JPH05183835A - Luminance adjusting circuit - Google Patents

Luminance adjusting circuit

Info

Publication number
JPH05183835A
JPH05183835A JP4052393A JP5239392A JPH05183835A JP H05183835 A JPH05183835 A JP H05183835A JP 4052393 A JP4052393 A JP 4052393A JP 5239392 A JP5239392 A JP 5239392A JP H05183835 A JPH05183835 A JP H05183835A
Authority
JP
Japan
Prior art keywords
circuit
resistor
operational amplifier
voltage
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4052393A
Other languages
Japanese (ja)
Other versions
JP2864853B2 (en
Inventor
Toshiyuki Kato
俊之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4052393A priority Critical patent/JP2864853B2/en
Publication of JPH05183835A publication Critical patent/JPH05183835A/en
Application granted granted Critical
Publication of JP2864853B2 publication Critical patent/JP2864853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Picture Signal Circuits (AREA)
  • Television Receiver Circuits (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)

Abstract

PURPOSE:To inexpensively realize a luminance adjusting circuit which has the few number of circuit elements and high reliability for high voltage surge, is stable for temperature change and is capable of coping with a digital control, in a color display device. CONSTITUTION:The luminance adjusting circuit is composed by performing a cascade connection with an operational amplifier 6 and a grounded-emitter amplifier circuit from which high breakdown strength is easily obtained. A first input terminal 15 and the inversion input 7 of the operational amplifier 6 are connected in a first resistor 1, a second input terminal 16 and the noninverted input 8 of the operational amplifier 6 in a second resistor 2, the emitter of a grounded-emitter amplifier circuit 10 and the inversion input 7 of the operational amplifier 6 in a third resistor 3, and an output terminal 17 and the noninverted input 8 of the operational amplifier 6 in a fourth resistor 4, respectively. Thus, high voltage of about 100V can be controlled by the few number of elements and low voltage of 0 to 5V, temperature compentation by feedback can be performed and a rational luminance adjusting circuit can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、陰極線管(以下CRT
と略す)等を使用したカラー表示装置における輝度調整
回路に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a cathode ray tube (hereinafter CRT).
Abbreviated) and the like for a brightness adjustment circuit in a color display device.

【0002】[0002]

【従来の技術】近年カラー表示装置は、コンピュータの
利用範囲の拡大に伴い高性能化が進み、広帯域高輝度を
要求されるようになってきた。従来CRTのカソードは
映像信号増幅回路に直結されており、輝度調整は映像信
号増幅回路の直流電圧を制御して行っていたが、広帯域
高輝度化に伴い映像信号増幅回路のダイナミックレンジ
を非常に大きくする必要があり、消費電力が増大してし
まう。このため従来の直結型から、直流成分をコンデン
サで遮断し、帰線期間の黒レベル信号を基準電圧にクラ
ンプして直流再生を行うカソードクランプ方式が主流と
なって来た。
2. Description of the Related Art In recent years, color display devices have been required to have high brightness over a wide band due to higher performance as the range of use of computers has expanded. Conventionally, the cathode of the CRT is directly connected to the video signal amplifier circuit, and the brightness adjustment is performed by controlling the DC voltage of the video signal amplifier circuit. It is necessary to increase the power consumption, which increases power consumption. For this reason, from the direct connection type in the related art, a cathode clamp method in which a direct current component is cut off by a capacitor and a black level signal in a blanking period is clamped to a reference voltage to perform direct current regeneration has become mainstream.

【0003】以下に従来の輝度調整回路について説明す
る。図3は輝度調整回路を含むカラー表示装置の映像出
力回路部分を示すブロック図である。図3において、3
1は映像増幅回路、32はCRT、33は結合コンデン
サ、34はクランプ回路、35は輝度調整回路である。
なおカラー表示装置であるため同一の回路構成が3原色
分3組存在するが、基本動作は全く同一であるので以下
説明は1組分の回路のみ行う。
A conventional brightness adjusting circuit will be described below. FIG. 3 is a block diagram showing a video output circuit portion of a color display device including a brightness adjusting circuit. In FIG. 3, 3
Reference numeral 1 is a video amplifier circuit, 32 is a CRT, 33 is a coupling capacitor, 34 is a clamp circuit, and 35 is a brightness adjustment circuit.
Since it is a color display device, there are three sets of the same circuit configuration for the three primary colors, but since the basic operation is exactly the same, only one set of circuits will be described below.

【0004】図4は従来の輝度調整回路の回路図であ
る。これは図3のブロック図における輝度調整回路35
に相当する。図4において、41は定電流ICによる第
1の定電圧回路、42は第1の可変抵抗器、43は定電
流ICによる第2の定電圧回路、44は定電流ICによ
る第3の定電圧回路、45は第2の可変抵抗器、46は
電源入力端子、47は出力端子である。なお第1の定電
圧回路41,第1の可変抵抗器42は3原色に共通の回
路となっている。
FIG. 4 is a circuit diagram of a conventional brightness adjusting circuit. This is the brightness adjustment circuit 35 in the block diagram of FIG.
Equivalent to. In FIG. 4, 41 is a first constant voltage circuit by a constant current IC, 42 is a first variable resistor, 43 is a second constant voltage circuit by a constant current IC, 44 is a third constant voltage by a constant current IC. A circuit, 45 is a second variable resistor, 46 is a power input terminal, and 47 is an output terminal. The first constant voltage circuit 41 and the first variable resistor 42 are common circuits for the three primary colors.

【0005】図5は図4における定電流ICの動作説明
図である。図6において、50は定電圧IC、51は入
力端子、52は出力端子、53は制御端子、54,55
は抵抗である。
FIG. 5 is a diagram for explaining the operation of the constant current IC in FIG. In FIG. 6, 50 is a constant voltage IC, 51 is an input terminal, 52 is an output terminal, 53 is a control terminal, and 54 and 55.
Is resistance.

