisotropic transparent substrate of the present invention may have an orientational strain at the time of film formation, but it is most preferable that it has no optical anisotropy due to its optical anisotropy. For example, an amorphous polymer film obtained by a casting method or a film obtained by a stretching method, a film in which a material having a positive optical anisotropy and a material having a negative optical anisotropy are stacked, or by stretching A film having a very small optical anisotropy, for example, a film obtained by stretching a mixture of a material having a positive optical anisotropy and a material having a negative optical anisotropy is particularly desirable.

【0017】本発明の液晶高分子材料の配向処理方法と
しては、高分子基板に直接ラビングする方法、または、
配向剤としては、その塗布する基板の耐溶剤性、耐熱性
等を考慮し、最適な方式を選ぶ事もできる。また、ポリ
イミドに限らず、他の液晶材料の配向剤ならば全て使用
できる。その硬化温度も実施例に制限されることはな
い。
The method of aligning the liquid crystal polymer material of the present invention includes a method of directly rubbing a polymer substrate, or
As the aligning agent, an optimum method can be selected in consideration of solvent resistance and heat resistance of the substrate to be coated. Further, not only polyimide but also any aligning agent of other liquid crystal materials can be used. The curing temperature is not limited to the examples.

【0018】本発明の液晶高分子の相転移系列は、温度
上昇に伴って、ガラス状態、ネマチック相、等方性液体
相へと転移する事が望ましい。また、望ましくは、ガラ
ス転移温度が、液晶装置の使用温度範囲の上限温度より
高温度であり、ネマチック相から等方性液体相への転移
温度が100℃から150℃の間にある事が望ましい。
The phase transition series of the liquid crystal polymer of the present invention preferably transitions to a glass state, a nematic phase or an isotropic liquid phase as the temperature rises. Further, it is desirable that the glass transition temperature is higher than the upper limit temperature of the operating temperature range of the liquid crystal device, and the transition temperature from the nematic phase to the isotropic liquid phase is between 100 ° C and 150 ° C. ..

【0019】本発明の液晶高分子は、アクリル鎖、また
はメタクリル鎖を有する側鎖型液晶高分子、すなわち、
メソゲン基を炭素数が少なくとも1以上のエチレン鎖の
スペーサーを介して骨格に結合させたネマチック相を示
す液晶高分子であれば、共重合体であっても良く、さら
には、他の重合体もしくは、他の共重合体と混合して用
いることもでき、その分子構造は実施例に限定されな
い。
The liquid crystal polymer of the present invention is a side chain type liquid crystal polymer having an acrylic chain or a methacrylic chain, that is,
A copolymer may be used as long as it is a liquid crystal polymer showing a nematic phase in which a mesogen group is bonded to a skeleton through a spacer of an ethylene chain having at least one carbon atom, and further, another polymer or Also, it can be used as a mixture with other copolymers, and its molecular structure is not limited to the examples.

【0020】本発明の液晶高分子を配向させる温度は、
液晶高分子のネマチック−等方性液体相の転移温度に近
い温度で行うことが望ましく、30℃から150℃が望
ましいが、更に望ましくは80℃から130℃である。
The temperature for orienting the liquid crystal polymer of the present invention is
The temperature is preferably close to the transition temperature of the nematic-isotropic liquid phase of the liquid crystal polymer, preferably 30 ° C to 150 ° C, more preferably 80 ° C to 130 ° C.

【0021】本発明の液晶高分子の配向後に室温に冷却
する際の冷却速度は、特に実施例に制限されない。急冷
しても良い。
The cooling rate at the time of cooling to room temperature after the alignment of the liquid crystal polymer of the present invention is not particularly limited to the examples. It may be cooled rapidly.

【0022】本発明の液晶性を示す高分子前駆体を基板
に積層する際は、その前駆体が溶解している溶液中に光
学活性化合物(以下カイラルドーパントと呼ぶ)を添加
する事ができる。すなわち、液晶高分子が積層する際
に、添加したカイラルドーパントが液晶高分子層に取り
込まれ、得られた液晶高分子が捻れ配向を示すようにカ
イラルドーパントの種類と添加量とを適当に選ぶ事がで
きる。例えば、以下に示したように液晶表示用のセルが
左回りの液晶セルであれば右捻れとなるR体または、表
示用のセルが右回りであれば左捻れとなるようなS体
等、不整炭素を含む光学活性な化合物ならば如何なる化
合物も使用可能であり、本実施例に限定されることはな
い。
When laminating the liquid crystal polymer precursor of the present invention on a substrate, an optically active compound (hereinafter referred to as a chiral dopant) can be added to a solution in which the precursor is dissolved. That is, when the liquid crystal polymer is laminated, the added chiral dopant is taken into the liquid crystal polymer layer, and the kind and the amount of the chiral dopant are appropriately selected so that the obtained liquid crystal polymer exhibits twist alignment. You can For example, as shown below, if the liquid crystal display cell is a counterclockwise liquid crystal cell, the R body is twisted to the right, or if the display cell is clockwise, the S body is twisted to the left, or the like. Any compound can be used as long as it is an optically active compound containing an asymmetric carbon and is not limited to this example.

【0023】[0023]

【化3】 [Chemical 3]

【0024】[0024]

【化4】 [Chemical 4]

