JPH05193909A - Production of metal oxide powder - Google Patents

Production of metal oxide powder

Info

Publication number
JPH05193909A
JPH05193909A JP4008261A JP826192A JPH05193909A JP H05193909 A JPH05193909 A JP H05193909A JP 4008261 A JP4008261 A JP 4008261A JP 826192 A JP826192 A JP 826192A JP H05193909 A JPH05193909 A JP H05193909A
Authority
JP
Japan
Prior art keywords
metal oxide
powder
oxide powder
metal
synthesized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4008261A
Other languages
Japanese (ja)
Other versions
JP3229353B2 (en
Inventor
Sumio Kamiya
純生 神谷
Hideji Tanaka
秀二 田中
San Abe
賛 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Toyota Motor Corp
Original Assignee
Shin Etsu Chemical Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Toyota Motor Corp filed Critical Shin Etsu Chemical Co Ltd
Priority to JP00826192A priority Critical patent/JP3229353B2/en
Publication of JPH05193909A publication Critical patent/JPH05193909A/en
Application granted granted Critical
Publication of JP3229353B2 publication Critical patent/JP3229353B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/145After-treatment of oxides or hydroxides, e.g. pulverising, drying, decreasing the acidity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To improve the purity of a synthesized metal oxide powder by heat- treating the metal oxide powder produced in a reactor to volatilize off the impurities. CONSTITUTION:A metal powder and a carrier gas are supplied to a reactor filled with an oxidizing atmosphere. The powder is ignited in the reactor to form a flame, hence the powder is burned, and a metal oxide powder is synthesized. The synthesized metal oxide powder is heat-treated. In this case, the metal oxide powder is separated from the waste combustion gas and recovered at a controlled temp., and the recovered metal oxide powder is heated in a heat-treating furnace. Consequently, the volatile impurities such as fluorine, chlorine or NOx deposited or adsorbed on the metal oxide surface are volatilized off, and a high-purity metal oxide powder is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属粉末燃焼法により
金属粉末から金属酸化物粉末を合成する金属酸化物粉末
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal oxide powder by synthesizing a metal oxide powder from a metal powder by a metal powder combustion method.

【0002】[0002]

【従来の技術】近年、特開昭60−255602号公報
などにみられるように、金属粉末を燃焼させて金属酸化
物粉末を合成する金属粉末燃焼法が開発されている。こ
の製造方法を説明すると、アルミニウム、珪素、マグネ
シウムなどの金属粉末をキャリアガスとともに酸化性雰
囲気下の反応容器内に供給し、該反応容器内で着火させ
て火炎を形成する。この火炎中では、金属粉末、その酸
化物等が固体・液体・気体として存在しており、気体の
一部はプラズマ化していると考えられている。この様な
超高温下では酸化反応が瞬時に完結し、火炎冷却後は直
ちに酸化物粉末が合成される。その後燃料排ガス中に含
有される酸化物粉末はバグフィルタなどの回収装置等で
分離、回収される。
2. Description of the Related Art In recent years, a metal powder combustion method has been developed in which a metal powder is burned to synthesize a metal oxide powder, as disclosed in Japanese Patent Laid-Open No. 60-255602. This manufacturing method will be described. Metal powders of aluminum, silicon, magnesium, etc. are supplied together with a carrier gas into a reaction vessel under an oxidizing atmosphere and ignited in the reaction vessel to form a flame. In this flame, metal powder, oxides thereof, and the like exist as solids, liquids, and gases, and it is considered that a part of the gas is turned into plasma. Under such an ultrahigh temperature, the oxidation reaction is instantly completed, and the oxide powder is synthesized immediately after the flame cooling. After that, the oxide powder contained in the fuel exhaust gas is separated and collected by a collecting device such as a bag filter.

【0003】この製造方法によれば、アルミナ、シリ
カ、マグネシアなどの単独金属酸化物粉末はもとより、
ムライト、スピネルなどの複合金属酸化物粉末も容易に
製造することができる。
According to this manufacturing method, not only single metal oxide powders such as alumina, silica and magnesia but also
Complex metal oxide powders such as mullite and spinel can be easily manufactured.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記金属粉
末燃焼法は合成された酸化物粉末が真球状となる特徴を
有しており、半導体封止材、セラミックス原料、化粧品
材料などへの応用が考えられている。例えば、シリカガ
ラス・アルミナ等については、応用のひとつとして半導
体封止材が考えられている。ここで、半導体封止材等の
半導体産業用原料には、極めて高い純度が求められるこ
とが通例である。
By the way, the above-mentioned metal powder combustion method is characterized in that the synthesized oxide powder has a true spherical shape, and is applicable to semiconductor encapsulating materials, ceramic raw materials, cosmetic materials and the like. It is considered. For example, for silica glass, alumina, etc., a semiconductor encapsulating material is considered as one of the applications. Here, it is customary that raw materials for the semiconductor industry such as semiconductor encapsulating materials are required to have extremely high purity.