【0006】図6は図4における定電圧ICの動作説明
図である。図6において、60は定電圧IC、61は入
力端子、62は出力端子、63は制御端子、64,65
は抵抗である。
FIG. 6 is a diagram for explaining the operation of the constant voltage IC in FIG. In FIG. 6, 60 is a constant voltage IC, 61 is an input terminal, 62 is an output terminal, 63 is a control terminal, 64 and 65.
Is resistance.

【0007】以上のように構成された従来の輝度調整回
路について、以下その動作について説明する。
The operation of the conventional brightness adjusting circuit configured as described above will be described below.

【0008】まず図3を使用し輝度調整の原理を説明す
る。映像増幅回路31で増幅された映像信号はCRT3
2を駆動するのに十分な信号振幅を持つが、直流成分は
CRT32の特性とは無関係に映像増幅回路31のダイ
ナミックレンジのみで決定されている。そこで結合コン
デンサ33により一旦直流成分を遮断する。輝度調整回
路35からクランプ回路34に対してはCRT32の3
原色がちょうど黒レベルになる直流電圧が供給されてお
り、映像信号が帰線期間にかかり黒信号になった時点で
クランプ回路34が動作し信号線の直流電圧を与える。
この電圧は結合コンデンサ33に保持され、CRT32
には所望の映像が表示される。表示装置の使用者が輝度
を変更する場合には、CRT32の3原色のバランスが
崩れないように輝度調整回路35からクランプ回路34
に与えられる3つの直流電圧は同時に上下し、一方表示
装置の生産時には、CRT32の3原色間のばらつきを
補正するために3つの直流電圧は個別に上下できるよう
にする必要がある。
First, the principle of brightness adjustment will be described with reference to FIG. The video signal amplified by the video amplifier circuit 31 is CRT3.
Although it has a sufficient signal amplitude to drive 2, the DC component is determined only by the dynamic range of the video amplifier circuit 31 regardless of the characteristics of the CRT 32. Therefore, the DC component is once cut off by the coupling capacitor 33. From the brightness adjustment circuit 35 to the clamp circuit 34, 3 of the CRT 32
A DC voltage is supplied so that the primary color is just at the black level, and the clamp circuit 34 operates to give the DC voltage of the signal line when the video signal becomes a black signal during the blanking period.
This voltage is held in the coupling capacitor 33, and the CRT 32
A desired image is displayed on. When the user of the display device changes the brightness, the brightness adjustment circuit 35 to the clamp circuit 34 are arranged so that the balance of the three primary colors of the CRT 32 is not lost.
The three direct current voltages applied to the CRT 32 simultaneously rise and fall, while the three direct current voltages must be individually raised and lowered in order to correct the variation between the three primary colors of the CRT 32 during the production of the display device.

【0009】次に図5を使用し定電流ICの動作を説明
する。ここで説明を分かり易くするために入力端子51
の出力端子52に対する電圧をVa、制御端子53の出
力端子52に対する電圧をVb、定電流IC50の入力
端子51から出力端子52に流れる電流をIa、抵抗5
4および抵抗55を流れる電流をIbとする。なお制御
端子53における電流はほとんど無視できるほど小さ
い。
Next, the operation of the constant current IC will be described with reference to FIG. Here, in order to make the explanation easy to understand, the input terminal 51
Of the constant current IC 50 from the input terminal 51 to the output terminal 52 of the constant current IC 50 is Ia and the resistance of the resistor 5 is 5.
The current flowing through the resistor 4 and the resistor 55 is Ib. The current at the control terminal 53 is small enough to be ignored.

【0010】定電流IC50はその特性として、Vbが
定電流IC50内部における基準電圧(例えば2.5
V)より高い場合はIaを減少させ、逆にVbが基準電
圧より低い場合はIaを増加させるように動作する。市
販されているICとしては431型などがある。一方V
a,VbはIbと抵抗54および抵抗55の抵抗値によ
り決定される。外部から流入する電流すなわちIa+I
bを一定とすれば、もしIbが増加した場合にはVbが
増加して基準電圧より高くなるためにIaも増加し、結
果Ibが減少する。逆にもしIbが減少した場合にはV
bが減少して基準電圧より低くなるためにIaも減少
し、結果Ibが増加する。この作用により外部から流入
する電流が変動してもIbは一定値を保ち、したがって
Vaは一定値となるため全体として定電圧回路が構成さ
れる。
As a characteristic of the constant current IC 50, Vb has a reference voltage (for example, 2.5 V) inside the constant current IC 50.
If Vb is lower than the reference voltage, Ia is increased, and if Vb is lower than the reference voltage, Ia is increased. Examples of commercially available ICs include the 431 type. On the other hand V
a and Vb are determined by Ib and the resistance values of the resistors 54 and 55. Current flowing from the outside, ie Ia + I
If b is constant, if Ib increases, Vb increases and becomes higher than the reference voltage, so that Ia also increases and, as a result, Ib decreases. Conversely, if Ib decreases, V
Since b decreases and becomes lower than the reference voltage, Ia also decreases, and as a result, Ib increases. Due to this action, Ib maintains a constant value even when the current flowing from the outside fluctuates, and therefore Va has a constant value, so that a constant voltage circuit is configured as a whole.

【0011】次に図6を使用した定電圧ICの動作を説
明する。ここで説明を分かり易くするために出力端子6
2の制御端子63に対する電圧をVc、制御端子63の
接地に対する電圧をVd、定電圧IC60の入力端子6
1から出力端子62に流れる電流をIc、抵抗64およ
び抵抗65を流れる電流をIdとする。なお制御端子6
3における電流はほとんど無視できるほど小さい。
Next, the operation of the constant voltage IC using FIG. 6 will be described. Here, the output terminal 6 is used to make the explanation easy to understand.
2 is Vc for the control terminal 63, Vd is the voltage for the control terminal 63 with respect to ground, and the input terminal 6 of the constant voltage IC 60 is
The current flowing from 1 to the output terminal 62 is Ic, and the current flowing through the resistors 64 and 65 is Id. Control terminal 6
The current at 3 is almost negligible.