【0025】ここで、C−15、S−811は、メルク
社製左捻れカイラルドーパント、CM、CM21は、チ
ッソ社製左捻れカイラルドーパント、また、CB−1
5、S−1082は、メルク社製右捻れカイラルドーパ
ント、CM19、CM20、CM22は、チッソ社製右
捻れカイラルドーパントである。また、経験的に左回
り、右回りのわかっている化合物の使用に際しては特に
問題はないが、不整炭素を含む化合物であってもその捻
れ方向が温度によって逆転する場合、または、d−体、
l−体それぞれ捻れ方向が不明な場合は、その捻れ方向
を確認した後使用することもできる。ピッチ補償用とし
て2種類以上用いても良い。一方、カイラルドーパント
は、低分子化合物に限定されず、高分子化した化合物で
あっても本発明の優位性を損ねる物ではない。すなわ
ち、以下に示したようなあらかじめ不斉炭素を含むモノ
マーを共重合した骨格中に不斉炭素を有する部位を設け
た高分子化合物(a)(b)なども使用できる。
Here, C-15 and S-811 are left-handed chiral dopants manufactured by Merck, CM and CM21 are left-handed chiral dopants manufactured by Chisso, and CB-1.
5, S-1082 are right-handed chiral dopants manufactured by Merck, and CM19, CM20, and CM22 are right-handed chiral dopants manufactured by Chisso. In addition, there is no particular problem when using a compound that is empirically known to be left-handed or right-handed, but even in the case of a compound containing asymmetric carbon, if the twist direction is reversed by temperature, or d-form,
When the twist direction of each l-body is unknown, it can be used after confirming the twist direction. Two or more types may be used for pitch compensation. On the other hand, the chiral dopant is not limited to a low molecular weight compound, and even a polymerized compound does not impair the superiority of the present invention. That is, a polymer compound (a) or (b) having a site having an asymmetric carbon in the skeleton obtained by previously copolymerizing a monomer containing an asymmetric carbon as shown below can also be used.

【0026】[0026]

【化5】 [Chemical 5]

【0027】[0027]

【化6】 [Chemical 6]

【0028】その共重合体がカイラルネマチック相を示
す場合は、ねじれの方向と角度を合わせることによっ
て、その共重合体単体で用いることができる。また、カ
イラルドーパントを含まない液晶高分子でも、光学異方
体としての機能を有し、液晶装置を組み立てたときには
白黒に近い表示が得られる。
When the copolymer exhibits a chiral nematic phase, the copolymer can be used alone by adjusting the twist direction and the angle. Further, even a liquid crystal polymer containing no chiral dopant has a function as an optically anisotropic body, and a display close to black and white can be obtained when the liquid crystal device is assembled.

【0029】本発明に用いるカイラルドーパントはそれ
が重合性官能基と光学活性部位を骨格に有する事が望ま
しく例えば
The chiral dopant used in the present invention preferably has a polymerizable functional group and an optically active site in the skeleton.

【0030】[0030]

【化7】 [Chemical 7]

【0031】等であり、また、光学活性部位は例えばThe optically active site is, for example,

【0032】[0032]

【化8】 [Chemical 8]

【0033】等を用いることができる。すなわち、本発
明に用いる高分子前駆体の溶液中には、望ましくは不斉
炭素を骨格に含みかつ、連鎖的に反応する官能基を有す
る化合物を混合して用いる事が望ましい。
And the like can be used. That is, in the solution of the polymer precursor used in the present invention, it is desirable to mix and use a compound having a skeleton containing asymmetric carbon and having a functional group that reacts in a chain.

【0034】本発明の液晶装置は、少なくとも液晶セル
と偏光板と本発明の光学異方体を構成要素として含んで
いる。その偏光軸、液晶セルのラビング方向、液晶高分
子の分子軸方向は本実施例に限定されない。
The liquid crystal device of the present invention includes at least a liquid crystal cell, a polarizing plate, and the optical anisotropic body of the present invention as constituent elements. The polarization axis, the rubbing direction of the liquid crystal cell, and the molecular axis direction of the liquid crystal polymer are not limited to those in this embodiment.

【0035】本発明の液晶装置において、液晶セルの透
明な基板上には、カラーフィルター、電極間の光漏れを
防止するためのブラックストライプ、または、液晶セル
の透過光を高効率化するためのレンズ等を設けることも
できる。
In the liquid crystal device of the present invention, on the transparent substrate of the liquid crystal cell, a color filter, a black stripe for preventing light leakage between electrodes, or a highly efficient transmitted light of the liquid crystal cell. A lens or the like can be provided.

【0036】本実施例のラビング方法は実施例に限定さ
れない。すなわち、本実施例では、ナイロンブラシ、
綿、ベルセード等通常液晶分子の配向用に用いている材
料ならば全て使用できる。また、固定ラビング法でも良
い。
The rubbing method of this embodiment is not limited to the embodiment. That is, in this embodiment, a nylon brush,
Any material that is usually used for aligning liquid crystal molecules, such as cotton and velcade, can be used. Alternatively, a fixed rubbing method may be used.

【0037】本発明の液晶装置は、偏光板を光学異方体
の上に直接添付することができる。本発明の液晶装置
は、光学異方体の液晶高分子が積層されている表面を表
示用液晶セルに直面するように設置しても良く必要に応
じて液晶高分子表面に保護膜を形成しても良い。また、
液晶セルとスペーサーを介して直接接することのないよ
うな構成にしても良い。
In the liquid crystal device of the present invention, the polarizing plate can be directly attached on the optically anisotropic body. The liquid crystal device of the present invention may be installed so that the surface on which the optically anisotropic liquid crystal polymer is laminated faces the liquid crystal cell for display, and a protective film may be formed on the surface of the liquid crystal polymer if necessary. May be. Also,
The liquid crystal cell may not be in direct contact with the spacer via the spacer.

【0038】本発明の液晶装置は、偏光板が光学異方体
の液晶高分子とスペーサーを介して直接接することのな
いような構成にしても良い。
The liquid crystal device of the present invention may be constructed so that the polarizing plate is not in direct contact with the optically anisotropic liquid crystal polymer through the spacer.

【0039】本発明の表面活性化の方法としては、望ま
しくはプラズマ処理が挙げられるが、電子線、イオンビ
−ム、紫外線等を用いる事もできる。また、望ましく
は、大気中もしくは酸素を含む雰囲気中で処理する方が
よい。一方、不活性ガス、例えば、ヘリウム、ネオン、
アルゴン、キセノン等の雰囲気でも表面活性化処理を行
う事ができる。
The surface activation method of the present invention is preferably plasma treatment, but electron beams, ion beams, ultraviolet rays or the like can also be used. Further, it is desirable to perform the treatment in the air or an atmosphere containing oxygen. On the other hand, an inert gas such as helium, neon,
The surface activation treatment can be performed in an atmosphere of argon, xenon, or the like.

