JPH05187837A - Three-dimensional shape measuring instrument - Google Patents

Three-dimensional shape measuring instrument

Info

Publication number
JPH05187837A
JPH05187837A JP365092A JP365092A JPH05187837A JP H05187837 A JPH05187837 A JP H05187837A JP 365092 A JP365092 A JP 365092A JP 365092 A JP365092 A JP 365092A JP H05187837 A JPH05187837 A JP H05187837A
Authority
JP
Japan
Prior art keywords
optical system
light
measurement
scanning
main scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP365092A
Other languages
Japanese (ja)
Other versions
JP2731062B2 (en
Inventor
Yuichi Yamazaki
祐一 山崎
Hideji Sonoda
秀二 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP365092A priority Critical patent/JP2731062B2/en
Publication of JPH05187837A publication Critical patent/JPH05187837A/en
Application granted granted Critical
Publication of JP2731062B2 publication Critical patent/JP2731062B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Processing Or Creating Images (AREA)

Abstract

PURPOSE:To reduce the measuring time of the title instrument as a whole by providing a bundle-of-rays transformer which transforms a spotlight into slit light between a light source and optical system for measurement and, at the same time, constituting a light receiving section of a two-dimensional image sensor. CONSTITUTION:A bundle-of-rays transformer 4C composed of a beam expander, etc., which transforms a spotlight which is a bundle of measuring rays of light from a light source 3 into slit light which is spread in the direction perpendicular to the main scanning direction of a main scanning optical system M4 is provided between the light source 3 and optical system M4. On the other hand, a measurement control section 8 makes the bundle of measuring rays of light to scan in X-direction by rotating a motor MOT and, at the same time, to scan an X-Y plane 1 by moving an optical system unit U in the Y-axis direction by means of a moving mechanism composed of a motor, pulley, etc. In other words, an optical system 4 for measurement is constituted of the optical system M4 and an auxiliary scanning optical system S4 and the section 8 controls the optical system S4 so that the system S4 can make scanning in the auxiliary scanning direction obtained by one time of main scanning by a pitch P, namely, the P corresponding to the length of the slit light at the moment, when the main scanning is completed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、成形用型やデ
ザインされた各種製品の模型から外観形状を入力して最
終設計図面に仕上げるCAD用データの入力装置や、教
育用や販売用に用いられる三次元映像資料の入力装置、
医療用診断装置、或いはロボットの視覚センサとして用
いられる三次形状計測装置に関し、光源と、その光源か
らの測定光線束をX−Y平面上の被測定物に向けて走査
する測定用光学系と、前記測定光線束のうち前記被測定
物表面から反射した散乱光線束を検出する受光部と、前
記受光部に前記散乱光線束を導く受光用光学系と、前記
受光部による前記散乱光線束の検出出力に基づき前記X
−Y平面からの前記被測定物表面の距離を演算導出する
信号処理部とから構成して、前記測定用光学系に、前記
測定光線束をX軸方向に走査する主走査光学系と、Y軸
方向に走査する副走査光学系とを備えてある三次元形状
計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to, for example, a CAD data input device for inputting an external shape from a molding die or a model of various designed products to finish a final design drawing, or for educational or sales purposes. Input device for 3D image material used,
Regarding a tertiary shape measuring device used as a medical diagnostic device or a visual sensor of a robot, a light source, and a measuring optical system for scanning a measurement light flux from the light source toward an object to be measured on an XY plane, A light receiving unit that detects a scattered light beam reflected from the surface of the object to be measured among the measurement light beams, a light receiving optical system that guides the scattered light beam to the light receiving unit, and detection of the scattered light beam by the light receiving unit. X based on the output
A main scanning optical system configured to scan and measure the measurement light flux in the X-axis direction, the signal processing unit configured to calculate and derive a distance of the surface of the object to be measured from the Y plane. The present invention relates to a three-dimensional shape measuring apparatus including a sub-scanning optical system that scans in the axial direction.