【0012】定電圧IC60はその特性として、Vcが
定電圧IC60内部における基準電圧(例えば24V)
より高い場合はIcを減少させ、逆にVcが基準電圧よ
り低い場合はIcを増加させるように動作する。市販さ
れているICとしては7824型などがある。一方Vc
はIdと抵抗64の抵抗値により決定される。外部へ流
出する電流すなわちIc−Idを一定とすれば、もしI
dが増加した場合にはVcが増加して基準電圧より高く
なるためにIcは減少し、結果Idが減少しVcが減少
する。逆にもしIdが減少した場合にはVcが減少して
基準電圧より低くなるためにIcは増加し、結果Idが
増加しVcが増加する。この作用によりVcおよびId
は一定値を保つ。ここでVdはIdと抵抗65の抵抗値
により決定されるためやはり一定値となり、全体として
定電圧回路が構成される。
The characteristic of the constant voltage IC 60 is that Vc is a reference voltage (for example, 24 V) inside the constant voltage IC 60.
When it is higher, Ic is decreased. On the contrary, when Vc is lower than the reference voltage, Ic is increased. Examples of commercially available ICs include the 7824 type. On the other hand, Vc
Is determined by Id and the resistance value of the resistor 64. If the current flowing out to the outside, that is, Ic-Id is constant, I
When d increases, Vc increases and becomes higher than the reference voltage, so Ic decreases, and as a result, Id decreases and Vc decreases. Conversely, if Id decreases, Vc decreases and becomes lower than the reference voltage, so Ic increases, and as a result, Id increases and Vc increases. By this action, Vc and Id
Keeps a constant value. Here, since Vd is determined by Id and the resistance value of the resistor 65, it also becomes a constant value, and a constant voltage circuit is configured as a whole.

【0013】次に図4を使用して従来の輝度調整回路の
動作を説明する。まず第1の定電圧回路41,第2の定
電圧回路43は図5において説明したとおり定電圧動作
を行い、この電圧をそれぞれV31,V32とする。同
様に第3の定電圧回路44は図6において説明したとお
り定電圧動作を行い、この電圧をV33とする。ところ
で第1の定電圧回路31には第1の可変抵抗器32が接
続されており、したがってV31は第1の可変抵抗器3
2の変化によって一定の範囲で可変される。同様に第3
の定電圧回路34には第2の可変抵抗器35が接続され
ており、V33は第2の可変抵抗器35の変化によって
一定の範囲で可変される。これらにより、出力端子37
の電圧すなわちV31+V32+V33は、第1の可変
抵抗器32,第2の可変抵抗器35により一定の範囲で
可変することができる。一般に第1の可変抵抗器32は
表示装置の使用者が操作する3原色共通の輝度調整用可
変抵抗器であり、第2の可変抵抗器35は表示装置の生
産時にCRTによる3原色間のばらつきを補正するため
に使用される。
Next, the operation of the conventional brightness adjusting circuit will be described with reference to FIG. First, the first constant voltage circuit 41 and the second constant voltage circuit 43 perform the constant voltage operation as described in FIG. 5, and the voltages are set to V31 and V32, respectively. Similarly, the third constant voltage circuit 44 performs a constant voltage operation as described in FIG. 6, and sets this voltage to V33. By the way, the first variable resistor 32 is connected to the first constant voltage circuit 31, and therefore V31 is the first variable resistor 3
It can be varied within a certain range by the change of 2. Similarly third
The second variable resistor 35 is connected to the constant voltage circuit 34, and V33 is varied within a certain range by the change of the second variable resistor 35. With these, the output terminal 37
The voltage, that is, V31 + V32 + V33 can be varied within a certain range by the first variable resistor 32 and the second variable resistor 35. Generally, the first variable resistor 32 is a variable resistor for brightness adjustment common to the three primary colors operated by the user of the display device, and the second variable resistor 35 is the variation among the three primary colors due to CRT during the production of the display device. Used to correct the.

【0014】[0014]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、CRTのカソード電圧において輝度調整
を行うために要求される電圧が100V前後であるのに
対し、一般に入手可能な定電圧ICあるいは定電流IC
の耐圧が30〜40V程度と低いため、これらのICを
直列に数段重ねて使用する必要がある。また一般にCR
Tのカソードには管内放電による高電圧サージが発生す
るが、上述のICは高電圧サージに比較的弱く、信頼性
上問題がある。
However, in the above configuration, the voltage required for brightness adjustment in the cathode voltage of the CRT is about 100 V, whereas the commonly available constant voltage IC or constant voltage IC. Current IC
Since the withstand voltage is as low as about 30 to 40 V, it is necessary to use these ICs in series by stacking several stages. Also generally CR
Although a high voltage surge is generated in the cathode of T due to the discharge in the tube, the above-mentioned IC is relatively weak to the high voltage surge, and there is a problem in reliability.

【0015】さらに、最近増加しているディジタル化さ
れた制御方式に対応するためには、D/A変換器におけ
る0〜5Vの直流出力では可変抵抗器を直接制御できな
いため回路構成上の工夫が必要であり、また高電圧を制
御するための電圧シフト回路などの追加回路が必要にな
る。
Further, in order to cope with the recently increasing digitized control system, the variable resistor cannot be directly controlled by the direct current output of 0 to 5 V in the D / A converter, so that the circuit structure must be devised. It is necessary and requires additional circuitry such as a voltage shift circuit to control the high voltage.