【0040】本発明の実施例におけるネマチック液晶性
高分子の重合性モノマーは、以下に示したものを用いる
ことが望ましい。また、必要に応じて2種類以上を混合
して用いることができる。
As the polymerizable monomer of the nematic liquid crystal polymer in the examples of the present invention, it is desirable to use the one shown below. Moreover, two or more kinds can be mixed and used as needed.

【0041】[0041]

【化9】 [Chemical 9]

【0042】(実施例1)本発明で用いるプラズマ処理
装置の断面の略図と光学異方体の製造方法の略図を図2
に示した。透明なポリエチレン基板2−1を基板ホルダ
ー2−2に設置し、ガス導入口2−3よりヘリウムガス
を0.01Torrになるように予め系内を排気し、導
入した。プラズマ発生のための放電用電極2−4のRF
を400Wとし、イオン引き出しメッシュ電極2−5と
イオン引き込み電極2−6の電位を−350Vとした。
また、基板ホルダーの傾き角を約45度となるように設
置し。約3分間電圧を加えた。
(Embodiment 1) A schematic diagram of a cross section of a plasma processing apparatus used in the present invention and a schematic diagram of a method for producing an optically anisotropic body are shown in FIG.
It was shown to. The transparent polyethylene substrate 2-1 was placed on the substrate holder 2-2, and the system was previously evacuated from the gas introduction port 2-3 so that the helium gas became 0.01 Torr and introduced. RF of discharge electrode 2-4 for plasma generation
Was set to 400 W, and the potentials of the ion drawing mesh electrode 2-5 and the ion drawing electrode 2-6 were set to -350V.
Also, the substrate holder is installed so that the inclination angle is about 45 degrees. Voltage was applied for about 3 minutes.

【0043】以上の処理によって得られたポリエチレン
基板を、モノマーが20重量%溶解しているベンゼン溶
液中に浸透し温度を約60℃に保ち、重合開始剤にAI
BNを用いて、24時間反応させた。用いたモノマー
は、前述の(1)なる構造式を有する。また、ツイスト
ネマチック液晶とするために、光学活性化合物として、
メタクリル基を有する以下に示した(c)なる構造式を
有するコレステロール誘導体を3%添加した。
The polyethylene substrate obtained by the above treatment was permeated into a benzene solution in which the monomer was dissolved in 20% by weight to keep the temperature at about 60 ° C., and the polymerization initiator was AI.
It was made to react for 24 hours using BN. The monomer used has the structural formula (1) described above. Further, in order to obtain a twisted nematic liquid crystal, as an optically active compound,
3% of a cholesterol derivative having a methacrylic group and having the structural formula (c) shown below was added.

【0044】反応終了後、得られたポリエチレンフィル
ムを真空乾燥後70℃にて乾燥し次に配向処理を行っ
た。液晶高分子層の膜厚は、約6.5μmであり、△n
dの値は0.83、捻れ角は240度右捻れであった。
また、フィルム平面内の△ndは均一であり、、偏光顕
微鏡、及び分光機による測定を行った結果、液晶高分子
層の厚みむらに対応したリタデーションの違いは判別で
きなかった。
After completion of the reaction, the obtained polyethylene film was vacuum dried and then dried at 70 ° C., and then subjected to orientation treatment. The thickness of the liquid crystal polymer layer is about 6.5 μm, and Δn
The value of d was 0.83, and the twist angle was 240 degrees right twist.
Further, Δnd in the plane of the film was uniform, and as a result of measurement with a polarization microscope and a spectroscope, it was not possible to determine the difference in retardation corresponding to the unevenness of the thickness of the liquid crystal polymer layer.

【0045】一方、本発明の光学異方体を液晶セルに設
置し液晶装置を作製した。本液晶装置の断面の略図を図
3に示した。図3に於いて、透明な電極と配向膜をを有
する基板3−1をスペーサー3−2を介して張り合わせ
その間に液晶(メルク社製ZLI4506)3−3を真
空注入し液晶セルを作成した。本光学異方体3−8を、
液晶セルの上に液晶セルの一方のガラス基板と光学異方
体の液晶高分子が接しないようにし、2枚の偏光板3−
4の間に設置し液晶装置を作製した。その時の液晶の配
向方向及び、偏光板の吸収軸の方向、液晶高分子の分子
長軸の方向を図4に示した。図4に於て、4−11は表
示セルの下側電極基板のラビング方向、4−12は表示
セルの上側電極基板のラビング方向、4−13は本実施
例の図2におけるプラズマ装置内のイオンの流れる方
向、または、基板のラビング方向、4−14はプラスチ
ック基板上の液晶重合体の上側偏光板に隣接する液晶分
子の長軸方向、4−15は下側偏光板の偏光軸(吸収
軸)の方向、4−16は、上側偏光板の偏光軸(吸収
軸)の方向、4−17は液晶表示セルのねじれ角の大き
さ、4−18は方向4−13と方向4−12のなす角
度、4−19は4−16と方向4−14のなす角度、4
−20は方向4−11と方向4−15のなす角度、4−
21は方向4−14と方向4−13のなす角度である。
条件を以下の様に設定した。角度4−18を80度から
100度、角度4−19を40度から50度の間であ
る。この液晶装置に電界を印加したところ、広い範囲に
わたって均一な白黒表示が得られた。
On the other hand, a liquid crystal device was manufactured by placing the optically anisotropic body of the present invention in a liquid crystal cell. A schematic cross-sectional view of the present liquid crystal device is shown in FIG. In FIG. 3, a substrate 3-1 having a transparent electrode and an alignment film was attached via a spacer 3-2, and liquid crystal (ZLI4506 manufactured by Merck & Co., Inc.) 3-3 was vacuum-injected between them to form a liquid crystal cell. This optical anisotropic body 3-8,
Make sure that one glass substrate of the liquid crystal cell and the optically anisotropic liquid crystal polymer are not in contact with each other on the liquid crystal cell.
A liquid crystal device was manufactured by installing the liquid crystal device between the four. The orientation direction of the liquid crystal, the absorption axis direction of the polarizing plate, and the molecular long axis direction of the liquid crystal polymer at that time are shown in FIG. In FIG. 4, 4-11 is the rubbing direction of the lower electrode substrate of the display cell, 4-12 is the rubbing direction of the upper electrode substrate of the display cell, and 4-13 is the inside of the plasma device in FIG. 2 of this embodiment. Ion flow direction or substrate rubbing direction, 4-14 is the major axis direction of liquid crystal molecules adjacent to the upper polarizing plate of the liquid crystal polymer on the plastic substrate, 4-15 is the polarizing axis (absorption of the lower polarizing plate. Axis direction, 4-16 is the direction of the polarization axis (absorption axis) of the upper polarizing plate, 4-17 is the magnitude of the twist angle of the liquid crystal display cell, 4-18 is the direction 4-13 and 4-12. 4-19 is the angle between 4-16 and 4-14
-20 is an angle formed by the direction 4-11 and the direction 4-15, 4-
21 is an angle formed by the direction 4-14 and the direction 4-13.
The conditions were set as follows. Angle 4-18 is between 80 and 100 degrees and angle 4-19 is between 40 and 50 degrees. When an electric field was applied to this liquid crystal device, uniform black and white display was obtained over a wide range.