【0002】[0002]

【従来の技術】この種の三次元形状計測装置としては、
図5に示すように前記光源を、レーザー発振器等を備え
て前記被測定物に向けてスポット光を放出するように構
成し、前記測定用光学系を、前記光源から放出されたス
ポット光を被測定物に対してX軸方向に主走査しY軸方
向に副走査するように構成するとともに、前記受光部を
一次元イメージセンサを用いて構成し、そのセンサーで
検出された散乱光線束の位置を、X−Y平面からの前記
被測定物表面迄の高さ、即ちZ軸方向の距離に対応させ
るようにしていた。
2. Description of the Related Art As a three-dimensional shape measuring apparatus of this type,
As shown in FIG. 5, the light source is provided with a laser oscillator or the like so as to emit spot light toward the object to be measured, and the measurement optical system receives the spot light emitted from the light source. The measurement object is configured to perform main scanning in the X-axis direction and sub-scanning in the Y-axis direction, and the light receiving unit is configured using a one-dimensional image sensor, and the position of the scattered light flux detected by the sensor. Was made to correspond to the height from the XY plane to the surface of the object to be measured, that is, the distance in the Z-axis direction.

【0003】[0003]

【発明が解決しようとする課題】上述した従来技術によ
れば、前記測定用光学系によりX−Y平面上の被測定物
に向けて走査される測定光線束がスポット光であったの
で、被測定物の形状を詳細に検出するためには、主走査
方向のサンプリング密度及び副走査方向の走査線密度の
双方を高くする必要があった。ここで、主走査方向のサ
ンプリング密度を高くするためには、前記一次元イメー
ジセンサの応答速度に制限があるため走査速度を遅くし
なければならないし、副走査方向の走査線密度を高くす
るためには、同様に走査速度を遅くしなければならない
ことになり、全体として計測時間が長くなるという欠点
があった。本発明の目的は上述した従来欠点を解消する
点にある。
According to the above-mentioned prior art, since the measuring light beam bundle scanned by the measuring optical system toward the object to be measured on the XY plane is spot light, the object to be measured is spotted. In order to detect the shape of the measurement object in detail, it is necessary to increase both the sampling density in the main scanning direction and the scanning line density in the sub scanning direction. Here, in order to increase the sampling density in the main scanning direction, the scanning speed must be slowed down because the response speed of the one-dimensional image sensor is limited, and in order to increase the scanning line density in the sub-scanning direction. In the same way, the scanning speed must be slowed down, and there is a drawback that the measurement time becomes long as a whole. An object of the present invention is to eliminate the above-mentioned conventional drawbacks.

【0004】[0004]

【課題を解決するための手段】この目的を達成するた
め、本発明による三次元計測装置の特徴構成は、前記光
源と前記測定用光学系との間に、前記光源からの測定光
線束を前記X−Y平面上で前記主走査光学系による走査
方向とは異なる方向に広がるスリット光に変換する光線
束変換器を設けるとともに、前記受光部を二次元イメー
ジセンサで構成してあることにある。
In order to achieve this object, the three-dimensional measuring apparatus according to the present invention is characterized in that a measuring light beam from the light source is provided between the light source and the measuring optical system. A light flux converter for converting into a slit light beam that spreads in a direction different from the scanning direction of the main scanning optical system on the XY plane is provided, and the light receiving unit is configured by a two-dimensional image sensor.

【作用】光線束変換手段により主走査光学系による走査
方向とは異なる方向に広がるスリット光に変換された測
定光線束を用いて主走査して、そのときの被測定物から
の散乱光線束を二次元イメージセンサで検出すれば、一
回の主走査でスリット光の広がり方向の長さに対して主
走査と直交する方向への写像の長さ分だけの主走査方向
のデータが得られるので、副走査光学系による副走査を
前記写像の長さ分だけ間歇的に高速走査でき走査時間が
短縮されることになる。例えば、光線束変換手段によ
り、スポット光を主走査方向と直交する方向、即ち、副
走査方向平行な方向に広がるスリット光に変換すると、
一回の主走査でスリット光の広がり方向の長さ分だけの
データがサンプリングできるので、主走査光学系による
主走査の回数を減らすことができるのである。
The beam of light converted by the beam of light converting means into a slit beam that is spread in a direction different from the scanning direction of the main scanning optical system is used for main scanning, and the scattered beam of light from the object to be measured at that time is scanned. If it is detected by the two-dimensional image sensor, data in the main scanning direction can be obtained by one main scanning only for the length of the mapping in the direction orthogonal to the main scanning with respect to the length in the spreading direction of the slit light. The sub-scanning by the sub-scanning optical system can be intermittently performed at high speed by the length of the mapping, and the scanning time can be shortened. For example, if the light beam conversion means converts the spot light into slit light that spreads in a direction orthogonal to the main scanning direction, that is, in a direction parallel to the sub-scanning direction,
Since data can be sampled by the length of the slit light in the spreading direction by one main scan, the number of main scans by the main scanning optical system can be reduced.