【0016】以上のように、従来の輝度調整回路では、
回路素子数の増加、信頼性の低下などの問題点を有して
いた。
As described above, in the conventional brightness adjusting circuit,
There were problems such as an increase in the number of circuit elements and a decrease in reliability.

【0017】本発明は上記従来の問題点を解決するもの
で、回路素子数が少なく、信頼性の高い輝度調整回路を
提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a highly reliable brightness adjusting circuit having a small number of circuit elements.

【0018】[0018]

【課題を解決するための手段】この目的を達成するため
に本発明の輝度調整回路は、2個の入力端子と、1個の
出力端子を有する回路であって、反転入力と非反転入
力、および出力を持つ演算増幅器と、エミッタに直列帰
還抵抗を有するエミッタ接地増幅回路とを従続接続して
構成され、第1の入力端子と上記演算増幅器の反転入力
との間に第1の抵抗を設け、第2の入力端子と上記演算
増幅器の反転入力との間に第2の抵抗を設け、上記演算
増幅器の反転入力と上記エミッタ接地増幅器回路のエミ
ッタとの間に第3の抵抗を設け、上記演算増幅器の非反
転入力と上記出力端子との間に第4の抵抗を設け、上記
演算増幅器の非反転入力と接地との間に第5の抵抗を設
けた構成を有している。
In order to achieve this object, a brightness adjusting circuit of the present invention is a circuit having two input terminals and one output terminal, and has an inverting input and a non-inverting input, And an operational amplifier having an output and a grounded-emitter amplifier circuit having a series feedback resistor in the emitter are connected in series, and a first resistor is provided between the first input terminal and the inverting input of the operational amplifier. A second resistor is provided between the second input terminal and the inverting input of the operational amplifier, and a third resistor is provided between the inverting input of the operational amplifier and the emitter of the grounded-emitter amplifier circuit. A fourth resistor is provided between the non-inverting input of the operational amplifier and the output terminal, and a fifth resistor is provided between the non-inverting input of the operational amplifier and the ground.

【0019】[0019]

【作用】この構成によって、まずエミッタ接地増幅回
路,エミッタフォロワ回路に使用するトランジスタは、
一般に100V以上の耐圧をもつものが容易に入手でき
るため、回路の耐圧を保証するために素子を積み上げる
必要がない。またトランジスタはICに比較して高電圧
サージに強く、一方高電圧サージに比較的弱い演算増幅
器は高電圧サージの発生源であるCRTカソードから遠
い位置にあるため破壊に対する信頼性が高い。
With this configuration, first, the transistors used in the grounded-emitter amplifier circuit and the emitter-follower circuit are
In general, a device having a withstand voltage of 100 V or more is easily available, so that it is not necessary to stack elements to guarantee the withstand voltage of the circuit. Further, the transistor is more resistant to high voltage surge than the IC, while the operational amplifier, which is relatively weak to high voltage surge, is located far from the CRT cathode, which is the source of high voltage surge, and therefore has high reliability against breakdown.

【0020】しかも第1の入力端子,第2の入力端子
共、一般のD/A変換器から得られる0〜5Vの直流電
圧を直接入力することで、出力端子では100V前後の
電圧を制御することができ、ディジタル化制御に容易に
対応することができる。
Moreover, a direct current voltage of 0 to 5 V obtained from a general D / A converter is directly input to both the first input terminal and the second input terminal to control a voltage of about 100 V at the output terminal. Therefore, it is possible to easily cope with the digitization control.

【0021】ところで一般にトランジスタは温度補償を
行う必要があるが、演算増幅器の反転入力とエミッタ接
地増幅回路のエミッタとの間に第3の抵抗を設け、さら
に演算増幅器の非反転入力とエミッタフォロワ回路のエ
ミッタとの間に第4の抵抗を設けたことにより、エミッ
タ接地増幅回路およびエミッタフォロワ回路が演算増幅
器の帰還ループ内に入るためそれぞれの温度補償がなさ
れ非常に安定となる。
By the way, in general, it is necessary for the transistor to perform temperature compensation, but a third resistor is provided between the inverting input of the operational amplifier and the emitter of the grounded-emitter amplifier circuit, and further, the non-inverting input of the operational amplifier and the emitter follower circuit. Since the fourth resistor is provided between the grounded emitter amplifier circuit and the emitter follower circuit in the feedback loop of the operational amplifier, the respective resistors are temperature-compensated and are very stable.

【0022】これらの結果、回路素子が少なく、信頼性
の高い輝度調整回路を提供することが可能となる。
As a result, it is possible to provide a highly reliable brightness adjusting circuit with a small number of circuit elements.

【0023】[0023]

【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0024】(実施例1)図1は本発明の第1の実施例
における輝度調整回路の回路図である。これは既に従来
例にて説明した図3のブロック図における輝度調整回路
35に相当する。図1において、1は第1の抵抗、2は
第2の抵抗、3は第3の抵抗、4は第4の抵抗、5は第
5の抵抗、6は演算増幅器、7は演算増幅器6の反転入
力、8は演算増幅器6の非反転入力、9は演算増幅器の
出力である。10はNPN型トランジスタ、11はエミ
ッタ抵抗、12はコレクタ抵抗であり、上記3者でエミ
ッタ接地増幅回路を構成する。13はPNP型トランジ
スタ、14は負荷抵抗であり、上記2者でエミッタフォ
ロア回路を構成する。15は第1の入力端子、16は第
2の入力端子、17は出力端子、18は電源端子であ
る。
(Embodiment 1) FIG. 1 is a circuit diagram of a brightness adjusting circuit according to a first embodiment of the present invention. This corresponds to the brightness adjusting circuit 35 in the block diagram of FIG. 3 which has already been described in the conventional example. In FIG. 1, 1 is a first resistor, 2 is a second resistor, 3 is a third resistor, 4 is a fourth resistor, 5 is a fifth resistor, 6 is an operational amplifier, and 7 is an operational amplifier 6. An inverting input, 8 is a non-inverting input of the operational amplifier 6, and 9 is an output of the operational amplifier. Reference numeral 10 is an NPN type transistor, 11 is an emitter resistance, and 12 is a collector resistance, and the above three elements constitute a grounded-emitter amplifier circuit. Reference numeral 13 is a PNP type transistor, and 14 is a load resistance, and the above two elements form an emitter follower circuit. Reference numeral 15 is a first input terminal, 16 is a second input terminal, 17 is an output terminal, and 18 is a power supply terminal.

【0025】以上のように構成された輝度調整回路につ
いて、以下図面を用いてその動作を説明する。図1にお
いて、第1の入力端子15の電圧をV1、第2の入力端
子16の電圧をV2、NPN型トランジスタ10のエミ
ッタ電圧をV3、出力端子17電圧をV4、演算増幅器
6の反転入力7の電圧をV0、演算増幅器6の非反転入
力8の電圧をVN、電源端子18の電圧をVCC、PN
P型トランジスタ13のベース〜エミッタ間電圧をVB
E、第1の抵抗1の抵抗値をR1、第2の抵抗2の抵抗
値をR2、第3の抵抗3の抵抗値をR3、第4の抵抗4
の抵抗値をR4、第5の抵抗5の抵抗値をR5、エミッ
タ抵抗11の抵抗値をR6、コレクタ抵抗12の抵抗値
をR7、第1の抵抗1を流れる電流をI1、第2の抵抗
2を流れる電流をI2、第3の抵抗3を流れる電流をI
3、第4の抵抗4を流れる電流をI4、第5の抵抗5を
流れる電流をI5、NPN型トランジスタ10のベース
接地電流増幅率をAとする。
The operation of the brightness adjusting circuit configured as described above will be described below with reference to the drawings. In FIG. 1, the voltage of the first input terminal 15 is V1, the voltage of the second input terminal 16 is V2, the emitter voltage of the NPN transistor 10 is V3, the output terminal 17 voltage is V4, and the inverting input 7 of the operational amplifier 6 is used. Is VO, the voltage of the non-inverting input 8 of the operational amplifier 6 is VN, the voltage of the power supply terminal 18 is VCC, PN
The base-emitter voltage of the P-type transistor 13 is set to VB.
E, the resistance value of the first resistor 1 is R1, the resistance value of the second resistor 2 is R2, the resistance value of the third resistor 3 is R3, and the fourth resistor 4
R4, the resistance value of the fifth resistance 5 is R5, the resistance value of the emitter resistance 11 is R6, the resistance value of the collector resistance 12 is R7, the current flowing through the first resistance 1 is I1, and the second resistance is The current flowing through 2 is I2, and the current flowing through the third resistor 3 is I
3, the current flowing through the fourth resistor 4 is I4, the current flowing through the fifth resistor 5 is I5, and the base ground current amplification factor of the NPN transistor 10 is A.

【0026】ここで演算増幅器6の電圧増幅率は非常に
大きいため、
Since the voltage amplification factor of the operational amplifier 6 is very large,

【0027】[0027]

【数1】 [Equation 1]

【0028】[0028]

【数2】 [Equation 2]

【0029】[0029]

【数3】 [Equation 3]

【0030】が成立する。Is satisfied.

【0031】まず反転入力7に関し、(数2)より、First, regarding the inverting input 7, from (Equation 2),

【0032】[0032]

【数4】 [Equation 4]

【0033】したがって、NPN型トランジスタ10の
エミッタ電圧は、
Therefore, the emitter voltage of the NPN transistor 10 is

【0034】[0034]

【数5】 [Equation 5]

【0035】のように、NPN型トランジスタ10のベ
ース〜エミッタ間電圧とは全く無関係に定まる。
As described above, it is completely independent of the base-emitter voltage of the NPN transistor 10.

【0036】次に非反転入力8について考えると、Next, considering the non-inverting input 8,

【0037】[0037]

【数6】 [Equation 6]

【0038】(数6)を(数5)に代入して、Substituting (Equation 6) into (Equation 5),

【0039】[0039]

【数7】 [Equation 7]

【0040】のようになる。It becomes like this.

【0041】一方、エミッタ接地増幅回路およびエミッ
タフォロア回路を中心に考えると、
On the other hand, focusing on the grounded emitter amplifier circuit and the emitter follower circuit,

【0042】[0042]

【数8】 [Equation 8]

【0043】となる。ここで(数8)を(数7)に代入
すると、
It becomes Substituting (Equation 8) into (Equation 7) here,

【0044】[0044]

【数9】 [Equation 9]

【0045】(数9)よりV4についてまとめると、Summarizing V4 from (Equation 9),

【0046】[0046]

【数10】 [Equation 10]

【0047】すなわち、出力端子17の電圧V4を、第
1の入力端子15の電圧V1と、第2の入力端子16の
電圧V2で直線的に制御することができる。
That is, the voltage V4 of the output terminal 17 can be linearly controlled by the voltage V1 of the first input terminal 15 and the voltage V2 of the second input terminal 16.

【0048】(数10)で分かるとおり、本実施例の輝
度制御回路では、NPN型トランジスタ10のベース〜
エミッタ間電圧は全く無関係になる。また(数10)の
分母は1より大きく、このことは第4の抵抗4により帰
還がかかるため電源端子の電圧VCC、PNP型トラン
ジスタ13のベース〜エミッタ間電圧VBEの変動の影
響が減少することを示している。
As can be seen from (Equation 10), in the brightness control circuit of this embodiment, the base of the NPN transistor 10 to
The emitter-to-emitter voltage is completely irrelevant. Also, the denominator of (Equation 10) is larger than 1, which means that feedback is applied by the fourth resistor 4 and the influence of fluctuations in the power supply terminal voltage VCC and the base-emitter voltage VBE of the PNP transistor 13 is reduced. Is shown.

【0049】以上のように本実施例によれば、2個の入
力端子と、1個の出力端子を有する回路であって、反転
入力と非反転入力、および出力を持つ演算増幅器と、エ
ミッタに直列帰還抵抗を有するエミッタ接地増幅回路と
を、従続接続して構成され、第1の入力端子と上記演算
増幅器の反転入力との間に第1の抵抗を設け、第2の入
力端子と上記演算増幅器の反転入力との間に第2の抵抗
を設け、上記演算増幅器の反転入力と上記エミッタ接地
増幅回路のエミッタとの間に第3の抵抗を設け、上記演
算増幅器の非反転入力と上記出力端子との間に第4の抵
抗を設け、上記演算増幅器の非反転入力と接地との間に
第5の抵抗を設けたことにより、従来の輝度調整回路に
比較して少ない半導体素子数で、高電圧サージに強く、
ディジタル化制御にそのまま対応でき、しかも温度変化
にも安定な輝度調整回路を実現することができる。
As described above, according to this embodiment, a circuit having two input terminals and one output terminal, which has an inverting input, a non-inverting input, and an output, and an emitter. A grounded-emitter amplifier circuit having a series feedback resistor is connected in cascade, a first resistor is provided between the first input terminal and the inverting input of the operational amplifier, and the second input terminal is connected to the above. A second resistor is provided between the inverting input of the operational amplifier and a third resistor between the inverting input of the operational amplifier and the emitter of the grounded-emitter amplifier circuit. By providing the fourth resistor between the output terminal and the fifth resistor between the non-inverting input of the operational amplifier and the ground, the number of semiconductor elements is smaller than that of the conventional brightness adjusting circuit. Resistant to high voltage surges,
It is possible to realize a brightness adjustment circuit that can directly support digitalization control and that is stable even with temperature changes.

【0050】(実施例2)以下本発明の第2の実施例に
ついて、図面を参照しながら説明する。
(Second Embodiment) A second embodiment of the present invention will be described below with reference to the drawings.

【0051】図2は本発明の第2の実施例における輝度
調整回路の回路図である。図2において、点線で囲った
部分すなわち21,22,23は図1において既に説明
した本発明の第1の実施例における輝度調整回路を、カ
ラー表示装置の3原色に対応するために3組そのまま使
用したものであり、21は赤映像用輝度調整回路、22
は緑映像用輝度調整回路、23は青映像用輝度調整回路
である。
FIG. 2 is a circuit diagram of a brightness adjusting circuit according to the second embodiment of the present invention. In FIG. 2, portions surrounded by dotted lines, ie, 21, 22, and 23 are the same as the three groups of the brightness adjusting circuit in the first embodiment of the present invention described in FIG. 1 in order to correspond to the three primary colors of the color display device. It is used, 21 is a brightness adjusting circuit for red image, 22
Is a brightness adjusting circuit for green image, and 23 is a brightness adjusting circuit for blue image.

【0052】24は赤映像用D/A変換器、25は緑映
像用D/A変換器、26は青映像用D/A変換器であ
り、赤映像用輝度調整回路21、緑映像用輝度調整回路
22、青映像用輝度調整回路23の第1の入力端子にそ
れぞれ接続される。27は3原色同時調整用D/A変換
器であり、赤映像用輝度調整回路21、緑映像用輝度調
整回路22、青映像用輝度調整回路23の第2の入力端
子に共通に接続される。
Reference numeral 24 is a red image D / A converter, 25 is a green image D / A converter, and 26 is a blue image D / A converter. The red image brightness adjusting circuit 21 and the green image brightness are provided. It is connected to the first input terminals of the adjustment circuit 22 and the blue image brightness adjustment circuit 23, respectively. Reference numeral 27 is a D / A converter for simultaneous adjustment of three primary colors, which is commonly connected to the second input terminals of the red image brightness adjusting circuit 21, the green image brightness adjusting circuit 22, and the blue image brightness adjusting circuit 23. ..

【0053】28は赤映像用出力端子、29は緑映像用
出力端子、30は青映像用出力端子である。
28 is an output terminal for red image, 29 is an output terminal for green image, and 30 is an output terminal for blue image.

【0054】次にその動作を説明する。なお赤映像用輝
度調整回路21、緑映像用輝度調整回路22、青映像用
輝度調整回路23の基本動作については既に図1におい
て説明したとおりであり省略する。
Next, the operation will be described. The basic operations of the red image brightness adjusting circuit 21, the green image brightness adjusting circuit 22, and the blue image brightness adjusting circuit 23 have already been described with reference to FIG.

【0055】図2において、赤映像用輝度調整回路2
1、緑映像用輝度調整回路22、青映像用輝度調整回路
23それぞれの第2の入力端子は共通に接続されている
ため、赤映像用出力端子28、緑映像用出力端子29、
青映像用出力端子30の電圧を3原色同時調整用D/A
変換器27により同時に直線的に制御することができ
る。このことによりカラー表示装置の3原色の輝度を同
時に変化させることができる。
In FIG. 2, the brightness adjusting circuit 2 for red image is shown.
1. Since the second input terminals of the green image luminance adjusting circuit 22 and the blue image luminance adjusting circuit 23 are commonly connected, the red image output terminal 28, the green image output terminal 29,
D / A for simultaneous adjustment of three primary colors for the voltage of the blue video output terminal 30
The converter 27 can simultaneously control linearly. This allows the brightness of the three primary colors of the color display device to be changed at the same time.

【0056】また図2において、赤映像用輝度調整回路
21、緑映像用輝度調整回路22、青映像用輝度調整回
路23の第1の入力端子はそれぞれ独立に接続されてい
るため、赤映像用出力端子28の電圧を赤映像用D/A
変換器24で、緑映像用出力端子29を緑映像用D/A
変換器25で、青映像用出力端子30の電圧を青映像用
D/A変換器26で、個別に直線的に制御することがで
きる。このことによりカラー表示装置の3原色の輝度を
個別に変化することができる。
Further, in FIG. 2, the first input terminals of the red image brightness adjusting circuit 21, the green image brightness adjusting circuit 22, and the blue image brightness adjusting circuit 23 are independently connected, and therefore, for the red image. Set the voltage of the output terminal 28 to D / A for red video.
In the converter 24, connect the green video output terminal 29 to the green video D / A.
In the converter 25, the voltage of the blue video output terminal 30 can be linearly controlled individually in the blue video D / A converter 26. This allows the brightness of the three primary colors of the color display device to be changed individually.

【0057】以上のように本実施例によれば、第1の実
施例において説明した輝度調整回路を3個用い、それぞ
れの第1の入力端子を3個のD/A変換器に個別に接続
し、それぞれの第2の入力端子を1個のD/A変換器に
共通に接続したことにより、第1の実施例の特長に加
え、カラー表示装置の生産時にCRTによる3原色間の
ばらつきを補正するために必要な3原色個別の調整と、
カラー表示装置の使用者が操作する3原色共通の調整と
をディジタル化制御することができる。
As described above, according to this embodiment, the three brightness adjusting circuits described in the first embodiment are used, and the respective first input terminals are individually connected to the three D / A converters. However, by connecting each of the second input terminals to one D / A converter in common, in addition to the features of the first embodiment, the variation among the three primary colors due to the CRT is produced at the time of producing the color display device. Adjustment for each of the three primary colors necessary for correction,
It is possible to digitally control the adjustments common to the three primary colors operated by the user of the color display device.

【0058】なお第2の実施例において、一般市販の演
算増幅器は1個のパッケージに4回路集積されているた
め、回路実装上は1個のパッケージで十分であり、余っ
た1回路は他の用途に使用することができる利点があ
る。
In the second embodiment, since four commercially available operational amplifiers are integrated in one package, one package is sufficient for mounting the circuit, and the remaining one circuit is the other one. It has the advantage that it can be used for applications.

【0059】また第2の実施例において、D/A変換器
を用いず、可変抵抗器により制御電圧を与えた場合は、
ディジタル化制御にはならないが、他の動作上はなんら
問題ない。
In the second embodiment, when the control voltage is applied by the variable resistor without using the D / A converter,
Although it is not digitalized control, there is no problem in other operations.

【0060】第1の実施例、第2の実施例とも、出力端
子はエミッタフォロワ回路のエミッタより接続されてい
るが、原理的にはエミッタ接地回路のコレクタより接続
しエミッタフォロワ回路を省略しても良い。しかし実際
の輝度調整回路では、クランプ回路で黒信号の直流電圧
を与える際の過渡電流が大きいため、エミッタフォロワ
回路を省略した場合は、出力端子の電圧を変動させない
ために、エミッタ接地回路の回路電流をかなり大きくす
る必要がある。これによりエミッタ接地回路の消費電力
が増大するためあまり実用には適さない。
In both the first and second embodiments, the output terminal is connected from the emitter of the emitter follower circuit, but in principle it is connected from the collector of the grounded emitter circuit and the emitter follower circuit is omitted. Is also good. However, in the actual brightness adjustment circuit, the transient current when the DC voltage of the black signal is applied by the clamp circuit is large, so if the emitter follower circuit is omitted, the voltage of the output terminal does not fluctuate. The current needs to be quite large. This increases the power consumption of the grounded-emitter circuit and is not suitable for practical use.

【0061】また本発明において、上述のクランプ回路
で黒信号の直流電圧を与える際の過渡電流による出力端
子の電圧変動をさらに軽減するために、出力端子と接地
との間にコンデンサを接続することが有効であることは
言うまでもない。
Further, in the present invention, a capacitor is connected between the output terminal and the ground in order to further reduce the voltage fluctuation of the output terminal due to the transient current when the DC voltage of the black signal is applied by the clamp circuit. Needless to say, is effective.

【0062】[0062]

【発明の効果】以上のように本発明は、2個の入力端子
と、1個の出力端子を有する回路であって、反転入力と
非反転入力、および出力を持つ演算増幅器と、エミッタ
に直列帰還抵抗を有するエミッタ接地増幅回路とを、従
続接続して構成され、第1の入力端子と上記演算増幅器
の反転入力との間に第1の抵抗を設け、第2の入力端子
と上記演算増幅器の反転入力との間に第2の抵抗を設
け、上記演算増幅器の反転入力と上記エミッタ接地増幅
回路のエミッタとの間に第3の抵抗を設け、上記演算増
幅器の非反転入力と出力端子との間に第4の抵抗を設
け、上記演算増幅器の非反転入力と接地との間に第5の
抵抗を設けたことにより、回路素子数が少なく、高電圧
サージに対する信頼性が高く、温度変化にも安定で、か
つディジタル制御対応可能な輝度調整回路を安価に実現
することができる優れたものである。
As described above, the present invention is a circuit having two input terminals and one output terminal, and an operational amplifier having an inverting input, a non-inverting input, and an output, and an emitter connected in series. A grounded-emitter amplifier circuit having a feedback resistor is connected in cascade, a first resistor is provided between the first input terminal and the inverting input of the operational amplifier, and the second input terminal and the operational amplifier are provided. A second resistor is provided between the inverting input of the amplifier and a third resistor between the inverting input of the operational amplifier and the emitter of the grounded-emitter amplifier circuit, and the non-inverting input and output terminal of the operational amplifier are provided. A fourth resistor is provided between the operational amplifier and the non-inverting input of the operational amplifier, and the fifth resistor is provided between the ground and the circuit. Therefore, the number of circuit elements is small, the reliability against a high voltage surge is high, and the temperature is high. Stable against changes and compatible with digital control In which it is excellent can be realized at low cost ability brightness adjustment circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における輝度調整回路の
回路図
FIG. 1 is a circuit diagram of a brightness adjusting circuit according to a first embodiment of the present invention.

【図2】本発明の第2の実施例における輝度調整回路の
回路図
FIG. 2 is a circuit diagram of a brightness adjusting circuit according to a second embodiment of the present invention.

【図3】輝度調整回路を含むカラー表示装置の映像出力
回路部分を示すブロック図
FIG. 3 is a block diagram showing a video output circuit portion of a color display device including a brightness adjustment circuit.

【図4】従来の輝度調整回路の回路図FIG. 4 is a circuit diagram of a conventional brightness adjustment circuit.

【図5】定電流ICの動作説明図FIG. 5 is an operation explanatory diagram of a constant current IC.

【図6】定電圧ICの動作説明図FIG. 6 is an operation explanatory diagram of a constant voltage IC.

【符号の説明】[Explanation of symbols]

6 演算増幅器 10 NPN型トランジスタ 13 PNP型トランジスタ 15 第1の入力端子 16 第2の入力端子 6 operational amplifier 10 NPN type transistor 13 PNP type transistor 15 first input terminal 16 second input terminal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 2個の入力端子と、1個の出力端子を有
する回路であって、反転入力と非反転入力、および出力
を持つ演算増幅器と、エミッタに直列帰還抵抗を有する
エミッタ接地増幅回路とを従続接続して構成され、第1
の入力端子と上記演算増幅器の反転入力との間に第1の
抵抗を設け、第2の入力端子と上記演算増幅器の反転入
力との間に第2の抵抗を設け、上記演算増幅器の反転入
力と上記エミッタ接地増幅器回路のエミッタとの間に第
3の抵抗を設け、上記演算増幅器の非反転入力と上記出
力端子との間に第4の抵抗を設け、上記演算増幅器の非
反転入力と接地との間に第5の抵抗を設けたことを特徴
とする、輝度調整回路。
1. A circuit having two input terminals and one output terminal, an operational amplifier having an inverting input, a non-inverting input, and an output, and a grounded-emitter amplifier circuit having a series feedback resistor in the emitter. And are connected in cascade, the first
A first resistor is provided between the input terminal of the operational amplifier and the inverting input of the operational amplifier, and a second resistor is provided between the second input terminal and the inverting input of the operational amplifier. A third resistor is provided between the non-inverting input of the operational amplifier and the output terminal, and a fourth resistor is provided between the non-inverting input of the operational amplifier and the output terminal. A brightness adjusting circuit, wherein a fifth resistor is provided between and.
【請求項2】 請求項1に記載の輝度調整回路を3個有
し、それぞれの第2の入力端子を3個とも共通に接続し
たことを特徴とする、輝度調整回路。
2. A brightness adjusting circuit comprising three brightness adjusting circuits according to claim 1, wherein each of the second input terminals is commonly connected.
JP4052393A 1991-10-29 1992-03-11 Brightness adjustment circuit Expired - Fee Related JP2864853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4052393A JP2864853B2 (en) 1991-10-29 1992-03-11 Brightness adjustment circuit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28266191 1991-10-29
JP3-282661 1991-10-29
JP4052393A JP2864853B2 (en) 1991-10-29 1992-03-11 Brightness adjustment circuit

Publications (2)

Publication Number Publication Date
JPH05183835A true JPH05183835A (en) 1993-07-23
JP2864853B2 JP2864853B2 (en) 1999-03-08

Family

ID=26392998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4052393A Expired - Fee Related JP2864853B2 (en) 1991-10-29 1992-03-11 Brightness adjustment circuit

Country Status (1)

Country Link
JP (1) JP2864853B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104489A (en) * 2011-12-12 2012-05-31 Seiko Epson Corp Projector and control method of projector
US10669926B2 (en) 2016-01-14 2020-06-02 Nautilus Engineering, Llc Systems and methods of compression ignition engines

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104489A (en) * 2011-12-12 2012-05-31 Seiko Epson Corp Projector and control method of projector
US10669926B2 (en) 2016-01-14 2020-06-02 Nautilus Engineering, Llc Systems and methods of compression ignition engines

Also Published As

Publication number Publication date
JP2864853B2 (en) 1999-03-08

Similar Documents

Publication Publication Date Title
EP0343730B1 (en) Wideband class AB CRT cathode driver
JP2864853B2 (en) Brightness adjustment circuit
EP0609844A2 (en) Signal level converting circuit for liquid crystal display device receiving analog color signal
JP4427198B2 (en) Semiconductor integrated circuit
US6313884B1 (en) Gamma correction
US5307166A (en) Automatic image-tone control circuit and method for controlling brightness of image
US4771217A (en) Vertical deflection circuit for a cathode-ray tube having a vertical image-position adjustment circuit
US5148055A (en) Holding circuit for providing a large time constant by using a base current to charge the capacitor
US4028630A (en) Push-pull amplifier arrangement
JPS62115905A (en) Electronic switch
JP2001292043A (en) Variable gain amplifier circuit
CA2055858C (en) Holding circuit
JPH06261228A (en) Gamma correction circuit
JP2973910B2 (en) Circuit for adjusting signal coring threshold
JPH05259748A (en) Video output circuit
JP2931713B2 (en) Clamp circuit
JP2979643B2 (en) Vertical deflection circuit
JPH0753105Y2 (en) Vertical raster centering circuit
JP3290264B2 (en) Gamma correction circuit
JPH08186738A (en) Level conversion circuit
JPH0345088A (en) Video amplifier
JPH04354408A (en) Current polarity conversion circuit
JPH07104698A (en) Drive circuit for display
JPH0463071A (en) Video output circuit
JPH11337595A (en) Sample hold circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees