JPH05196608A - Separated eddy current flaw detecting method - Google Patents

Separated eddy current flaw detecting method

Info

Publication number
JPH05196608A
JPH05196608A JP4009103A JP910392A JPH05196608A JP H05196608 A JPH05196608 A JP H05196608A JP 4009103 A JP4009103 A JP 4009103A JP 910392 A JP910392 A JP 910392A JP H05196608 A JPH05196608 A JP H05196608A
Authority
JP
Japan
Prior art keywords
phase difference
detected
signal
exciting
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4009103A
Other languages
Japanese (ja)
Inventor
Katsumi Morihara
勝美 森原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP4009103A priority Critical patent/JPH05196608A/en
Publication of JPH05196608A publication Critical patent/JPH05196608A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To obtain a phase difference signal corresponding to the size of a flaw without any influence of the permeability of a material to be detected. CONSTITUTION:An exciting coil 2 and a receiving coil 4 is arranged with a space between each other in a steel pipe 3, being a material to be detected. A power source 1 excites the exciting coil 2, and magnetic flux generated from the exciting coil 2 is detected by the receiving coil 4. Phase difference phi1 between an exciting signal and a detecting signal is detected by a phase difference detecting circuit 5. The average amplitude A1 of the detecting signal is corrected according to a constant A0, (a) set in a constant setting circuit 8 by an amplitude correcting circuit 7. The detected phase difference is corrected by a phase difference correcting circuit 9. Thereby it is possible to obtain a phase difference signal allowing hard influence of the permeability mu of the steel pipe 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、地中埋設鋼管などの被
検出材の腐食減肉を検査するためなどに用いられる離隔
渦流探傷方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separated eddy current flaw detection method and apparatus used for inspecting corrosion thinning of a material to be detected such as an underground steel pipe.

【0002】[0002]

【従来の技術】従来から、離隔渦流探傷方法は、リモー
トフィールド渦流探傷(略称「RFEC」)法とも呼ば
れ、地中埋設鋼管などの金属製管の腐食減肉を検査する
ために用いられている。離隔渦流探傷方法の実施は、管
内に励磁コイルと受信コイルとを、その管軸方向に間隔
をあけて配置して行う。この間隔は、励磁コイルからの
直接の磁場の影響が受信コイルにおよばないように、通
常直径(すなわち管の外径)の2〜4倍とすることが必
要とされている。
2. Description of the Related Art Conventionally, a remote eddy current flaw detection method is also called a remote field eddy current flaw detection (abbreviated as "RFEC") method, and has been used for inspecting corrosion thinning of metal pipes such as underground steel pipes. There is. The remote eddy current flaw detection method is performed by arranging an exciting coil and a receiving coil in the tube with a space in the axial direction of the tube. This distance is required to be 2 to 4 times the normal diameter (that is, the outer diameter of the tube) so that the influence of the direct magnetic field from the exciting coil does not affect the receiving coil.

【0003】励磁コイルに交流電流を流すと、励磁コイ
ルからの磁束が管を貫通して外部空間を通り、管の外面
に沿って伝わる。受信コイルには、再び管を貫通する磁
束が受信される。この磁束の電磁波は、管の肉厚部を通
過するときの速度の方が空気中を通過するときの速度に
比べて大幅に小さい。したがって、この伝播時間、すな
わち励磁コイルの励磁信号と受信コイルの検出信号との
位相差が、管の肉厚に比例して変化する。このことか
ら、位相差に対応した管の腐食減肉を検出することがで
きる。
When an alternating current is passed through the exciting coil, the magnetic flux from the exciting coil penetrates the tube, passes through the external space, and is transmitted along the outer surface of the tube. The magnetic flux penetrating the tube is again received by the receiving coil. The electromagnetic wave of this magnetic flux has a significantly smaller speed when passing through the thick portion of the tube than when passing through the air. Therefore, this propagation time, that is, the phase difference between the excitation signal of the exciting coil and the detection signal of the receiving coil changes in proportion to the wall thickness of the tube. From this, it is possible to detect the corrosion thinning of the pipe corresponding to the phase difference.