【0005】[0005]

【発明の効果】従って、本発明によれば、被測定物の形
状を詳細に検出する場合であっても、短時間で計測でき
る三次元形状計測装置を提供できるようになった。
Therefore, according to the present invention, it is possible to provide a three-dimensional shape measuring apparatus capable of measuring in a short time even when the shape of an object to be measured is detected in detail.

【0006】[0006]

【実施例】以下実施例を説明する。計測装置の一例であ
る三次元形状計測装置は、図1に示すように、レーザー
発振器を設けた光源3と、その光源3からの測定光線束
をX−Y平面である参照面1上の被測定物2に向けてX
軸方向に主走査する主走査光学系M4と、前記測定光線
束のうち前記被測定物2表面から反射した散乱光線束を
検出する受光部6と、受光部6に導く受光用光学系5と
からなる光学系ユニットUと、その光学系ユニットUを
Y軸方向に移動させる移動機構と光学系ユニットUでな
る副走査光学系S4と、前記受光部6による前記散乱光
線束の出力に基づき前記参照面1からの前記被測定物2
表面の距離を演算導出する信号処理部7と、前記光学系
ユニットUを制御する計測制御部8と、信号処理部7及
び計測制御部8から得られたX,Y,Z三次元データか
ら被測定物2の形状モデルを生成するモデル生成部9と
で構成してある。
EXAMPLES Examples will be described below. As shown in FIG. 1, a three-dimensional shape measuring apparatus, which is an example of a measuring apparatus, includes a light source 3 provided with a laser oscillator and a measurement light flux from the light source 3 on a reference surface 1 which is an XY plane. X toward the object 2
A main scanning optical system M4 that performs main scanning in the axial direction, a light receiving unit 6 that detects a scattered light beam bundle that is reflected from the surface of the DUT 2 among the measurement light beam bundles, and a light receiving optical system 5 that guides it to the light receiving unit 6. An optical system unit U, a moving mechanism for moving the optical system unit U in the Y-axis direction, and a sub-scanning optical system S4 including the optical system unit U; The DUT 2 from the reference surface 1
A signal processing unit 7 for calculating and deriving the distance of the surface, a measurement control unit 8 for controlling the optical system unit U, an X, Y, Z three-dimensional data obtained from the signal processing unit 7 and the measurement control unit 8. The model generation unit 9 generates a shape model of the object to be measured 2.

【0007】光源3と主走査光学系M4との間に、光源
3からの測定光線束であるスポット光を主走査方向と直
交する方向に広がるスリット光に変換するビームエクス
パンダー等でなる光線束変換器4Cを設けてある。主走
査光学系M4を、光線束変換器4Cからの測定光線束で
あるスリット光をX軸方向に走査する第一可動ミラー4
Aと、その第一可動ミラー4Aにより走査された測定光
線束を被測定物2に向けて反射する第一固定ミラー4B
とから構成するとともに、受光用光学系5を、被測定物
2表面からの散乱光線束を反射する第二固定ミラー5B
と、その第二固定ミラー5Bにより反射された散乱光線
束を受光部6に導く第二可動ミラー5Aと、第二可動ミ
ラー5Aで反射された散乱光線束を受光部6で収束させ
る結像レンズ5Cとから構成してある。
Between the light source 3 and the main scanning optical system M4, a light beam bundle composed of a beam expander or the like for converting spot light, which is a measurement light beam bundle from the light source 3, into slit light which spreads in a direction orthogonal to the main scanning direction. A converter 4C is provided. The first movable mirror 4 that scans the main scanning optical system M4 with the slit light, which is the measurement light flux from the light flux converter 4C, in the X-axis direction.
A and a first fixed mirror 4B that reflects the measurement light flux scanned by the first movable mirror 4A toward the object to be measured 2.
And a second fixed mirror 5B for reflecting the scattered light flux from the surface of the object to be measured 2 in addition to the above.
And a second movable mirror 5A for guiding the scattered light beam reflected by the second fixed mirror 5B to the light receiving unit 6, and an imaging lens for converging the scattered light beam reflected by the second movable mirror 5A at the light receiving unit 6. And 5C.

【0008】第一可動ミラー4A及び第二可動ミラー5
Aは、図2に示すように、透明基板M1の両面にアルミ
コーティングにより反射面が形成された両面反射鏡M
と、その両面反射鏡Mを回動させるモータMOTとで構
成してある。即ち、反射鏡Mの両面を各別のミラー4
A,5Aとしてある。
First movable mirror 4A and second movable mirror 5
As shown in FIG. 2, A is a double-sided reflecting mirror M in which the reflecting surfaces are formed by aluminum coating on both sides of the transparent substrate M1.
And a motor MOT for rotating the double-sided reflecting mirror M. That is, the two surfaces of the reflecting mirror M are separated from each other by different mirrors 4.
A and 5A.

【0009】計測制御部8は、モータMOTを回動させ
て測定光線束をX方向に走査するとともに、モータとプ
ーリ等(図示せず)でなる移動機構により光学系ユニッ
トUをY軸方向に移動させてX−Y平面上を走査する。
即ち、主走査光学系M4と副走査光学系S4とで測定用
光学系4を構成してあり、計測制御部8は、副走査光学
系S4に対しては、一回の主走査で得られる副走査方向
のピッチP(スリット光の長さに相当するピッチ)だ
け、主走査が終了した時点で走査する間歇的駆動を行
う。信号処理部7は、図2に示すように、受光部6を構
成する二次元イメージセンサCCDの画素配列方向の一
方向の画素間距離X01が、ΔX0に比例すること、及
び、参照平面1からの測定対象物2の表面位置Z0が、
0・θ=ΔX0なる関係を有することからZ0を求める
もので、一回の走査で同一のX座標に対して、結像レン
ズ5Cによる散乱光線束の結像幅内に存在する画素配列
数だけの副走査線方向、即ちY軸方向のデータZ0が得
られる。ここで、参照面1からの散乱光線束は、常に、
ポイントX0に集光する。モデル生成部9は、計測制御
部8による第一可動ミラー4A及び第二可動ミラー5A
の回転角(モータMOTの回転角)からX−Y平面上の
計測ポイントを把握し、信号処理部7により導出された
そのポイントにおけるZ座標とから被測定物2の形状モ
デルを生成する。
The measurement controller 8 rotates the motor MOT to scan the measurement light beam in the X direction, and moves the optical system unit U in the Y axis direction by a moving mechanism including a motor and a pulley (not shown). Move and scan on the XY plane.
That is, the main scanning optical system M4 and the sub-scanning optical system S4 constitute the measurement optical system 4, and the measurement control unit 8 can obtain the sub-scanning optical system S4 by one main scanning. Intermittent driving is performed by scanning at the time when main scanning is completed by a pitch P (pitch corresponding to the length of slit light) in the sub-scanning direction. As shown in FIG. 2, the signal processing unit 7 is such that the inter-pixel distance X 0 X 1 in one direction of the pixel array of the two-dimensional image sensor CCD forming the light receiving unit 6 is proportional to ΔX 0 , and The surface position Z 0 of the measuring object 2 from the reference plane 1 is
Z 0 · theta = and requests Z 0 from having [Delta] X 0 becomes relation, a pixel that exists on the same X-coordinate in one scan, the image width of the scattered light beam by the imaging lens 5C Data Z 0 in the sub-scanning line direction, that is, the Y-axis direction is obtained by the number of arrays. Here, the scattered light flux from the reference plane 1 is always
Focus on point X 0 . The model generation unit 9 includes a first movable mirror 4A and a second movable mirror 5A by the measurement control unit 8.
The measurement point on the XY plane is grasped from the rotation angle of (the rotation angle of the motor MOT), and the shape model of the DUT 2 is generated from the Z coordinate at that point derived by the signal processing unit 7.

【0010】以下、本発明の別実施例を説明する。先の
実施例では光学系ユニットUのY軸方向への走査機構、
即ち副走査光学系について詳述していないが、これは既
存の技術、例えばモータとプーリー等の駆動機構を用い
て光学系ユニットU全体を往復駆動自在に構成すればよ
い。光学系ユニットUの構成はこの構成に限定するもの
ではなく,先の実施例で説明した原理に基づき三次元座
標を導出するものであれば任意に構成してよく、例えば
図3に示すように、先の実施例における可動ミラー4
A,5Aを固定して、第一固定ミラー4Bを回動させる
ことで測定光線束を走査するように構成してもよい。
又、副走査光学系の構成は、図6に示すように、測定光
線束と散乱光線束で形成される平面をY軸方向に走査す
るための、X軸に平行な軸心周りに回動自在の反射ミラ
ー40、及びモータ41とで構成してもよい。先の実施
例では、副走査光学系の駆動を、一回の主走査で得られ
る副走査方向のピッチP(スリット光の長さに相当する
ピッチ)だけ、主走査が終了した時点で走査する間歇的
駆動を行うものを説明したが、これに限定するものでは
なく主走査光学系による主走査の間も低速で駆動しても
よい。
Another embodiment of the present invention will be described below. In the previous embodiment, the scanning mechanism of the optical system unit U in the Y-axis direction,
That is, although the sub-scanning optical system has not been described in detail, this may be configured so that the entire optical system unit U can be reciprocally driven by using an existing technique, for example, a driving mechanism such as a motor and a pulley. The configuration of the optical system unit U is not limited to this configuration, and any configuration may be used as long as it derives the three-dimensional coordinates based on the principle described in the previous embodiment. For example, as shown in FIG. , The movable mirror 4 in the previous embodiment
A and 5A may be fixed, and the first fixed mirror 4B may be rotated to scan the measurement light beam bundle.
The configuration of the sub-scanning optical system is, as shown in FIG. 6, rotated about an axis parallel to the X axis for scanning the plane formed by the measurement light beam bundle and the scattered light beam bundle in the Y axis direction. It may be composed of a free reflecting mirror 40 and a motor 41. In the above-described embodiment, the sub-scanning optical system is driven by the pitch P in the sub-scanning direction (pitch corresponding to the length of the slit light) obtained in one main scan when the main scan is completed. Although the intermittent driving is described, the invention is not limited to this, and the driving may be performed at a low speed during the main scanning by the main scanning optical system.

【0011】尚、特許請求の範囲の項に図面との対照を
便利にする為に符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】要部の原理を示す説明図FIG. 1 is an explanatory diagram showing the principle of the main part.

【図2】三次元形状計測装置の全体構成図[Fig. 2] Overall configuration diagram of the three-dimensional shape measuring apparatus

【図3】別実施例を示す三次元形状計測装置の全体構成
FIG. 3 is an overall configuration diagram of a three-dimensional shape measuring apparatus showing another embodiment.

【図4】別実施例を示す三次元形状計測装置の全体構成
FIG. 4 is an overall configuration diagram of a three-dimensional shape measuring apparatus showing another embodiment.

【図5】従来例を示す三次元形状計測装置の全体構成図FIG. 5 is an overall configuration diagram of a three-dimensional shape measuring apparatus showing a conventional example.

【符号の説明】[Explanation of symbols]

1 X−Y平面 2 対象物 3 光源 4 測定用光学系 5 受光用光学系 6 受光部 7 信号処理部 M4 主走査光学系 S4 副走査光学系 1 XY plane 2 object 3 light source 4 measurement optical system 5 light receiving optical system 6 light receiving section 7 signal processing section M4 main scanning optical system S4 sub scanning optical system

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光源(3)と、その光源(3)からの測
定光線束をX−Y平面(1)上の被測定物(2)に向け
て走査する測定用光学系(4)と、前記測定光線束のう
ち前記被測定物(2)表面から反射した散乱光線束を検
出する受光部(6)と、前記受光部(6)に前記散乱光
線束を導く受光用光学系(5)と、前記受光部(6)に
よる前記散乱光線束の検出出力に基づき前記X−Y平面
(1)からの前記被測定物(2)表面の距離を演算導出
する信号処理部(7)とから構成して、前記測定用光学
系(4)に、前記測定光線束をX軸方向に走査する主走
査光学系(M4)と、Y軸方向に走査する副走査光学系
(S4)とを備えてある三次元形状計測装置であって、 前記光源(3)と前記測定用光学系(4)との間に、前
記光源(3)からの測定光線束を前記X−Y平面上で前
記主走査光学系(M4)による走査方向とは異なる方向
に広がるスリット光に変換する光線束変換器(4C)を
設けるとともに、前記受光部(6)を二次元イメージセ
ンサで構成してある三次元形状計測装置。
1. A light source (3) and a measuring optical system (4) for scanning a measuring ray bundle from the light source (3) toward an object to be measured (2) on an XY plane (1). , A light receiving part (6) for detecting a scattered light beam reflected from the surface of the object (2) to be measured among the measured light beam, and a light receiving optical system (5) for guiding the scattered light beam to the light receiving part (6). ) And a signal processing section (7) for calculating and deriving the distance of the surface of the DUT (2) from the XY plane (1) based on the detection output of the scattered light flux by the light receiving section (6). The measurement optical system (4) includes a main scanning optical system (M4) that scans the measurement light beam bundle in the X-axis direction and a sub-scanning optical system (S4) that scans the measurement light beam bundle in the Y-axis direction. A three-dimensional shape measuring apparatus provided, wherein the light source (3) is provided between the light source (3) and the measurement optical system (4). A light flux converter (4C) is provided for converting the measurement light flux into slit light that spreads on the XY plane in a direction different from the scanning direction of the main scanning optical system (M4), and the light receiving section (6). A three-dimensional shape measuring device that consists of a two-dimensional image sensor.
JP365092A 1992-01-13 1992-01-13 3D shape measuring device Expired - Lifetime JP2731062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP365092A JP2731062B2 (en) 1992-01-13 1992-01-13 3D shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP365092A JP2731062B2 (en) 1992-01-13 1992-01-13 3D shape measuring device

Publications (2)

Publication Number Publication Date
JPH05187837A true JPH05187837A (en) 1993-07-27
JP2731062B2 JP2731062B2 (en) 1998-03-25

Family

ID=11563354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP365092A Expired - Lifetime JP2731062B2 (en) 1992-01-13 1992-01-13 3D shape measuring device

Country Status (1)

Country Link
JP (1) JP2731062B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0908698A2 (en) * 1997-09-16 1999-04-14 BETRIEBSFORSCHUNGSINSTITUT VDEh, INSTITUT FÜR ANGEWANDTE FORSCHUNG GmbH Device for measuring longitudinal products
WO2012051700A1 (en) * 2010-10-22 2012-04-26 Neptec Design Group Ltd. Wide angle bistatic scanning optical ranging sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0908698A2 (en) * 1997-09-16 1999-04-14 BETRIEBSFORSCHUNGSINSTITUT VDEh, INSTITUT FÜR ANGEWANDTE FORSCHUNG GmbH Device for measuring longitudinal products
EP0908698A3 (en) * 1997-09-16 2000-10-11 BETRIEBSFORSCHUNGSINSTITUT VDEh, INSTITUT FÜR ANGEWANDTE FORSCHUNG GmbH Device for measuring longitudinal products
WO2012051700A1 (en) * 2010-10-22 2012-04-26 Neptec Design Group Ltd. Wide angle bistatic scanning optical ranging sensor
GB2499159A (en) * 2010-10-22 2013-08-07 Neptec Design Group Ltd Wide angle bistatic scanning optical ranging sensor
GB2499159B (en) * 2010-10-22 2015-04-15 Neptec Design Group Ltd Wide angle bistatic scanning optical ranging sensor
US9255790B2 (en) 2010-10-22 2016-02-09 Neptec Design Group Ltd. Wide angle bistatic scanning optical ranging sensor

Also Published As

Publication number Publication date
JP2731062B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
JPH11118475A (en) Control of robot grip and method and device for starting guide based on contrast
US5506641A (en) Apparatus for controlling projection of optical layup template
US4502785A (en) Surface profiling technique
GB2264601A (en) Object inspection
WO1994015173A1 (en) Scanning sensor
JP2731062B2 (en) 3D shape measuring device
JP2987540B2 (en) 3D scanner
JPH0914935A (en) Measuring device for three-dimensional object
JPH0612252B2 (en) Automatic three-dimensional shape measurement method
JPH06109437A (en) Measuring apparatus of three-dimensional shape
JPH05164519A (en) Measuring instrument for three-dimensional shape of structure surrounding railroad track
JPH0512414A (en) Three-dimensional image input device
JP4670700B2 (en) 3D shape measuring device
JP2509776B2 (en) Three-dimensional shape measuring device
JP2839059B2 (en) 3D shape measuring device
US11131543B2 (en) Three-dimensional measuring apparatus and robot system
JPH08105721A (en) Method and apparatus for measuring distance
JPH05187832A (en) Measuring instrument
JPH06109436A (en) Measuring apparatus of three-dimensional shape
JPH06347227A (en) Apparatus and method for measuring surface shape
JPH05332743A (en) Measuring device of three-dimensional position information
JP2000002521A (en) Three dimensional input device
JPH03291509A (en) Shape measuring method for ultrasonic flaw detection
JPS61191908A (en) Measurement of shape
JP2725200B2 (en) Surface detector