【0005】しかし、上記従来の金属粉末燃焼法により
合成された金属酸化物粉末の純度は必ずしもその要求に
応え得るものではなかった。このように、金属粉末燃焼
法においては、合成される金属酸化物粉末の純度を向上
させることが極めて重要である。合成された金属酸化物
粉末に含まれる不純物としては、陽イオン性、陰イオン
性、非イオン性の無機物又は有機物等に大別できる。金
属粉末燃焼法に用いられる金属粉末は、その純度制御の
ために、一般にフッ酸、塩酸、混酸等で酸処理が施され
ている。この酸処理は、主に陽イオン性、非イオン性の
無機物を除去するために行われる。そして、金属原料が
酸処理されると陰イオン性の物質で汚染されるため、酸
処理後の金属原料は水洗浄が行われている。
However, the purity of the metal oxide powder synthesized by the above-mentioned conventional metal powder combustion method cannot always meet the demand. As described above, in the metal powder combustion method, it is extremely important to improve the purity of the synthesized metal oxide powder. The impurities contained in the synthesized metal oxide powder can be roughly classified into cationic, anionic, nonionic inorganic substances, organic substances and the like. The metal powder used in the metal powder combustion method is generally subjected to an acid treatment with hydrofluoric acid, hydrochloric acid, mixed acid or the like in order to control the purity thereof. This acid treatment is mainly carried out to remove cationic and nonionic inorganic substances. When the metal raw material is acid-treated, it is contaminated with an anionic substance. Therefore, the metal raw material after the acid treatment is washed with water.

【0006】しかし、本発明者が検討した結果、このよ
うに酸処理された金属粉末を用いても、合成された金属
酸化物粉末の抽出水には、フッ素イオンや塩素イオンが
数ppm〜数十ppm程度含有されていることが判明し
た。また、キャリアガスとして空気や窒素などを用いた
場合、燃焼火炎中に汚染物質としてのNOx が生成し、
その結果合成された金属酸化物粉末の表面にNOxが付
着・吸着することもある。なお、燃焼火炎中の汚染物と
して、上記NOx の他に一酸化炭素、すす等があるが、
これらは可燃性ガスを水素等にすることによって生成さ
せない様にすることが出来るし、またこれらの不純物は
実際の金属酸化物粉末の抽出検出では検出されない程度
である。
However, as a result of the study by the present inventors, even when the acid-treated metal powder is used, the extracted water of the synthesized metal oxide powder contains several ppm to several ppm of fluorine ions and chlorine ions. It was found that the content was about 10 ppm. Further, when air or nitrogen is used as the carrier gas, NO x as a pollutant is generated in the combustion flame,
As a result, NO x may adhere to or be adsorbed on the surface of the synthesized metal oxide powder. Incidentally, as the pollutants in the combustion flame, there are carbon monoxide, soot, etc. in addition to the above NO x .
These can be prevented from being generated by converting the combustible gas to hydrogen or the like, and these impurities are not detected by the actual extraction and detection of the metal oxide powder.

【0007】本発明は上記実情に鑑みてなされたもので
あり、合成された金属酸化物粉末の純度を向上させるこ
とを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to improve the purity of the synthesized metal oxide powder.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する本発
明は、金属粉末をキャリアガスとともに酸化性雰囲気下
の反応容器内に供給し、該反応容器内で該金属粉末を燃
焼させることにより、金属酸化物粉末を合成する金属酸
化物粉末の製造方法において、前記合成された金属酸化
物粉末を加熱処理することを特徴とする。
According to the present invention for solving the above problems, metal powder is supplied together with a carrier gas into a reaction vessel under an oxidizing atmosphere, and the metal powder is burned in the reaction vessel. The method for producing a metal oxide powder for synthesizing a metal oxide powder is characterized in that the synthesized metal oxide powder is heat-treated.