【0046】(実施例2)実施例1と同様のプラズマ発
生装置にて、透明なキャスト法によって得られたポリエ
チレンテレフタレート基板を用いた。ヘリウムを0.0
01Torrになるように予め系内を排気し、導入し
た。プラズマ発生のための放電用電極2−4のRFを4
50Wとし、イオン引き出しメッシュ電極2−5とイオ
ン引き込み電極2−6の電位を−350Vとした。ま
た、基板ホルダーの傾き角を約20度となるように設置
し。約3分間電圧を加えた。
(Example 2) A polyethylene terephthalate substrate obtained by a transparent casting method was used in the same plasma generator as in Example 1. 0.0 for helium
The inside of the system was evacuated and introduced so as to be 01 Torr. RF of discharge electrode 2-4 for plasma generation is set to 4
It was set to 50 W, and the potentials of the ion drawing mesh electrode 2-5 and the ion drawing electrode 2-6 were set to -350V. The tilt angle of the substrate holder is set to about 20 degrees. Voltage was applied for about 3 minutes.

【0047】以上の処理によって得られたポリエチレン
テレフタレート基板を、モノマーが20重量%溶解して
いるベンゼン溶液中に浸透し温度を約55℃に保ち、重
合開始剤にAIBNを用いて、24時間反応させた。用
いたモノマーは、先に示した(1)と(3)の50:5
0の混合物である。また、ツイストネマチック液晶とす
るために、光学活性化合物として、メタクリル基を有す
る(c)に示した構造式をもつコレステロール誘導体を
小量添加した。
The polyethylene terephthalate substrate obtained by the above treatment was soaked in a benzene solution containing 20% by weight of a monomer, the temperature was kept at about 55 ° C., and AIBN was used as a polymerization initiator to react for 24 hours. Let The monomer used was 50: 5 of (1) and (3) shown above.
It is a mixture of 0. In order to obtain a twisted nematic liquid crystal, a small amount of a cholesterol derivative having a structural formula shown in (c) having a methacryl group was added as an optically active compound.

【0048】反応終了後、得られたポリエチレンフィル
ムを真空乾燥後70℃にて乾燥し次に配向処理を行っ
た。液晶高分子層の膜厚は、約6.3μmであり、△n
dの値は0.85、捻れ角は240度右捻れであった。
また、フィルム平面内の△ndは均一であり、偏光顕微
鏡、及び分光機による測定を行った結果、液晶高分子層
の厚みむらに対応したリタデーションの違いは判別でき
なかった。本フィルムを実施例1と同様に液晶セルに添
付し液晶セルを作製し電界を印加したところ広い範囲に
わたって均一な白黒表示が得られた。
After completion of the reaction, the obtained polyethylene film was vacuum dried and then dried at 70 ° C., and then subjected to orientation treatment. The thickness of the liquid crystal polymer layer is about 6.3 μm, and Δn
The value of d was 0.85, and the twist angle was 240 degrees right twist.
Further, Δnd in the plane of the film was uniform, and as a result of measurement with a polarization microscope and a spectroscope, it was not possible to determine the difference in retardation corresponding to the uneven thickness of the liquid crystal polymer layer. This film was attached to a liquid crystal cell in the same manner as in Example 1, and a liquid crystal cell was produced. When an electric field was applied, uniform black and white display was obtained over a wide range.

【0049】(実施例3)PVDF(ポリフッ化ビニリ
デン):PMMA(ポリメチルメタクリレート)の2
0:80混合体からなる延伸フィルムを実施例1と同様
の装置で、基板傾き角を0度とし、実施例1と同様の条
件でフィルム表面に活性化処理を行った。以上の処理に
よって得られたフィルムを、モノマーが20重量%溶解
しているメタノール溶液中に浸透し温度を約15℃に保
ち、重合開始剤に物過酸化ベンゾイルジメチルアニリン
を用いて、72時間反応させた。用いたモノマーは、先
に示した(1)と(2)の50:50から成る混合物で
ある。また、ツイストネマチック液晶とするために、光
学活性化合物として、メタクリル基を有する(c)に示
した構造式をもつコレステロール誘導体を小量添加し
た。
Example 3 PVDF (Polyvinylidene Fluoride): PMMA (Polymethyl Methacrylate) 2
The stretched film made of the 0:80 mixture was subjected to activation treatment on the film surface under the same conditions as in Example 1 with the same apparatus as in Example 1 with the substrate inclination angle set to 0 °. The film obtained by the above treatment was allowed to penetrate into a methanol solution in which a monomer was dissolved in 20% by weight to maintain the temperature at about 15 ° C., and the reaction was carried out for 72 hours using benzoyldimethylaniline peroxide as a polymerization initiator. Let The monomer used is a 50:50 mixture of (1) and (2) shown above. In order to obtain a twisted nematic liquid crystal, a small amount of a cholesterol derivative having a structural formula shown in (c) having a methacryl group was added as an optically active compound.

【0050】反応終了後、得られたフィルムを真空乾燥
後70℃にて乾燥し次に配向処理を行った。液晶高分子
層の膜厚は、約7μmであり、△ndの値は0.85、
捻れ角は約240度右捻れであった。また、フィルム平
面内の△ndは均一であり、偏光顕微鏡、及び分光機に
よる測定を行った結果、液晶高分子層の厚みむらに対応
したリタデーションの違いは判別できなかった。本フィ
ルムを実施例1と同様に液晶セルに添付し液晶セルを作
製し電界を印加したところ広い範囲にわたって均一な白
黒表示が得られた。
After completion of the reaction, the obtained film was vacuum dried and then dried at 70 ° C. and then subjected to orientation treatment. The thickness of the liquid crystal polymer layer is about 7 μm, the value of Δnd is 0.85,
The twist angle was about 240 degrees right twist. Further, Δnd in the plane of the film was uniform, and as a result of measurement with a polarization microscope and a spectroscope, it was not possible to determine the difference in retardation corresponding to the uneven thickness of the liquid crystal polymer layer. This film was attached to a liquid crystal cell in the same manner as in Example 1, and a liquid crystal cell was produced. When an electric field was applied, uniform black and white display was obtained over a wide range.

【0051】(実施例4)ポリエチレンからなるフィル
ムを液晶セルのラビング方法と同様にソフトラビング
し、実施例1と同様の装置で基板の傾き角を0度とし、
実施例2と同様の条件でフィルム表面に活性化処理を行
った。以上の処理によって得られたポリエチレンテレフ
タレート基板を、モノマーが18重量%溶解しているメ
タノール溶液中に浸透し温度を約15℃に保ち、重合開
始剤に物過酸化ベンゾイルジメチルアニリンを用いて7
2時間反応させた。用いたモノマーは、先にに示した
(1)なる構造式を有する。また、ツイストネマチック
液晶とするために、光学活性化合物として、メタクリル
基を有する(b)に示した構造式をもつ2メチルブタノ
ール誘導体を小量添加した。
Example 4 A film made of polyethylene was soft rubbed in the same manner as in the rubbing method for liquid crystal cells, and the same apparatus as in Example 1 was used to set the tilt angle of the substrate to 0 °.
The film surface was activated under the same conditions as in Example 2. The polyethylene terephthalate substrate obtained by the above treatment was permeated into a methanol solution in which a monomer was dissolved in 18% by weight to keep the temperature at about 15 ° C, and benzoylperoxydimethylaniline peroxide was used as a polymerization initiator.
The reaction was carried out for 2 hours. The monomer used has the structural formula (1) shown above. Further, in order to obtain a twisted nematic liquid crystal, a small amount of a 2-methylbutanol derivative having a structural formula shown in (b) having a methacryl group was added as an optically active compound.

【0052】反応終了後、得られたフィルムを真空乾燥
後70℃にて乾燥し次に配向処理を行った。液晶高分子
層の膜厚は、約6μmであり、△ndの値は0.85、
捻れ角は約240度右捻れであった。また、フィルム平
面内の△ndは均一であり、偏光顕微鏡、及び分光機に
よる測定を行った結果、液晶高分子層の厚みむらに対応
したリタデーションの違いは判別できなかった。本フィ
ルムを実施例1と同様に液晶セルに添付し液晶セルを作
製し電界を印加したところ広い範囲にわたって均一な白
黒表示が得られた。
After completion of the reaction, the obtained film was vacuum dried, dried at 70 ° C., and then subjected to orientation treatment. The thickness of the liquid crystal polymer layer is about 6 μm, the value of Δnd is 0.85,
The twist angle was about 240 degrees right twist. Further, Δnd in the plane of the film was uniform, and as a result of measurement with a polarization microscope and a spectroscope, it was not possible to determine the difference in retardation corresponding to the uneven thickness of the liquid crystal polymer layer. This film was attached to a liquid crystal cell in the same manner as in Example 1, and a liquid crystal cell was produced. When an electric field was applied, uniform black and white display was obtained over a wide range.

【0053】(実施例5)ポリエチレンからなるフィル
ムを液晶セルのラビング方法と同様にソフトラビング
し、オーク社製ベルト露光機にて、UVを照射した。以
上の処理によって得られたポリエチレンテレフタレート
基板を、モノマーが18重量%溶解しているメタノール
溶液中に浸透し温度を約15℃に保ち、重合開始剤に物
過酸化ベンゾイルジメチルアニリンを用いて72時間反
応させた。用いたモノマーは、先に述べた(2)なる構
造式を有する。また、ツイストネマチック液晶とするた
めに、光学活性化合物として、メタクリル基を有する
(b)に示した構造式をもつ2メチルブタノール誘導体
を小量添加した。
(Example 5) A polyethylene film was soft rubbed in the same manner as in the rubbing method for liquid crystal cells, and UV irradiation was performed using a belt exposure machine manufactured by Oak Co. The polyethylene terephthalate substrate obtained by the above treatment was permeated into a methanol solution in which a monomer was dissolved in 18% by weight to keep the temperature at about 15 ° C., and benzoyl peroxide was used as a polymerization initiator for 72 hours. It was made to react. The monomer used has the structural formula (2) described above. Further, in order to obtain a twisted nematic liquid crystal, a small amount of a 2-methylbutanol derivative having a structural formula shown in (b) having a methacryl group was added as an optically active compound.

【0054】反応終了後、得られたフィルムを真空乾燥
後70℃にて乾燥し次に配向処理を行った。液晶高分子
層の膜厚は、約6μmであり、△ndの値は0.85、
捻れ角は約240度右捻れであった。また、フィルム平
面内の△ndは均一であり、偏光顕微鏡、及び分光機に
よる測定を行った結果、液晶高分子層の厚みむらに対応
したリタデーションの違いは判別できなかった。本フィ
ルムを実施例1と同様に液晶セルに添付し液晶セルを作
製し電界を印加したところ広い範囲にわたって均一な白
黒表示が得られた。
After the completion of the reaction, the obtained film was vacuum dried, dried at 70 ° C., and then subjected to orientation treatment. The thickness of the liquid crystal polymer layer is about 6 μm, the value of Δnd is 0.85,
The twist angle was about 240 degrees right twist. Further, Δnd in the plane of the film was uniform, and as a result of measurement with a polarization microscope and a spectroscope, it was not possible to determine the difference in retardation corresponding to the uneven thickness of the liquid crystal polymer layer. This film was attached to a liquid crystal cell in the same manner as in Example 1, and a liquid crystal cell was produced. When an electric field was applied, uniform black and white display was obtained over a wide range.

【0055】[0055]

【発明の効果】本発明によれば、高視野角、高コントラ
ストな白黒表示性能の均一性に優れた液晶装置を安価に
作れるのみでなく、小型軽量化、低コストも同時に満た
す液晶ディスプレイが提供できる。また、光変調素子、
液晶テレビ、液晶シャッター等広く応用できる。
According to the present invention, not only can a liquid crystal device having a wide viewing angle and a high contrast and excellent uniformity of black and white display performance be manufactured at low cost, but also a liquid crystal display that is small in size and light in weight and low in cost can be provided. it can. Also, a light modulator,
Widely applicable to LCD TVs, LCD shutters, etc.

【図面の簡単な説明】[Brief description of drawings]

【図1】 従来の2層型スーパーツイストネマチック液
晶装置、フィルム補償型液晶装置の断面図。
FIG. 1 is a cross-sectional view of a conventional two-layer type super twist nematic liquid crystal device and a film compensation type liquid crystal device.

【図2】 本発明の実施例1、2、3、4におけるプラ
ズマ処理装置の断面と本発明の光学異方体の製造方法の
略図。
FIG. 2 is a schematic view of a cross section of a plasma processing apparatus in Examples 1, 2, 3, and 4 of the present invention and a method of manufacturing an optical anisotropic body of the present invention.

【図3】 本発明の実施例1、2、3、4、5の光学異
方体を用いた液晶装置の断面の略図。
FIG. 3 is a schematic cross-sectional view of a liquid crystal device using the optical anisotropic bodies according to Examples 1, 2, 3, 4, and 5 of the present invention.

【図4】 本発明の実施例1、2、3、4、5に於け
る、の液晶の配向方向及び、偏光板の吸収軸の方向、液
晶高分子の分子長軸の方向を表した図。
FIG. 4 is a diagram showing the alignment direction of the liquid crystal, the absorption axis direction of the polarizing plate, and the molecular long axis direction of the liquid crystal polymer in Examples 1, 2, 3, 4, and 5 of the present invention. ..

【符号の説明】[Explanation of symbols]

1−1 透明基板 1−2 スペーサー 1−3 液晶 1−4 偏光板 1−5 液晶セル 1−6 表示セル 1−7 一軸延伸フィルム 2−1 基板 2−2 基板ホルダ 2−3 ガス導入口 2−4 放電用電極 2−5 イオン引き出しメッシュ 2−6 イオン引き出し電極 3−1 透明基板 3−2 スペーサー 3−3 液晶 3−4 偏光板 3−8 光学異方体 4−11 表示セルの下側電極基板のラビング方向 4−12 表示セルの上側電極基板のラビング方向 4−13 本実施例の図2におけるプラズマ装置内のイ
オンの流れる方向、または、基板のラビング方向 4−14 プラスチック基板上の液晶重合体の上側偏光
板に隣接する液晶分子の長軸方向 4−15 下側偏光板の偏光軸(吸収軸)の方向 4−16 上側偏光板の偏光軸(吸収軸)の方向 4−17 表示セルの捻れ角の大きさ 4−18 方向4−13と方向4−12とのなす角度 4−19 方向4−16と方向4−14のなす角度 4−20 方向4−11と方向4−15のなす角度 4−21 方向4−14と方向4−13のなす角度
1-1 Transparent substrate 1-2 Spacer 1-3 Liquid crystal 1-4 Polarizing plate 1-5 Liquid crystal cell 1-6 Display cell 1-7 Uniaxially stretched film 2-1 Substrate 2-2 Substrate holder 2-3 Gas inlet 2 -4 Discharge electrode 2-5 Ion extraction mesh 2-6 Ion extraction electrode 3-1 Transparent substrate 3-2 Spacer 3-3 Liquid crystal 3-4 Polarizing plate 3-8 Optical anisotropic body 4-11 Lower side of display cell Rubbing Direction of Electrode Substrate 4-12 Rubbing Direction of Upper Electrode Substrate of Display Cell 4-13 Direction of Ion Flow in Plasma Device in FIG. 2 of this Example, or Rubbing Direction of Substrate 4-14 Liquid Crystal on Plastic Substrate Longitudinal direction of liquid crystal molecules adjacent to polymer upper polarizing plate 4-15 Direction of polarization axis (absorption axis) of lower polarizing plate 4-16 Direction of polarization axis (absorption axis) of upper polarizing plate 4-17 Display Size of twist angle of cell 4-18 Angle formed by direction 4-13 and direction 4-12 4-19 Angle formed by direction 4-16 and direction 4-14 4-20 Direction 4-11 and direction 4-15 Angle formed by 4-21 angle formed by direction 4-14 and direction 4-13

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G02F 1/1335 505 7811−2K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location G02F 1/1335 505 7811-2K

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】透明な基板上に、一般式 【化1】 で表される繰り返し単位を少なくとも一成分含む液晶高
分子を形成した光学異方体において、上記液晶高分子と
基板とがその界面で化学的に結合していることを特徴と
する光学異方体。
1. A transparent substrate having the general formula: ## STR1 ## In an optical anisotropic body formed of a liquid crystal polymer containing at least one component represented by the formula, the liquid crystal polymer and the substrate are chemically bonded at the interface thereof. ..
【請求項2】前記液晶高分子が、アクリル鎖を主に骨格
に有する高分子であり、前記透明な基板上に一軸性配向
をしていることを特徴とする請求項1記載の光学異方
体。
2. The optically anisotropic medium according to claim 1, wherein the liquid crystal polymer is a polymer mainly having an acrylic chain in a skeleton and is uniaxially aligned on the transparent substrate. body.
【請求項3】前記液晶高分子が、メタクリル鎖を主に骨
格に有する高分子であり、前記透明な基板上に一軸性配
向をしていることを特徴とする請求項1記載の光学異方
体。
3. The optical anisotropic method according to claim 1, wherein the liquid crystal polymer is a polymer mainly having a methacryl chain in a skeleton and is uniaxially aligned on the transparent substrate. body.
【請求項4】前記液晶高分子が、少なくとも一成分の光
学活性物を含み前記基板法線方向に螺旋軸をもつ捻れ配
向していることを特徴とする請求項2、請求項3記載の
光学異方体。
4. The optical element according to claim 2, wherein the liquid crystal polymer contains at least one component of an optically active substance and has a twisted orientation having a helical axis in a direction normal to the substrate. Anisotropy.
【請求項5】前記液晶高分子のガラス転移温度が、室温
以上であることを特徴とする請求項1、請求項2、請求
項3、請求項4記載の光学異方体。
5. The optically anisotropic body according to claim 1, wherein the glass transition temperature of the liquid crystal polymer is room temperature or higher.
【請求項6】前記透明な基板が有機高分子であることを
特徴とする請求項5記載の光学異方体。
6. The optically anisotropic body according to claim 5, wherein the transparent substrate is an organic polymer.
【請求項7】前記透明な基板が有機高分子を一軸或いは
二軸に延伸した配向性高分子基板であることを特徴とす
る請求項5記載の光学異方体。
7. The optically anisotropic body according to claim 5, wherein the transparent substrate is an oriented polymer substrate obtained by uniaxially or biaxially stretching an organic polymer.
【請求項8】透明な基板上に一軸配向或いは、捻れ配向
した液晶重合体を形成した光学異方体の製造方法におい
て、前記透明な基板上に配向処理を行う工程と、前記基
板表面を活性化する工程と、活性化した透明基板を重合
性モノマーの溶液に浸し、重合体を透明基板表面に積層
する工程と、乾燥する工程と、積層した重合体を配向さ
せる工程と、前記透明基板を配向処理温度から冷却する
工程とを含むことを特徴とする請求項6、請求項7記載
の光学異方体の製造方法。
8. In a method for producing an optically anisotropic body in which a liquid crystal polymer having a uniaxial orientation or a twist orientation is formed on a transparent substrate, a step of performing an orientation treatment on the transparent substrate and activating the substrate surface. Step of immersing, the activated transparent substrate is immersed in a solution of a polymerizable monomer, the step of laminating the polymer on the transparent substrate surface, the step of drying, the step of orienting the laminated polymer, the transparent substrate 8. The method for producing an optically anisotropic body according to claim 6, further comprising the step of cooling from the orientation treatment temperature.
【請求項9】透明な基板上に一軸配向または、捻れ配向
した液晶重合体を形成した光学異方体の製造方法に於い
て、前記透明な基板表面を活性化する工程と、配向処理
を行う工程とを同時に行った後、活性化した透明基板を
重合性モノマーの溶液に浸し、重合体を透明基板表面に
積層する工程と、乾燥する工程と、積層した重合体を配
向させる工程と、前記透明基板を配向処理温度から冷却
する工程とを含むことを特徴とする請求項6、請求項7
記載の光学異方体の製造方法。
9. A method for producing an optically anisotropic body in which a uniaxially or twisted liquid crystal polymer is formed on a transparent substrate, wherein a step of activating the transparent substrate surface and an alignment treatment are carried out. After performing the step at the same time, the activated transparent substrate is immersed in a solution of a polymerizable monomer, the step of laminating the polymer on the transparent substrate surface, the step of drying, the step of orienting the laminated polymer, Cooling the transparent substrate from the orientation treatment temperature.
A method for producing the described optically anisotropic body.
【請求項10】前記基板表面を活性化と、配向処理を同
時に行う工程が、表面活性化のエネルギー源から基板表
面までの距離を表面上の2点で異なるように配置し、活
性化エネルギー源から基板表面までの距離に長短の差を
つけ、液晶の配向能力を液晶セルの基板表面に付与する
工程であることを特徴とする請求項9記載の光学異方体
の製造方法。
10. The step of simultaneously activating the substrate surface and carrying out the alignment treatment is arranged such that the distance from the surface activation energy source to the substrate surface is different at two points on the surface, and the activation energy source is provided. 10. The method for producing an optical anisotropic body according to claim 9, which is a step of imparting a liquid crystal alignment ability to the substrate surface of the liquid crystal cell by providing a short distance from the substrate surface to the substrate surface.
【請求項11】透明な基板上に一軸配向または、捻れ配
向した液晶重合体を形成した光学異方体の製造方法にお
いて、前記基板表面を配向処理する工程が、ラビング方
法である事を特徴とする請求項8記載の光学異方体の製
造方法。
11. In a method for producing an optically anisotropic body in which a uniaxially or twisted liquid crystal polymer is formed on a transparent substrate, the step of aligning the surface of the substrate is a rubbing method. The method for producing an optically anisotropic body according to claim 8.
【請求項12】電極を形成した基板に液晶を挟んでなる
液晶セルと、少なくとも1つの光学異方体と、少なくと
も1枚の偏光板と、液晶駆動用ドライバーと液晶駆動用
回路からなる液晶装置において、前記光学異方体を液晶
セルの少なくとも一方の面に設置した事を特徴とする請
求項10、請求項11記載の光学異方体を備えた液晶装
置。
12. A liquid crystal device comprising a liquid crystal cell in which liquid crystal is sandwiched between substrates on which electrodes are formed, at least one optically anisotropic body, at least one polarizing plate, a liquid crystal driving driver and a liquid crystal driving circuit. 12. The liquid crystal device having an optical anisotropic body according to claim 10, wherein the optical anisotropic body is installed on at least one surface of a liquid crystal cell.
【請求項13】前記光学異方体の透明な基板と、液晶セ
ルの一方の透明基板とが、密着していることを特徴とす
る請求項10請求項11記載の光学異方体を備えた液晶
装置。
13. The optical anisotropic body according to claim 11, wherein the transparent substrate of the optical anisotropic body and one transparent substrate of the liquid crystal cell are in close contact with each other. Liquid crystal device.
JP4009537A 1992-01-22 1992-01-22 Optically anisotropic substance and production of optically anisotropic substance as well as liquid crystal device having optically anisotropic substance Pending JPH05196815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4009537A JPH05196815A (en) 1992-01-22 1992-01-22 Optically anisotropic substance and production of optically anisotropic substance as well as liquid crystal device having optically anisotropic substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4009537A JPH05196815A (en) 1992-01-22 1992-01-22 Optically anisotropic substance and production of optically anisotropic substance as well as liquid crystal device having optically anisotropic substance

Publications (1)

Publication Number Publication Date
JPH05196815A true JPH05196815A (en) 1993-08-06

Family

ID=11723021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4009537A Pending JPH05196815A (en) 1992-01-22 1992-01-22 Optically anisotropic substance and production of optically anisotropic substance as well as liquid crystal device having optically anisotropic substance

Country Status (1)

Country Link
JP (1) JPH05196815A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333433A (en) * 1994-06-08 1995-12-22 Fuji Photo Film Co Ltd Optical compensating sheet and liquid crystal display device using same
US6008875A (en) * 1996-04-30 1999-12-28 Nec Corporation TN-mode liquid crystal display wherein a leveling layer is formed on the surface of an uneven electrode
JP2002012580A (en) * 2000-04-28 2002-01-15 Seimi Chem Co Ltd Optically active compound, method for producing the same, liquid crystal composition and liquid crystal element containing the compound
JP2002296416A (en) * 2001-03-29 2002-10-09 Mitsui Chemicals Inc Optical element and method for manufacturing the same
JP2004530734A (en) * 2000-12-29 2004-10-07 ロリク アーゲー Photoactive copolymer
WO2007118492A1 (en) * 2006-04-13 2007-10-25 Universite De Mons Hainaut Pdlc films

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333433A (en) * 1994-06-08 1995-12-22 Fuji Photo Film Co Ltd Optical compensating sheet and liquid crystal display device using same
US6008875A (en) * 1996-04-30 1999-12-28 Nec Corporation TN-mode liquid crystal display wherein a leveling layer is formed on the surface of an uneven electrode
KR100254834B1 (en) * 1996-04-30 2000-05-01 가네꼬 히사시 Liquid crystal display apparatus having improved gray scale display characteristics
US6160602A (en) * 1996-04-30 2000-12-12 Nec Corporation TN-mode liquid crystal display apparatus having improved gray scale display characteristics
US6580485B1 (en) 1996-04-30 2003-06-17 Nec Corporation Liquid crystal display apparatus having improved gray scale display characteristics
JP2002012580A (en) * 2000-04-28 2002-01-15 Seimi Chem Co Ltd Optically active compound, method for producing the same, liquid crystal composition and liquid crystal element containing the compound
JP2004530734A (en) * 2000-12-29 2004-10-07 ロリク アーゲー Photoactive copolymer
JP2002296416A (en) * 2001-03-29 2002-10-09 Mitsui Chemicals Inc Optical element and method for manufacturing the same
JP4684447B2 (en) * 2001-03-29 2011-05-18 三井化学株式会社 Optical element and manufacturing method thereof
WO2007118492A1 (en) * 2006-04-13 2007-10-25 Universite De Mons Hainaut Pdlc films
US8187493B2 (en) 2006-04-13 2012-05-29 Université de Mons PDLC films

Similar Documents

Publication Publication Date Title
KR100717564B1 (en) Liquid crystal display device
EP3491434B1 (en) Method for generating alignment on top of a liquid crystal polymer material
JP4137438B2 (en) Optical film, polarizing film using the same, and method for improving viewing angle of polarizing film
EP1757961A2 (en) Optical film and polyrizing film using the same, and method for improving view angle of the polarizing film
TWI465337B (en) Optical compensation film, method of producing the same, and polarizing plate and liquid crystal display device using the same
KR19980020832A (en) Manufacturing method of liquid crystal aligning film by magnetic field treatment
EP0678567A1 (en) Retardation film and production thereof
CN110662775B (en) Polymerizable liquid crystal composition, optically anisotropic layer, optical laminate, method for producing optical laminate, and image display device
US20110058127A1 (en) Optical compensation sheet, polarizing plate, liquid crystal display and method of manufacturing optical compensation sheet
JP3935489B2 (en) Liquid crystal display
CN110431457B (en) Optical film, optical film laminate, polarizing plate, and image display device
JP2024022690A (en) Optical laminates, image display devices and glass composites
JP2004163866A (en) Liquid crystal device
JP2004226686A (en) Rolled web for wideband quarter-wave plate, rolled web for wideband circularly polarizing plate, rolled web for optical device, and display device
JP2009288440A (en) Retardation film, method for manufacturing retardation film, polarizing plate, and liquid crystal display
WO2018030449A1 (en) Optical film, polarizing plate, and image display device
JP3508918B2 (en) Method for manufacturing liquid crystal alignment film and liquid crystal display device
JPH08209127A (en) Optically anisotropic element, its production and liquid crystal display element
JPH05196815A (en) Optically anisotropic substance and production of optically anisotropic substance as well as liquid crystal device having optically anisotropic substance
WO2005116700A1 (en) Elliptical polarizing plate and image display
JP2001154019A (en) Method for manufacturing optically anisotropic body
KR20020064284A (en) Optical compensator and liquid crystal display
JP4419221B2 (en) Polymer optical low-pass filter, its production method, and polymer optical low-pass filter composite
JP3616854B2 (en) Polarizing element, manufacturing method thereof, and liquid crystal display device
WO2004063780A1 (en) Broad-band-cholesteric liquid-crystal film and process for producing the same, circularly polarizing plate, linearly polarizing element, illuminator, and liquid-crystal display