【0004】[0004]

【発明が解決しようとする課題】離隔渦流探傷方法で
は、検出される位相差は被検出材の透磁率μの平方根に
比例する。透磁率の値は材質によって大きく変化する。
したがって、被検出材を貫通する磁束の部分的な位相差
の変化によって、腐食減肉状態の発生を検出することは
可能であるけれども、定量評価することは困難である。
このため、離隔渦流探傷方法による位相差信号の出力を
記録計に出力して、その出力から欠陥の有無を知ること
ができる。欠陥の大きさについては、推測するのみであ
る。
In the separated eddy current flaw detection method, the detected phase difference is proportional to the square root of the magnetic permeability μ of the material to be detected. The value of magnetic permeability varies greatly depending on the material.
Therefore, although it is possible to detect the occurrence of the corrosion thinning state by the partial change in the phase difference of the magnetic flux penetrating the material to be detected, it is difficult to quantitatively evaluate.
Therefore, the output of the phase difference signal by the separated eddy current flaw detection method can be output to the recorder, and the presence or absence of a defect can be known from the output. The size of the defect can only be estimated.

【0005】本発明の目的は、被検出材の材質に関係な
く、同一の欠陥には同一の位相差信号を発生することが
できる離隔渦流探傷方法および装置を提供することであ
る。
An object of the present invention is to provide a separated eddy current flaw detection method and apparatus capable of generating the same phase difference signal for the same defect regardless of the material of the material to be detected.

【0006】[0006]

【課題を解決するための手段】本発明は、励磁コイルを
励磁信号で励磁して磁束を発生させ、受信コイルによっ
て被検出材を貫通する磁束を検出し、受信コイルからの
検出信号の振幅平均A1を或る値A0に正規化した値に
ついて、予め定める指数aに対する累乗値を求め、前記
励磁信号と検出信号との位相差φ1を求められた累乗値
に掛けた値φ1・(A1/A0)a を位相差として求
め、求められた位相差に対応して被検出材の肉厚減少箇
所を検知することを特徴とする離隔渦流探傷方法であ
る。
According to the present invention, an exciting coil is excited by an exciting signal to generate a magnetic flux, the receiving coil detects the magnetic flux penetrating a material to be detected, and the amplitude average of the detection signal from the receiving coil is detected. With respect to a value obtained by normalizing A1 to a certain value A0, a power value with respect to a predetermined index a is obtained, and the obtained power value is multiplied by the phase difference φ1 between the excitation signal and the detection signal φ1 · (A1 / A0 ) A is a phase difference, and the separated eddy current flaw detection method is characterized by detecting a portion where the thickness of the material to be detected is reduced corresponding to the calculated phase difference.

【0007】本発明は、励磁コイルと、被検出材に沿っ
て励磁コイルから間隔をあけて配置される受信コイル
と、励磁コイルを励磁する励磁信号の位相と、励磁コイ
ルから発生され、被検出材を貫通する磁束によって受信
コイルに発生する検出信号の位相とを比較し、位相差φ
1を表す信号を導出する位相差比較手段と、受信コイル
からの検出信号に応答し、検出信号の振幅平均A1を或
る値A0で正規化し、予め定める指数aに対する累乗値
を表す信号を導出する振幅補正手段と、位相比較手段お
よび振幅補正手段からの信号に応答し、被検出材の肉厚
に対応する位相差φを、演算式
According to the present invention, the exciting coil, the receiving coil arranged along the material to be detected and spaced from the exciting coil, the phase of the exciting signal for exciting the exciting coil, and the detected coil generated from the exciting coil. The phase difference φ is compared with the phase of the detection signal generated in the receiving coil by the magnetic flux penetrating the material.
In response to the detection signal from the receiving coil and the phase difference comparison means for deriving a signal representing 1, the amplitude average A1 of the detection signal is normalized by a certain value A0, and a signal representing a power value with respect to a predetermined index a is derived. The phase difference φ corresponding to the thickness of the material to be detected is calculated in response to the signals from the amplitude correction means and the phase comparison means and the amplitude correction means.

【0008】[0008]

【数1】φ=φ1・(A1/A0)a に従って位相差補正手段とを含むことを特徴とする離隔
渦流探傷装置である。
## EQU1 ## A separated eddy current flaw detector characterized by including phase difference correction means according to φ = φ1 (A1 / A0) a .

【0009】[0009]

【作用】本発明に従えば、励磁コイルから発生された磁
束は被検出材を貫通して受信コイルによって検出され
る。検出信号の振幅平均A1は、或る値A0と予め定め
る指数aによって補正される。励磁コイルを励磁する励
磁信号と検出信号との位相差φ1を振幅についての補正
値と乗算して、φ1・(A1/A0)a を位相差として
求める。このように位相差を補正することによって、被
検出材の透磁率の変化の影響を受けにくくすることがで
きる。位相差に対応して被検出材の肉厚減少箇所を検知
するので、肉厚減少などの欠陥の大きさを容易に検知す
ることができる。
According to the present invention, the magnetic flux generated from the exciting coil penetrates the material to be detected and is detected by the receiving coil. The amplitude average A1 of the detection signal is corrected by a certain value A0 and a predetermined index a. The phase difference φ1 between the excitation signal for exciting the exciting coil and the detection signal is multiplied by the correction value for the amplitude to obtain φ1 · (A1 / A0) a as the phase difference. By correcting the phase difference in this way, it is possible to reduce the influence of changes in the magnetic permeability of the material to be detected. Since the location where the thickness of the material to be detected is reduced is detected in accordance with the phase difference, the size of the defect such as the thickness reduction can be easily detected.

【0010】また本発明に従えば、離隔渦流探傷装置
は、励磁コイルと、受信コイルと、位相差比較手段と、
振幅補正手段と、位相差補正手段とを含む。励磁コイル
と受信コイルとは、被検出材に沿って間隔をあけて配置
され、励磁コイルを励磁する励磁信号の位相と、励磁コ
イルから発生されて被検出材を貫通する磁束によって受
信コイルに発生する検出信号の位相とは、位相差比較手
段によって比較される。検出信号の振幅平均A1は間隔
補正手段によって補正される。位相差補正手段は、位相
比較手段からの位相差φ1を振幅補正手段からの信号に
よって補正して、位相差φ、
According to the invention, the isolated eddy current flaw detector has an exciting coil, a receiving coil, a phase difference comparing means,
It includes an amplitude correction means and a phase difference correction means. The exciting coil and the receiving coil are arranged at intervals along the material to be detected, and are generated in the receiving coil by the phase of the excitation signal for exciting the exciting coil and the magnetic flux generated from the exciting coil and penetrating the material to be detected. The phase of the detection signal to be compared is compared by the phase difference comparison means. The amplitude average A1 of the detection signal is corrected by the interval correction means. The phase difference correction means corrects the phase difference φ1 from the phase comparison means with a signal from the amplitude correction means to obtain a phase difference φ,

【0011】[0011]

【数3】φ=φ1・(A1/A0)a を求める。この補正によって、位相差φは被検出材の透
磁率μの変化を受けなくなるので、被検出材の肉厚が腐
食などによって減少する欠陥を検知してその大きさを知
ることができる。
Mathematical Expression 3 φ = φ1 · (A1 / A0) a is obtained. By this correction, the phase difference φ is not affected by the change in the magnetic permeability μ of the material to be detected, so that it is possible to detect the defect in which the thickness of the material to be detected is reduced due to corrosion or the like, and to know its size.

【0012】[0012]

【実施例】図1は、本発明の一実施例の全体の電気的構
成を示す。離隔渦流探傷方法を実施するために、電源1
によって励磁される励磁コイル2と、被検出材である鋼
管3の管軸に沿って間隔をあけて受信コイル4とが設け
られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the overall electrical construction of an embodiment of the present invention. In order to carry out the remote eddy current flaw detection method, the power source 1
An exciting coil 2 that is excited by the receiving coil 4 and a receiving coil 4 are provided at intervals along the tube axis of a steel pipe 3 that is a material to be detected.

【0013】図2は、図1に示される実施例の原理を説
明するための概略的な斜視図である。地中に埋設されて
いる鋼管3などの管の腐食減肉状態を検査するために、
本発明に従う離隔渦流探傷方法が用いられる。受信コイ
ル4としては、鋼管3の内周面に沿って90°ずつずら
して4つのコイル4a,4b,4c,4dが配置され
る。励磁コイル2と受信コイル4とを、鋼管3の管軸方
向の距離Lを一定に保ちながら、管軸方向に移動するこ
とによって、鋼管3の腐食減肉状態を検査することがで
きる。励磁コイル2と受信コイル4との間隔Lは、励磁
コイル2からの直接の磁束が受信コイル4によって検出
されないように定められる。一般的には、たとえば鋼管
3の外径Dの3倍以上に選ばれる。
FIG. 2 is a schematic perspective view for explaining the principle of the embodiment shown in FIG. In order to inspect the corrosion thinning state of pipes such as steel pipes 3 buried in the ground,
The isolated eddy current flaw detection method according to the present invention is used. As the receiving coil 4, four coils 4a, 4b, 4c and 4d are arranged along the inner peripheral surface of the steel pipe 3 while being shifted by 90 °. By moving the exciting coil 2 and the receiving coil 4 in the pipe axial direction while keeping the distance L in the pipe axial direction of the steel pipe 3 constant, the corrosion thinning state of the steel pipe 3 can be inspected. The distance L between the exciting coil 2 and the receiving coil 4 is determined so that the direct magnetic flux from the exciting coil 2 is not detected by the receiving coil 4. Generally, it is selected to be, for example, three times or more the outer diameter D of the steel pipe 3.

【0014】励磁コイル2からの磁束は、鋼管3を貫通
して空中である外部空間を通り、再び被検出材である鋼
管3を貫通して受信コイル4に到達する。この磁束とし
ての電磁波の速度は、鋼管3内の方が外部空間に比べて
大幅に小さいので、その伝幡時間、すなわち励磁コイル
2の励磁信号と受信コイル4の検出信号との位相差は、
鋼管3の厚みに対応する。
The magnetic flux from the exciting coil 2 passes through the steel pipe 3, passes through the external space in the air, and again passes through the steel pipe 3, which is the material to be detected, and reaches the receiving coil 4. Since the velocity of the electromagnetic wave as the magnetic flux is significantly smaller in the steel pipe 3 than in the external space, the propagation time, that is, the phase difference between the excitation signal of the excitation coil 2 and the detection signal of the reception coil 4 is
It corresponds to the thickness of the steel pipe 3.

【0015】励磁信号と検出信号との位相の遅れ、すな
わち位相差φ1は、次の数4の式で示される。
The phase delay between the excitation signal and the detection signal, that is, the phase difference φ1 is expressed by the following equation (4).

【0016】[0016]

【数4】 [Equation 4]

【0017】ここでdは鋼管3の厚み、πは円周率、f
は励磁信号の周波数、μは鋼管3の透磁率、σは鋼管3
の導電率を示す。すなわち位相差φ1は、鋼管3の透磁
率μに関して単調増加である。
Here, d is the thickness of the steel pipe 3, π is the circular constant, and f
Is the frequency of the excitation signal, μ is the permeability of the steel pipe 3, and σ is the steel pipe 3.
Shows the electrical conductivity of. That is, the phase difference φ1 is monotonically increasing with respect to the magnetic permeability μ of the steel pipe 3.

【0018】受信コイル4の検出信号の振幅平均A1
は、次の数5の式で示される。
Amplitude average A1 of the detection signal of the receiving coil 4
Is expressed by the following equation (5).

【0019】[0019]

【数5】 [Equation 5]

【0020】ここで、d,π,f,μ,σは、上述の数
4の式と同じである。すなわち検出信号の振幅平均A1
は、透磁率μに関して単調減少である。鋼管3の材質に
よって透磁率μは大きく変動するけれども、導電率σの
変動は少ない。
Here, d, π, f, μ and σ are the same as those in the above equation (4). That is, the amplitude average A1 of the detection signal
Is a monotonic decrease in magnetic permeability μ. Although the magnetic permeability μ varies greatly depending on the material of the steel pipe 3, the conductivity σ varies little.

【0021】図1図示の実施例においては、励磁コイル
2と受信コイル4との位相差φ1は、位相差検出回路5
によって検出される。受信コイル4からの検出信号の振
幅は、振幅測定回路6によって測定される。この測定値
は、振幅補正回路7によって、定数設定回路8に設定さ
れている定数A0およびaの値を用いて補正される。A
0の値は、振幅平均A1を正規化するための値であり、
aの値は、正規化された振幅に対する指数である。振幅
補正回路7からの出力は、(A1/A0)a を表す。
In the embodiment shown in FIG. 1, the phase difference φ1 between the exciting coil 2 and the receiving coil 4 is the phase difference detecting circuit 5
Detected by. The amplitude of the detection signal from the receiving coil 4 is measured by the amplitude measuring circuit 6. This measured value is corrected by the amplitude correction circuit 7 using the values of the constants A0 and a set in the constant setting circuit 8. A
A value of 0 is a value for normalizing the amplitude average A1,
The value of a is an index for the normalized amplitude. The output from the amplitude correction circuit 7 represents (A1 / A0) a .

【0022】位相差検出回路5および振幅補正回路7か
らの出力は、位相差補正回路9に与えられる。位相差補
正回路9は、次の数6の式に従って、補正された位相差
φを求める。
The outputs from the phase difference detection circuit 5 and the amplitude correction circuit 7 are given to the phase difference correction circuit 9. The phase difference correction circuit 9 obtains the corrected phase difference φ according to the following equation (6).

【0023】[0023]

【数6】φ=φ1・(A1/A0)a この補正された位相差φは、比較回路10に与えられ、
基準値設定回路11に予め設定されている位相差の基準
値と比較される。位相差φが基準値以上となると、腐食
減肉などによる欠陥と判断され、出力回路12から警報
などが出力される。
Φ = φ1 · (A1 / A0) a This corrected phase difference φ is given to the comparison circuit 10,
It is compared with the reference value of the phase difference preset in the reference value setting circuit 11. When the phase difference φ is equal to or greater than the reference value, it is determined that the defect is caused by corrosion wall thinning, and the output circuit 12 outputs an alarm or the like.

【0024】図1図示の実施例による実験結果の一例を
次の表1に示す。
Table 1 below shows an example of the experimental results according to the embodiment shown in FIG.

【0025】[0025]

【表1】 [Table 1]

【0026】この実験データから図3に示すグラフが得
られる。このグラフから、指数aの値が求められる。
The graph shown in FIG. 3 is obtained from this experimental data. The value of the index a can be obtained from this graph.

【0027】この実験データで、縦軸に位相差φ1をと
り、横軸に振幅Vをとると、図4に示すように、位相差
の値のばらつきが大きくなる。このばらつきは被検出材
の透磁率μの変化による。位相差を補正すると、図5の
ように、補正した位相差のばらつきは小さくなる。図6
は、さらに多くの試料について試験結果を示す。このう
ち、励磁5Vについて、補正の効果を図7に示す。この
ようにして、鋼管3の透磁率に依存することなく、腐食
減肉箇所などの肉厚に対応した位相差を得ることができ
る。
In this experimental data, when the vertical axis represents the phase difference φ1 and the horizontal axis represents the amplitude V, the variation in the phase difference value becomes large as shown in FIG. This variation is due to a change in magnetic permeability μ of the material to be detected. When the phase difference is corrected, the variation in the corrected phase difference becomes small as shown in FIG. Figure 6
Shows the test results for more samples. Of these, the effect of correction for excitation of 5 V is shown in FIG. In this way, it is possible to obtain a phase difference corresponding to the wall thickness of the corrosion-reduced portion without depending on the magnetic permeability of the steel pipe 3.

【0028】[0028]

【発明の効果】以上のように本発明によれば、被検出材
の材質による透磁率変化の影響を受けずに、腐食減肉な
どの欠陥の大きさに対応する位相差信号を得ることがで
きる。これによって肉厚箇所を正しく検知することがで
きる。
As described above, according to the present invention, it is possible to obtain a phase difference signal corresponding to the size of a defect such as corrosion wall thinning without being affected by the change in magnetic permeability depending on the material of the material to be detected. it can. This makes it possible to correctly detect the thick portion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の大略的な電気的構成を示す
ブロック図である。
FIG. 1 is a block diagram showing a schematic electrical configuration of an embodiment of the present invention.

【図2】本発明の原理を示す概略的な斜視図である。FIG. 2 is a schematic perspective view showing the principle of the present invention.

【図3】図1図示の実施例による検出信号の振幅と励磁
信号に対する位相差との関係を示すグラフである。
3 is a graph showing the relationship between the amplitude of the detection signal and the phase difference with respect to the excitation signal according to the embodiment shown in FIG.

【図4】図1図示の実施例による検出信号の振幅と励磁
信号に対する位相差との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the amplitude of the detection signal and the phase difference with respect to the excitation signal according to the embodiment shown in FIG.

【図5】図1図示の実施例による補正した位相差と振幅
との関係を示すグラフである。
5 is a graph showing the relationship between the corrected phase difference and amplitude according to the embodiment shown in FIG.

【図6】図1図示の実施例による検出信号の振幅と励磁
信号に対する位相差との関係を示すグラフである。
6 is a graph showing the relationship between the amplitude of the detection signal and the phase difference with respect to the excitation signal according to the embodiment shown in FIG.

【図7】図6図示の試料による補正の効果を示すグラフ
である。
7 is a graph showing the effect of correction by the sample shown in FIG.

【符号の説明】[Explanation of symbols]

1 電源 2 励磁コイル 3 鋼管 4 受信コイル 5 位相差検出回路 7 振幅補正回路 8 定数設定回路 9 位相差補正回路 10 比較回路 1 Power Supply 2 Excitation Coil 3 Steel Tube 4 Receiver Coil 5 Phase Difference Detection Circuit 7 Amplitude Correction Circuit 8 Constant Setting Circuit 9 Phase Difference Correction Circuit 10 Comparison Circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 励磁コイルを励磁信号で励磁して磁束を
発生させ、 受信コイルによって被検出材を貫通する磁束を検出し、 受信コイルからの検出信号の振幅平均A1を或る値A0
に正規化した値について、予め定める指数aに対する累
乗値を求め、 前記励磁信号と検出信号との位相差φ1を求められた累
乗値に掛けた値φ1・(A1/A0)a を位相差として
求め、 求められた位相差に対応して被検出材の肉厚減少箇所を
検知することを特徴とする離隔渦流探傷方法。
1. An exciting coil is excited by an exciting signal to generate a magnetic flux, the receiving coil detects the magnetic flux penetrating a material to be detected, and the amplitude average A1 of the detection signal from the receiving coil is set to a certain value A0.
Then, a power value with respect to a predetermined exponent a is calculated for the value normalized to, and a value φ1 · (A1 / A0) a obtained by multiplying the calculated power value by the phase difference φ1 between the excitation signal and the detection signal is used as the phase difference. A separated eddy current flaw detection method, which is characterized by detecting a location where the wall thickness of the material to be detected is reduced corresponding to the obtained phase difference.
【請求項2】 励磁コイルと、 被検出材に沿って励磁コイルから間隔をあけて配置され
る受信コイルと、 励磁コイルを励磁する励磁信号の位相と、励磁コイルか
ら発生され、被検出材を貫通する磁束によって受信コイ
ルに発生する検出信号の位相とを比較し、位相差φ1を
表す信号を導出する位相差比較手段と、 受信コイルからの検出信号に応答し、検出信号の振幅平
均A1を或る値A0で正規化し、予め定める指数aに対
する累乗値を表す信号を導出する振幅補正手段と、位相
比較手段および振幅補正手段からの信号に応答し、被検
出材の肉厚に対応する位相差φを、演算式 【数1】φ=φ1・(A1/A0)a に従って位相差補正手段とを含むことを特徴とする離隔
渦流探傷装置。
2. An exciting coil, a receiving coil arranged along the material to be detected and spaced from the exciting coil, a phase of an excitation signal for exciting the exciting coil, and a material to be detected generated from the exciting coil. Phase difference comparison means for comparing the phase of the detection signal generated in the receiving coil by the penetrating magnetic flux and deriving a signal representing the phase difference φ1 and the amplitude average A1 of the detection signal in response to the detection signal from the receiving coil. Amplitude correction means for deriving a signal representing a power value with respect to a predetermined index a, normalized by a certain value A0, and a position corresponding to the thickness of the material to be detected in response to the signals from the phase comparison means and the amplitude correction means. A separated eddy current flaw detector comprising a phase difference correction means for calculating the phase difference φ according to an arithmetic expression φ = φ1 · (A1 / A0) a .
JP4009103A 1992-01-22 1992-01-22 Separated eddy current flaw detecting method Pending JPH05196608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4009103A JPH05196608A (en) 1992-01-22 1992-01-22 Separated eddy current flaw detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4009103A JPH05196608A (en) 1992-01-22 1992-01-22 Separated eddy current flaw detecting method

Publications (1)

Publication Number Publication Date
JPH05196608A true JPH05196608A (en) 1993-08-06

Family

ID=11711295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4009103A Pending JPH05196608A (en) 1992-01-22 1992-01-22 Separated eddy current flaw detecting method

Country Status (1)

Country Link
JP (1) JPH05196608A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350406A (en) * 2001-05-28 2002-12-04 Kawasaki Steel Corp Eddy current test equipment
JP2010038914A (en) * 2008-07-09 2010-02-18 Toshiba Corp Remote field eddy current flaw detecting probe
JP2016224010A (en) * 2015-06-03 2016-12-28 日立Geニュークリア・エナジー株式会社 Eddy current inspection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350406A (en) * 2001-05-28 2002-12-04 Kawasaki Steel Corp Eddy current test equipment
JP4715034B2 (en) * 2001-05-28 2011-07-06 Jfeスチール株式会社 Eddy current flaw detector
JP2010038914A (en) * 2008-07-09 2010-02-18 Toshiba Corp Remote field eddy current flaw detecting probe
JP2016224010A (en) * 2015-06-03 2016-12-28 日立Geニュークリア・エナジー株式会社 Eddy current inspection device

Similar Documents

Publication Publication Date Title
EP0321112B1 (en) Method for detecting corrosion on conductive containers
JP3428734B2 (en) Metal tube flaw detector and metal tube flaw detection method
US4107605A (en) Eddy current flaw detector utilizing plural sets of four planar coils, with the plural sets disposed in a common bridge
EP0321111B1 (en) Method for detecting corrosion on conductive containers having variations in jacket thickness
US3693075A (en) Eddy current system for testing tubes for defects,eccentricity,and wall thickness
US6456066B1 (en) Eddy current pipeline inspection device and method
US6570379B2 (en) Method for inspecting an object of electrically conducting material
JP4756409B1 (en) Nondestructive inspection apparatus and nondestructive inspection method using alternating magnetic field
JPH073408B2 (en) Pipeline pitting detector
CA2420309A1 (en) Measuring the wall thickness of an electrically conductive object
AU2002216205B2 (en) Measurement of stress in a ferromagnetic material
CN108692193A (en) A kind of Pulsed Eddy Current Testing System and method of small-caliber pipeline defect
JPS6314905B2 (en)
JPH05240841A (en) Apparatus for simulating electromagnetic field in pipe
JPH05196608A (en) Separated eddy current flaw detecting method
JP2016008931A (en) Nondestructive inspection system and nondestructive inspection method
JPH0641938B2 (en) Nondestructive measurement method for zirconium alloy materials
US10775347B2 (en) Material inspection using eddy currents
JPH0815229A (en) High resolution eddy current flaw detector
JPS6345555A (en) Inspection method for pitting corrosion of steel tube
JPH0552816A (en) Internally inserted probe for pulse-type eddy current examination
JPH0727744A (en) Noise elimination method in eddy current examination
JPH075408Y2 (en) Metal flaw detection probe
JPS63138259A (en) Magnetism probing method
JPS6027852A (en) Eddy-current flaw detector