【0009】この加熱処理は、合成された金属酸化物粉
末を燃焼排気ガスから分離、回収する際の回収温度を制
御したり、回収した金属酸化物粉末をロータリーキル
ン、電気炉等の熱処理炉で加熱したりして行うことがで
き、連続操作、回分操作のどちらで行ってもよい。加熱
処理は、処理温度を高くするほど、また処理時間を長く
するほど、金属酸化物粉末に付着・吸着した揮発性不純
物を除去できるので好ましい。なお、処理温度を100
0℃以上にすることは、合成された金属酸化物粉末の融
着等をひきおこすので、好ましくない。
This heat treatment controls the recovery temperature when separating and recovering the synthesized metal oxide powder from the combustion exhaust gas, and heating the recovered metal oxide powder in a heat treatment furnace such as a rotary kiln or an electric furnace. It can be carried out by a continuous operation or a batch operation. The heat treatment is preferable as the treatment temperature is higher and the treatment time is longer because the volatile impurities attached / adsorbed to the metal oxide powder can be removed. The processing temperature is 100
Setting the temperature to 0 ° C. or higher is not preferable because it causes fusion of the synthesized metal oxide powder and the like.

【0010】例えば、金属粉末燃焼法により合成したシ
リカガラス粉末について、回収温度とシリカガラス粉末
の吸着NOx 濃度との関係を、異なった燃焼排気ガスの
NO x 濃度について実験した結果を図2に示すように、
回収温度を高くするほどシリカガラス粉末の吸着NOx
濃度を低下させることが可能である。なおNOx は、可
燃性ガス燃焼に伴う水分や過剰酸素の存在により、その
ほとんどがNO2 やHNO3 の形態で存在していると考
えられ、これらは共に水に良く溶ける。このため、加熱
処理後の金属酸化物粉末について、塩素、フッ素やNO
x などの揮発性不純物の除去程度を検出するには、金属
酸化物粉末の抽出水電気伝導度を測定するのが判定を迅
速に行えて好ましい。
For example, a system synthesized by the metal powder combustion method
Recovery temperature and silica glass powder for Rica glass powder
Adsorption NOxThe relationship with the concentration of different combustion exhaust gas
NO xAs shown in FIG. 2, the results of experiments on concentration are
Adsorption NO of silica glass powder increases with increasing recovery temperaturex
It is possible to reduce the concentration. NOxIs acceptable
Due to the presence of moisture and excess oxygen accompanying flammable gas combustion,
Mostly NO2And HNO3Thought to exist in the form of
Yes, both are well soluble in water. Because of this, heating
Regarding the treated metal oxide powder, chlorine, fluorine and NO
xTo detect the degree of removal of volatile impurities such as
Measuring the electrical conductivity of the extracted water of oxide powders is a quick decision.
It can be done quickly, which is preferable.

【0011】本発明では、従来と同様の金属粉末燃焼法
により金属酸化物粉末が合成される。すなわち、金属粉
末をキャリアガスとともに酸化性雰囲気下の反応容器内
に供給し、該反応容器内で着火させて火炎を形成して該
金属粉末を燃焼させることにより、金属酸化物粉末が合
成される。金属粉末の種類としては、珪素、アルミニウ
ム、マグネシウム、チタン、珪素、ジルコニウム、その
他ムライト組成に調合した珪素とアルミニウムとの混合
物、スピネル組成に調合したマグネシウムとアルミニウ
ムとの混合物、コージェライト組成に調合したアルミニ
ウムとマグネシウムとシリコンとの混合物などを用いる
ことができる。また、これらの組成に調合した合金粉末
であってもよい。この金属粉末の粒度分布は、爆燃を形
成できる範囲であればよい。しかし、400μmより大
きな粒径の金属粉末は、完全に酸化されずに分離、回収
されることがあるため、金属粉末の粒径は400μm以
下であることが好ましく、金属粉末の平均粒径が数μm
から数10μmであることがより好ましい。
In the present invention, the metal oxide powder is synthesized by the conventional metal powder combustion method. That is, a metal oxide powder is synthesized by supplying a metal powder together with a carrier gas into a reaction container under an oxidizing atmosphere, igniting in the reaction container to form a flame, and burning the metal powder. .. The types of metal powders include silicon, aluminum, magnesium, titanium, silicon, zirconium, and other mixtures of silicon and aluminum prepared in a mullite composition, a mixture of magnesium and aluminum prepared in a spinel composition, and a cordierite composition. A mixture of aluminum, magnesium, and silicon can be used. Also, alloy powders prepared in these compositions may be used. The particle size distribution of this metal powder may be in the range where deflagration can be formed. However, a metal powder having a particle size larger than 400 μm may be separated and collected without being completely oxidized. Therefore, the particle size of the metal powder is preferably 400 μm or less, and the average particle size of the metal powder is several. μm
It is more preferable that the thickness is from 10 to several tens of μm.

【0012】金属粉末を分散させて反応容器内に導入す
るキヤリアガスとしては、空気、窒素、酸素、ヘリウ
ム、アルゴン等を使用することができる。また、可燃性
のキャリアガスを用いることもできる。キャリアガスと
ともに反応容器内に導入された金属粉末は、バーナなど
の化学炎、抵抗加熱、アーク放電、プラズマフレーム、
レーザ、高周波誘導加熱、電子ビーム等の熱源を利用し
て着火され、爆発燃焼によって初期火炎を形成する。金
属粉末は火炎中で初期酸化燃焼によって液状の不完全燃
焼金属酸化物粉末を形成する。
Air, nitrogen, oxygen, helium, argon or the like can be used as the carrier gas for dispersing the metal powder and introducing it into the reaction vessel. Also, a flammable carrier gas can be used. The metal powder introduced into the reaction vessel together with the carrier gas is a chemical flame such as a burner, resistance heating, arc discharge, plasma flame,
It is ignited by using a heat source such as laser, high frequency induction heating, and electron beam, and an initial flame is formed by explosive combustion. The metal powder forms a liquid incompletely burned metal oxide powder in the flame by initial oxidative combustion.

【0013】例えば、着火の熱源としてバーナを利用し
た場合、金属粉末は支燃性ガス及び可燃性ガスにより形
成されたバーナ火炎などにより着火され、爆発燃焼によ
って初期火炎を形成する。初期火炎を形成するための支
燃性ガスは、酸素・空気及びその混合ガスが使用可能で
ある。また種火としての可燃性ガスは、メタン、エタ
ン、プロパンなどの化学式Cn H2 n+2 で示される炭化
水素ガス、又は水素ガスを用いることができる。なお、
可燃性ガスによる種火用の燃焼火炎は、初期粉塵爆発を
形成するのに必要最低限の着火エネルギーを有すればよ
い。また可燃性ガスは、金属粉末の燃焼中、常に供給し
続けてもよいし、燃焼火炎安定以後に供給を停止しても
よい。ただし、可燃性ガス量は金属酸化物粉末の粒径に
若干影響するので、その量は所望の粒径に応じて適宜選
択する必要がある。
For example, when a burner is used as a heat source for ignition, the metal powder is ignited by a burner flame formed by a combustion-supporting gas and a flammable gas, and explosive combustion forms an initial flame. As the combustion supporting gas for forming the initial flame, oxygen / air and a mixed gas thereof can be used. Further, as the flammable gas as the pilot flame, a hydrocarbon gas represented by the chemical formula C n H2 n + 2 such as methane, ethane or propane, or hydrogen gas can be used. In addition,
The combustion flame for the pilot fire with the combustible gas may have the minimum ignition energy necessary to form the initial dust explosion. The combustible gas may be continuously supplied during the combustion of the metal powder, or may be stopped after the combustion flame becomes stable. However, since the amount of combustible gas slightly affects the particle size of the metal oxide powder, it is necessary to appropriately select the amount according to the desired particle size.

【0014】この金属粉末及び燃焼用ガスは通常室温で
反応容器内に供給されるが、反応容器は燃焼火炎温度が
1000℃以上になるためにアルミナなどの耐熱材料で
内張りされていることが望ましい。また反応容器内は、
排気側に排風機等を設けて吸引し、圧力が大気圧基準で
ー200〜ー10mmAq程度の負圧となることが好ま
しい。
The metal powder and the combustion gas are usually supplied to the reaction vessel at room temperature, but the reaction vessel is preferably lined with a heat-resistant material such as alumina because the combustion flame temperature is 1000 ° C. or higher. .. Also, inside the reaction vessel,
It is preferable that an exhaust fan or the like is provided on the exhaust side to suck the air, and the pressure becomes a negative pressure of about −200 to −10 mmAq on the basis of atmospheric pressure.

【0015】反応容器内で合成された金属酸化物粉末
は、反応容器の排気側に設けられた回収装置により分
離、回収される。回収装置は、集塵機を用いることがで
きる。集塵機としては、電気式集塵機、バグフィルタ、
捕集ドラム式微粉末捕集装置などを用いることができ
る。
The metal oxide powder synthesized in the reaction container is separated and collected by a collecting device provided on the exhaust side of the reaction container. A dust collector can be used as the recovery device. As dust collectors, electric dust collectors, bag filters,
A collection drum type fine powder collection device or the like can be used.

【0016】[0016]

【作用】本発明の金属酸化物粉末の製造方法は、合成さ
れた金属酸化物粉末を加熱処理することにより、金属酸
化物粉末の表面に付着、吸着しているフッ素、塩素やN
x などの揮発性不純物を揮発除去することができ、高
純度の金属酸化物粉末を得ることが可能である。
In the method for producing a metal oxide powder of the present invention, by heating the synthesized metal oxide powder, fluorine, chlorine or N adhering to or adsorbing on the surface of the metal oxide powder is used.
Volatile impurities such as O x can be volatilized and removed, and high-purity metal oxide powder can be obtained.

【0017】[0017]

【実施例】以下、本発明の実施例を説明する。 (実施例1)図1に概略的に示す製造装置は、内壁がア
ルミナれんがで内張りされた反応容器1と、反応容器1
の上流側に連結された金属粉末供給装置2と、反応容器
1と金属粉末供給装置2との間に配設されたバーナ3
と、反応容器1の下流側に連結された回収装置4とから
構成されている。
EXAMPLES Examples of the present invention will be described below. (Embodiment 1) A manufacturing apparatus schematically shown in FIG. 1 comprises a reaction container 1 having an inner wall lined with alumina bricks, and a reaction container 1.
A metal powder supply device 2 connected to the upstream side of the reactor, and a burner 3 disposed between the reaction container 1 and the metal powder supply device 2.
And a recovery device 4 connected to the downstream side of the reaction container 1.

【0018】金属粉末供給装置2は、一端がバルブ21
を介してキャリアガスボンベ(図示せず)に接続され他
端がバーナ3に接続されて、金属粉末を分散したキャリ
アガスをバーナ3に導入する導入管22と、この導入管
21に下端が連結され、金属粉末を収納したホッパ23
とを備えている。バーナ3には、バルブ31を介してL
PGガスボンベ(図示せず)に接続された可燃性ガス供
給管32と、バルブ33を介して酸素ボンベ(図示せ
ず)に接続された支燃性ガス供給管34とが接続されて
いる。なお、この可燃性ガス供給管32、支燃性ガス供
給管34から供給される可燃性ガス、支燃性ガスは反応
容器1内に供給される。
The metal powder feeder 2 has a valve 21 at one end.
Is connected to a carrier gas cylinder (not shown) via the other end and is connected to the burner 3 at the other end, and an inlet pipe 22 for introducing the carrier gas in which the metal powder is dispersed into the burner 3, and a lower end thereof is connected to the inlet pipe 21. , Hopper 23 containing metal powder
It has and. L to the burner 3 via the valve 31
A combustible gas supply pipe 32 connected to a PG gas cylinder (not shown) and a combustion-supporting gas supply pipe 34 connected to an oxygen cylinder (not shown) are connected via a valve 33. The flammable gas and the flammable gas supplied from the flammable gas supply pipe 32 and the flammable gas supply pipe 34 are fed into the reaction vessel 1.

【0019】回収装置4は、反応容器1の側壁に開口す
る捕集管41と、この捕集管41の下流側に配設された
バグフィルタ42と、バグフィルタ42の下流側に接続
管43を介して配設された排気ガス処理装置44と、排
気ガス処理装置の下流側に同じく接続管43を介して配
設された排風機45とを備えている。バグフィルタ42
は耐熱性のもので、加熱用のヒータ42aを備えてい
る。
The collecting device 4 has a collection pipe 41 which is opened to the side wall of the reaction vessel 1, a bag filter 42 which is arranged downstream of the collection pipe 41, and a connecting pipe 43 which is arranged downstream of the bag filter 42. An exhaust gas treatment device 44 disposed via the exhaust gas treatment device 44 and an exhaust fan 45 disposed downstream of the exhaust gas treatment device via the connection pipe 43 are also provided. Bug filter 42
Is heat resistant and includes a heater 42a for heating.

【0020】このように構成された製造装置を用いて、
約2mmに調整された市販の粉粒状金属珪素を平均粒径
15μmに粒度調整した金属珪素粉末からシリカガラス
粉末を合成した。バルブ31を開いて可燃性ガス供給管
32からLPGガスを1Nm3 /hrの流量で供給し、
バルブ33を開いて支燃性ガス供給管32から酸素を1
5Nm3/hrの流量で供給し、図示しない着火手段に
より着火して種火としてのLPG火炎を形成しておく。
そして、バルブ21を開いてキャリアガスとしての空気
を4Nm3 /hrの流量で供給するとともに、ホッパ2
2から金属珪素粉末を9kg/hrの流量で供給した。
これにより、キャリアガスとともに金属珪素粉末はバー
ナ3に導入され、LPG火炎と接触して、燃焼火炎を形
成し、金属酸化物粉末としてのシリカガラス粉末を合成
した。そして、排風機45の吸引力によりシリカガラス
粉末を含む燃焼排気ガスを吸引し、バグフィルタ42で
シリカガラス粉末を分離、回収した。このとき、バグフ
ィルタ42のヒータ42aの制御により、回収温度は所
定温度に制御されている。なお、反応容器1内の圧力
は、排風機45の吸引力により大気圧基準で−100m
mAqに設定されている。また、回収されたシリカガラ
ス粉末のBET比表面積は9m2 /gであり、排気ガス
のNOx 濃度は1620ppmだった。 (評価1)上記回収温度を種々変更して、それぞれのシ
リカガラス粉末の10%スラリー溶液(抽出水電気伝導
度が1.1μs/cmのイオン交換水)の抽出水電気伝
導度、及び硝酸イオン、フッ素イオン、塩素イオンの濃
度を測定したところ、以下の結果を得た。
Using the manufacturing apparatus configured as described above,
Silica glass powder was synthesized from metallic silicon powder in which a commercially available powdery metallic silicon adjusted to about 2 mm was adjusted to an average particle size of 15 μm. Open the valve 31 and supply the LPG gas from the combustible gas supply pipe 32 at a flow rate of 1 Nm 3 / hr,
Open the valve 33 to add 1 oxygen from the combustion-supporting gas supply pipe 32.
It is supplied at a flow rate of 5 Nm 3 / hr and ignited by an ignition means (not shown) to form an LPG flame as a pilot flame.
Then, the valve 21 is opened to supply air as a carrier gas at a flow rate of 4 Nm 3 / hr and the hopper 2
The metallic silicon powder from 2 was supplied at a flow rate of 9 kg / hr.
As a result, the metallic silicon powder was introduced into the burner 3 together with the carrier gas, contacted with the LPG flame to form a combustion flame, and silica glass powder as the metal oxide powder was synthesized. Then, the combustion exhaust gas containing the silica glass powder was sucked by the suction force of the exhaust fan 45, and the silica glass powder was separated and collected by the bag filter 42. At this time, the recovery temperature is controlled to a predetermined temperature by controlling the heater 42a of the bag filter 42. The pressure inside the reaction vessel 1 is -100 m on the basis of atmospheric pressure due to the suction force of the exhaust fan 45.
It is set to mAq. The BET specific surface area of the recovered silica glass powder was 9 m 2 / g, and the NO x concentration of the exhaust gas was 1620 ppm. (Evaluation 1) Extraction water electric conductivity and nitrate ion of 10% slurry solution of each silica glass powder (extraction water electric conductivity is 1.1 μs / cm ion-exchanged water) by variously changing the recovery temperature The following results were obtained by measuring the concentrations of fluorine ion and chlorine ion.

【0021】[0021]

【表1】 このように、合成された金属酸化物粉末の回収温度を直
接制御することにより、金属酸化物粉末の抽出水純度を
大幅に改善できた。 (実施例2)上記実施例1と同様の製造装置を用いて、
約2mmに調整された市販の粉粒状金属珪素を平均粒径
15μmに粒度調整した金属珪素粉末からシリカガラス
粉末を合成した。なお、各ガスの流量は、キャリアガ
ス:4Nm3 /hr、LPGガス:1Nm3 /hr、酸
素ガス:15Nm3 /hrとし、金属珪素粉末の供給量
は9kg/hrとした。そして、バグフィルタ42のヒ
ータ42aにより回収温度を60℃として、BET比表
面積15m2 /gのシリカガラス粉末を回収した。
[Table 1] Thus, by directly controlling the recovery temperature of the synthesized metal oxide powder, the purity of the extracted water of the metal oxide powder could be significantly improved. (Example 2) Using the same manufacturing apparatus as in Example 1 above,
Silica glass powder was synthesized from metallic silicon powder in which a commercially available powdery metallic silicon adjusted to about 2 mm was adjusted to an average particle size of 15 μm. The flow rates of the respective gases were carrier gas: 4 Nm 3 / hr, LPG gas: 1 Nm 3 / hr, oxygen gas: 15 Nm 3 / hr, and the supply amount of metallic silicon powder was 9 kg / hr. Then, the recovery temperature was set to 60 ° C. by the heater 42a of the bag filter 42, and silica glass powder having a BET specific surface area of 15 m 2 / g was recovered.

【0022】この回収したシリカガラス粉末を、所定の
温度に保持されたφ150mmの石英管を有するロータ
リーキルンへ30kg/hrで供給し、向流により空気
を100リットル/hrの流量で掛け流しながら加熱処
理した。 (評価2)ロータリーキルンの保持温度を100℃、2
00℃、400℃、500℃とした場合の、硝酸イオ
ン、フッ素イオン、塩素イオンの濃度と10%スラリー
溶液(抽出水電気伝導度が1.1μs/cmのイオン交
換水)の抽出水電気伝導度を測定したところ、以下の結
果を得た。
The recovered silica glass powder was supplied at 30 kg / hr to a rotary kiln having a quartz tube with a diameter of 150 mm and maintained at a predetermined temperature at a rate of 30 kg / hr. did. (Evaluation 2) Holding temperature of the rotary kiln is 100 ° C, 2
Electric conductivity of extracted water of nitrate ion, fluoride ion, chlorine ion concentration and 10% slurry solution (extracted water electric conductivity is 1.1 μs / cm ion-exchanged water) at 00 ° C, 400 ° C and 500 ° C When the degree was measured, the following results were obtained.

【0023】[0023]

【表2】 このように回収したシリカガラス粉末を加熱処理するこ
とによって、シリカガラス粉末の抽出水純度を大幅に改
善できた。
[Table 2] By subjecting the silica glass powder thus recovered to heat treatment, the purity of the extracted water of the silica glass powder could be greatly improved.

【0024】[0024]

【発明の効果】以上詳述したように本発明の金属酸化物
粉末の製造方法によれば、合成した金属酸化物粉末を加
熱処理するという簡単な手法により、フッ素、塩素等の
ハロゲン元素やNOx が含有しない、極めて高純度の金
属酸化粒粉末を得ることができる。
As described above in detail, according to the method for producing a metal oxide powder of the present invention, halogen elements such as fluorine and chlorine and NO can be obtained by a simple method of heat-treating the synthesized metal oxide powder. An extremely high-purity metal oxide powder not containing x can be obtained.

【0025】したがって、本発明方法により得られた金
属酸化物粉末は、特に高純度が求められる半導体封止材
等の半導体産業用原料にも有効に利用することが可能で
ある。
Therefore, the metal oxide powder obtained by the method of the present invention can be effectively used as a raw material for the semiconductor industry such as a semiconductor encapsulating material which is required to have a high purity.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で用いた製造装置の模式図である。FIG. 1 is a schematic diagram of a manufacturing apparatus used in an example.

【図2】金属粉末燃焼法により合成したシリカガラス粉
末について、回収温度とシリカガラス粉末の吸着NOx
濃度との関係を、異なった燃焼排気ガスのNOx 濃度に
ついて実験した結果を示す線図である。
FIG. 2 shows the recovery temperature of silica glass powder synthesized by the metal powder combustion method and the adsorption NO x of the silica glass powder.
FIG. 6 is a diagram showing the results of experiments on the relationship with the concentration for different NO x concentrations of combustion exhaust gas.

【符号の説明】[Explanation of symbols]

1は反応容器、2は金属粉末供給装置、3はバーナ、4
は回収装置、23はホッパ、32は可燃性ガス供給管、
34は支燃性ガス供給管、42はバグフィルタである。
1 is a reaction vessel, 2 is a metal powder supply device, 3 is a burner, 4
Is a recovery device, 23 is a hopper, 32 is a flammable gas supply pipe,
Reference numeral 34 is a combustion-supporting gas supply pipe, and 42 is a bag filter.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安部 賛 東京都新宿区西新宿1丁目22番地2号 株 式会社アドマテックス内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Abe endorsed 22-2, Nishi-Shinjuku, Shinjuku-ku, Tokyo Inside Admatex Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属粉末をキャリアガスとともに酸化性
雰囲気下の反応容器内に供給し、該反応容器内で該金属
粉末を燃焼させることにより、金属酸化物粉末を合成す
る金属酸化物粉末の製造方法において、 前記合成された金属酸化物粉末を加熱処理することを特
徴とする金属酸化物粉末の製造方法。
1. Production of metal oxide powder for synthesizing metal oxide powder by supplying metal powder together with a carrier gas into a reaction vessel under an oxidizing atmosphere and burning the metal powder in the reaction vessel. A method for producing a metal oxide powder, which comprises subjecting the synthesized metal oxide powder to heat treatment.
JP00826192A 1992-01-21 1992-01-21 Method for producing metal oxide powder Expired - Fee Related JP3229353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00826192A JP3229353B2 (en) 1992-01-21 1992-01-21 Method for producing metal oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00826192A JP3229353B2 (en) 1992-01-21 1992-01-21 Method for producing metal oxide powder

Publications (2)

Publication Number Publication Date
JPH05193909A true JPH05193909A (en) 1993-08-03
JP3229353B2 JP3229353B2 (en) 2001-11-19

Family

ID=11688209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00826192A Expired - Fee Related JP3229353B2 (en) 1992-01-21 1992-01-21 Method for producing metal oxide powder

Country Status (1)

Country Link
JP (1) JP3229353B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010538811A (en) * 2007-09-10 2010-12-16 エスデー リ−ツェンスフェルヴェールトゥングスゲゼルシャフト エムベーハー ウント コー. カーゲー Optimization method of chemical treatment considering safety of chemical treatment plant
JP2014000571A (en) * 2007-05-11 2014-01-09 Sdc Materials Inc Gas supply system and gas supply method
CN104229744A (en) * 2014-08-26 2014-12-24 洛阳市方德新材料科技有限公司 Preparation method for nanocrystalline metal oxide powder
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
JP2016083619A (en) * 2014-10-27 2016-05-19 大陽日酸株式会社 Inorganic spheroidized particle manufacturing apparatus and inorganic spheroidized particle manufacturing method
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
CN111320139A (en) * 2019-02-27 2020-06-23 株式会社亚都玛科技 Method for producing metal oxide particle material
KR102248361B1 (en) * 2020-11-17 2021-05-06 한국지질자원연구원 Pyrometallurgical purification method of vanadium pentoxide and vanadium pentoxide prepared from the same

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9216398B2 (en) 2005-04-19 2015-12-22 SDCmaterials, Inc. Method and apparatus for making uniform and ultrasmall nanoparticles
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9023754B2 (en) 2005-04-19 2015-05-05 SDCmaterials, Inc. Nano-skeletal catalyst
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9132404B2 (en) 2005-04-19 2015-09-15 SDCmaterials, Inc. Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction
US9180423B2 (en) 2005-04-19 2015-11-10 SDCmaterials, Inc. Highly turbulent quench chamber
JP2014000571A (en) * 2007-05-11 2014-01-09 Sdc Materials Inc Gas supply system and gas supply method
JP2015231626A (en) * 2007-05-11 2015-12-24 エスディーシーマテリアルズ, インコーポレイテッド Gas supply system and gas supply method
JP2010538811A (en) * 2007-09-10 2010-12-16 エスデー リ−ツェンスフェルヴェールトゥングスゲゼルシャフト エムベーハー ウント コー. カーゲー Optimization method of chemical treatment considering safety of chemical treatment plant
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9302260B2 (en) 2007-10-15 2016-04-05 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9186663B2 (en) 2007-10-15 2015-11-17 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10086356B2 (en) 2014-03-21 2018-10-02 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10413880B2 (en) 2014-03-21 2019-09-17 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
CN104229744A (en) * 2014-08-26 2014-12-24 洛阳市方德新材料科技有限公司 Preparation method for nanocrystalline metal oxide powder
JP2016083619A (en) * 2014-10-27 2016-05-19 大陽日酸株式会社 Inorganic spheroidized particle manufacturing apparatus and inorganic spheroidized particle manufacturing method
CN111320139A (en) * 2019-02-27 2020-06-23 株式会社亚都玛科技 Method for producing metal oxide particle material
KR102248361B1 (en) * 2020-11-17 2021-05-06 한국지질자원연구원 Pyrometallurgical purification method of vanadium pentoxide and vanadium pentoxide prepared from the same

Also Published As

Publication number Publication date
JP3229353B2 (en) 2001-11-19

Similar Documents

Publication Publication Date Title
JP3229353B2 (en) Method for producing metal oxide powder
EP0151490B1 (en) Process for producing ultra-fine ceramic particles
CN111170750A (en) Method for producing refractory material by innocent treatment of secondary aluminum ash
US6905533B2 (en) Filtering and inerting of combustible dusts in the process off-gas
NL8101916A (en) METHOD AND APPARATUS FOR PRODUCING FINE DISTRIBUTED METAL AND METALOID OXIDES BY FLAME HYDROLYSIS
JPH0155201B2 (en)
US5081081A (en) Stabilized metal oxide powder composition
JP2001017857A (en) Spray pyrolytic apparatus
JP5224490B2 (en) Processing method of smoke from furnace
JPS62123015A (en) Alumina for ceramic material
JPH05193910A (en) Production of metal oxide powder
US6395060B1 (en) Furnace flue dust processing method
JP3253338B2 (en) Method for producing metal oxide powder
US2764109A (en) Method for combustion of metals
US4917866A (en) Production process of silicon carbide short fibers
JP2679216B2 (en) Method for producing oxide powder
JPH05193928A (en) Production of silica glass powder
JP2003048704A (en) Method for producing metallic oxide powder
JPH07247105A (en) Production of metal oxide powder and producing device
JP3225073B2 (en) Method for producing metal oxide powder
JP2679242B2 (en) Method for producing oxide powder
JPH01167215A (en) Method and apparatus for manufacturing highly dispersed aluminium oxide particles
JP2006207866A (en) Exhaust gas combustion device and baking furnace comprising the same
JP2600181B2 (en) Method for producing oxide powder
JPS61178408A (en) Production of silicon nitride powder

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070907

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees