JPH05175614A - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JPH05175614A
JPH05175614A JP3345067A JP34506791A JPH05175614A JP H05175614 A JPH05175614 A JP H05175614A JP 3345067 A JP3345067 A JP 3345067A JP 34506791 A JP34506791 A JP 34506791A JP H05175614 A JPH05175614 A JP H05175614A
Authority
JP
Japan
Prior art keywords
light
emitting element
light emitting
light receiving
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3345067A
Other languages
Japanese (ja)
Inventor
Hiroshi Kondo
浩史 近藤
Akira Ishizuka
公 石塚
Tetsuji Nishimura
哲治 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3345067A priority Critical patent/JPH05175614A/en
Publication of JPH05175614A publication Critical patent/JPH05175614A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To furnish an optical semiconductor device at low cost by taking a construction which can be manufactured easily. CONSTITUTION:In an optical semiconductor device wherein a light-emitting element 1 and a light-sensing element 4 are incorporated in a case body 5 having an optical window part 3 and a light emitted from the front end face of the light-emitting element 1 is outputted from the window part 3, a mount surface for the light-emitting element 1 and a mount surface for the light-sensing element 4 are put in a parallel state, and a reflecting optical member 7 for reflecting a light emitted from the rear end face of the light-emitting element 1 in the direction being horizontal to the mount surface and leading it to the light-sensing element 4 is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は発光素子と受光素子とを
1つの筐体に内蔵した光半導体装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor device in which a light emitting element and a light receiving element are incorporated in one housing.

【0002】[0002]

【従来技術とその課題】半導体レーザ光源は軽量コンパ
クトであるため様々な機器で広く使用されている。しか
しながら半導体レーザには発光素子の素子発熱や素子劣
化によるレーザパワー変動という問題がある。そこでこ
れに対処して安定した光出力を得るための方法の一つと
して、半導体レーザ発光素子の光出力を取り出す前側端
面の反対側の後側端面から出力されるモニタ用の光を光
源チップ内に内蔵するモニタ用受光素子により強度モニ
タして、これを基にフィードバック駆動させることによ
り光出力を安定化させる方法、いわゆるAPC(Auto Po
wer Control)駆動が従来から知られている。
2. Description of the Related Art Since a semiconductor laser light source is lightweight and compact, it is widely used in various devices. However, the semiconductor laser has a problem that the laser power fluctuates due to element heat generation and element deterioration of the light emitting element. Therefore, as one of the methods for dealing with this and obtaining a stable light output, the light for monitoring, which is output from the rear end face opposite to the front end face from which the light output of the semiconductor laser light emitting element is taken out, is provided in the light source chip. A method for stabilizing the optical output by monitoring the intensity with a built-in monitor light-receiving element and performing feedback drive based on this, a so-called APC (Auto Po
wer control) drive is conventionally known.

【0003】半導体レーザ発光素子の射出光はその構造
上、積層面方向すなわちマウント面と平行方向に射出さ
れる。一方、モニタ用受光素子の受光面は素子表面に形
成されるため、受光素子に導光させるためには入射光は
マウント面に対して水平以外の角度を持たなければなら
ない。そのため従来は半導体レーザとモニタ用受光素子
のマウント面は90度に近い角度をなしてマウントさせ
ているのが一般的である。このとき受光素子に入射した
モニタ用のレーザ光が受光素子で反射して反射光として
発光素子に戻ったりあるいは反射光が出力窓から漏出し
てゴースト光になることを防ぐため、モニタ受光素子を
僅かに傾斜させてマウントさせている。図6は従来の半
導体レーザ光源のパッケージ構造を示す構成図で、図
中、1は発光素子、4は受光素子、9はステム、10は
金属製のキャップ、11は透明ガラス板である。上記の
理由により受光素子4は傾斜マウントされている。
Due to its structure, the light emitted from the semiconductor laser light emitting element is emitted in the direction of the stacking surface, that is, in the direction parallel to the mount surface. On the other hand, since the light receiving surface of the monitor light receiving element is formed on the element surface, the incident light must have an angle other than horizontal with respect to the mount surface in order to guide the light to the light receiving element. Therefore, conventionally, the mounting surfaces of the semiconductor laser and the light receiving element for monitoring are generally mounted at an angle close to 90 degrees. At this time, in order to prevent the laser light for monitoring incident on the light receiving element from being reflected by the light receiving element and returning to the light emitting element as reflected light or the reflected light leaking from the output window and becoming ghost light, It is mounted with a slight tilt. FIG. 6 is a configuration diagram showing a package structure of a conventional semiconductor laser light source. In the figure, 1 is a light emitting element, 4 is a light receiving element, 9 is a stem, 10 is a metal cap, and 11 is a transparent glass plate. For the above reason, the light receiving element 4 is tilt-mounted.

【0004】ところが、このような実装構造を採用する
と、以下のような製造上の問題点が存在する。
However, if such a mounting structure is adopted, there are the following manufacturing problems.

【0005】(1) 半導体レーザの発光素子とモニタ
用受光素子のマウント面が、90度に近い角度をもって
いるため、製造時のチップマウントの際に吸着コレット
が干渉しないように配置しなければならず、高密度実装
が困難である。
(1) Since the mounting surfaces of the light emitting element of the semiconductor laser and the light receiving element for monitoring have an angle close to 90 degrees, they must be arranged so that the suction collet does not interfere during chip mounting during manufacturing. Therefore, high-density mounting is difficult.

【0006】(2) マウント面が異なっているため、
製造時にチップと外部リードとの電気的接続を行うワイ
ヤボンディング装置は異なる装置を用いなければならな
い。もしくはパッケージを保持するステージ部に回転機
構を持たせなければならず、製造装置が複雑な機構とな
ってしまう。
(2) Since the mounting surfaces are different,
A different wire bonding device must be used for making electrical connection between the chip and external leads during manufacturing. Alternatively, the stage unit that holds the package must have a rotation mechanism, which makes the manufacturing apparatus a complicated mechanism.

【0007】(3) 受光素子のワイヤボンディング面
(1stボンディング)とリードのボンディング面(2
ndボンディング)が平行面ではないため、どちらかの
面に対して合わせた場合、反対側のボンディング性が低
下する。そのため、ここでもパッケージを保持するステ
ージ部に1st、2ndボンディングを行う間に、キャ
ピラリに対する角度を90度になるような調整する機構
部を持たせなければならず、製造装置が複雑な機構にな
るのは避けられない。
(3) The wire bonding surface (1st bonding) of the light receiving element and the lead bonding surface (2)
(nd bonding) is not a parallel surface, the bonding properties on the opposite side are degraded when the two are bonded to either surface. Therefore, also in this case, it is necessary to provide a mechanism section for adjusting the angle with respect to the capillary to 90 degrees while performing the 1st and 2nd bonding on the stage section holding the package, and the manufacturing apparatus becomes a complicated mechanism. Is inevitable.

【0008】一方、別の従来例として、特開平3−21
4112号公報に開示されるCD用光学式ピックアップ
のレーザカプラユニットの構成図を図7に示す。図中、
1は発光素子、12はプリズム、13は受光素子、14
は半導体基板である。この種のピックアップでは、半導
体レーザ発光素子の放熱性向上のために設けられるシリ
コンサブマウントに受光素子を設けて小型化している。
これは例えば特開昭61−88588号公報,特開昭6
1−90488号公報,特開昭61−95591号公報
等に開示されている。
On the other hand, as another conventional example, JP-A-3-21
FIG. 7 shows a configuration diagram of a laser coupler unit of an optical pickup for CD disclosed in Japanese Patent No. 4112. In the figure,
1 is a light emitting element, 12 is a prism, 13 is a light receiving element, 14
Is a semiconductor substrate. In this type of pickup, a light receiving element is provided on a silicon submount provided to improve the heat dissipation of the semiconductor laser light emitting element to reduce the size.
This is disclosed, for example, in JP-A-61-88588 and JP-A-6-1988.
1-90488, JP-A-61-95591 and the like.

【0009】この様な構成では、2チップ構成の従来例
に較べて1チップ化することにより装置の小型化を達成
することができ、しかもボンディング面は平面内に存在
するため、ワイヤボンディングを行う際にボンディング
装置に複雑な機構部を設ける必要もないが、以下のよう
な問題点が存在する。
In such a structure, the size of the device can be reduced by making it into one chip as compared with the conventional example having a two-chip structure, and wire bonding is performed because the bonding surface exists in a plane. At this time, it is not necessary to provide a complicated mechanical section in the bonding apparatus, but there are the following problems.

【0010】(1) 半導体レーザ発光素子からの射出
光は、受光部に対し平行方向に射出されるため、受光素
子に入射する光は発光素子の前側端面から放射される斜
入射光であり、そのため出力光の最も光強度の高い中心
部をモニタするためには受光部サイズを大型化しなけれ
ばならない。又、斜入射光をモニタしているため、発光
素子の素子ばらつきや発光素子のマウント時のばらつき
により放出光角度がばらついて、受光素子の検出出力値
のばらつきの要因となる。
(1) Since the light emitted from the semiconductor laser light emitting element is emitted in the direction parallel to the light receiving portion, the light entering the light receiving element is obliquely incident light emitted from the front end face of the light emitting element, Therefore, the size of the light receiving portion must be increased in order to monitor the central portion of the output light having the highest light intensity. Further, since the oblique incident light is monitored, the emission light angle varies due to element variations of the light emitting element and variations when mounting the light emitting element, which causes variations in the detection output value of the light receiving element.

【0011】(2) 半導体レーザ発光素子のサブマウ
ントに受光素子を設けているため、発光素子の発熱によ
りサブマウントが温度上昇して受光素子の温度特性によ
り感度特性が変化し、発光素子の光出力の変化なのかあ
るいは受光素子の温度上昇による変化かの識別が難しく
なり、正確な光出力のモニタが困難になる。これは特に
半導体レーザの光出力をアナログ的に使用する場合に大
きな問題となる。
(2) Since the light receiving element is provided on the submount of the semiconductor laser light emitting element, the temperature of the submount rises due to heat generation of the light emitting element, and the sensitivity characteristic changes due to the temperature characteristic of the light receiving element. It is difficult to distinguish whether the change is due to the output change or the change due to the temperature rise of the light receiving element, which makes it difficult to accurately monitor the light output. This becomes a serious problem especially when the optical output of the semiconductor laser is used in an analog manner.

【0012】本発明は上記課題を解決すべくなされたも
ので、容易に製造できる構成をとることにより低コスト
に光半導体装置を提供することを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide an optical semiconductor device at a low cost by adopting a structure that can be easily manufactured.

【0013】[0013]

【課題を解決するための手段及び作用】上記課題を解決
する本発明は、光学窓部を有する筐体内に発光素子と受
光素子を内蔵し、前記発光素子の前方端面から射出した
光を前記窓部より出力する光半導体装置において、前記
発光素子のマウント面と前記受光素子のマウント面とが
平行状態をなし、前記発光素子の後方面から前記マウン
ト面と水平方向に発する光を反射して前記受光素子に導
くための反射光学部材を有することを特徴とするもので
ある。
According to the present invention for solving the above problems, a light emitting element and a light receiving element are incorporated in a housing having an optical window portion, and light emitted from a front end face of the light emitting element is used for the window. In the optical semiconductor device that outputs from the section, the mounting surface of the light emitting element and the mounting surface of the light receiving element are in a parallel state, and the light emitted in the horizontal direction from the rear surface of the light emitting element is reflected by the mounting surface. It is characterized by having a reflective optical member for guiding to the light receiving element.

【0014】この構成によって、発光素子の後側端面か
ら発した光は光学反射部材によって受光素子に確実に導
光される。又、発光素子と受光素子とを平行状態をなす
面にそれぞれマウントするため、マウントする際の吸着
コレットの干渉がなく、発光素子と受光素子とを近接し
てマウントすることができる。又、マウントされた発光
素子と受光素子の電気的接続部も平行状態をなす面に存
在するため、発光素子と受光素子のワイヤボンダ装置も
同一の装置を使用でき、又、ステージ部に複雑な機構を
持たせる事なくワイヤボンディングが可能となる。
With this structure, the light emitted from the rear end surface of the light emitting element is reliably guided to the light receiving element by the optical reflecting member. Further, since the light emitting element and the light receiving element are mounted on the surfaces that are in parallel with each other, there is no interference of the suction collet when mounting, and the light emitting element and the light receiving element can be mounted close to each other. In addition, since the mounted light-emitting element and light-receiving element have electrical connections on the planes that are parallel to each other, the same wire bonder device for the light-emitting element and the light-receiving element can be used, and the stage has a complicated mechanism. Wire bonding is possible without having to have.

【0015】[0015]

【実施例】[実施例1]図1は第1の実施例を表す光半
導体装置の構成を示す三面図である。同図において、1
は半導体レーザの発光素子、2は反射ミラー、3は封止
用ガラス板、4は光出力モニタ用の受光素子、5はセラ
ミックからなる筐体、6は電極、7は反射ミラーであ
る。なお、反射ミラー7をプリズムや凹面鏡等、光束を
所望の方向に折曲げる機能をもつ光学部品に置き換えて
も良い。この構成において、発光素子1の前側端面から
水平方向に射出したレーザ光は反射ミラー2で直角方向
に反射され、光学窓部である透明なガラス板3から外部
に出力される。又、発光素子1の後方端面から水平方向
に射出した光は反射ミラー7で直角方向に反射され受光
素子4に導光される。この受光素子4の検出出力は電極
6から取り出すことができ、APC制御等に利用され
る。
[Embodiment 1] FIG. 1 is a trihedral view showing the structure of an optical semiconductor device according to a first embodiment. In the figure, 1
Is a light emitting element of a semiconductor laser, 2 is a reflection mirror, 3 is a glass plate for sealing, 4 is a light receiving element for optical output monitoring, 5 is a housing made of ceramic, 6 is an electrode, and 7 is a reflection mirror. The reflection mirror 7 may be replaced with an optical component such as a prism or a concave mirror having a function of bending the light beam in a desired direction. In this configuration, the laser light emitted horizontally from the front end face of the light emitting element 1 is reflected at a right angle by the reflection mirror 2 and is output to the outside from the transparent glass plate 3 which is the optical window. The light emitted horizontally from the rear end surface of the light emitting element 1 is reflected at a right angle by the reflection mirror 7 and guided to the light receiving element 4. The detection output of the light receiving element 4 can be taken out from the electrode 6 and used for APC control or the like.

【0016】本実施例の装置の製造手順は以下の通りで
ある。まず筐体5に受光素子4をダイボンディングす
る。次にサブマウントにマウントされた発光素子1を筐
体5にダイボンディングする。このとき受光素子4の受
光面高さ(受光素子のチップ厚み)が発光素子1の発光
面高さよりも低くなるように、サブマウント厚みもしく
は筐体5の発光素子1のマウント部の高さもしくは受光
素子4の高さを決定する。本実施例では受光素子4の厚
みは200μm、発光素子1のサブマウントの厚みは5
00μmとした。
The manufacturing procedure of the device of this embodiment is as follows. First, the light receiving element 4 is die-bonded to the housing 5. Next, the light emitting element 1 mounted on the submount is die-bonded to the housing 5. At this time, the submount thickness or the height of the mount portion of the light emitting element 1 of the housing 5 is set so that the height of the light receiving surface of the light receiving element 4 (chip thickness of the light receiving element) becomes lower than the height of the light emitting surface of the light emitting element 1. The height of the light receiving element 4 is determined. In this embodiment, the thickness of the light receiving element 4 is 200 μm, and the thickness of the submount of the light emitting element 1 is 5 μm.
It was set to 00 μm.

【0017】次に発光素子1の電極部(チップ上面)と
筐体5の電極部6とを、更には受光素子4の電極(図示
せず)と筐体5の電極6とをワイヤボンダ装置を用いて
電気的に接続する。このとき筐体5をワイヤボンダ装置
のステージ部に、発光素子1の接続面とワイヤボンダ装
置のキャピラリが直交するようにセットすると、それぞ
れの接続面は平行状態つまり各接続面は常にキャピラリ
に対し直交する位置関係で高さのみが異なる状態とな
る。よって単純なステージのxy方向への動きとキャピ
ラリのz方向への動きだけで発光素子1と受光素子4の
電気的接続を行なうことができる。
Next, the electrode section of the light emitting element 1 (top surface of the chip) and the electrode section 6 of the housing 5, and further the electrode of the light receiving element 4 (not shown) and the electrode 6 of the housing 5 are connected to each other by a wire bonder device. Use to connect electrically. At this time, if the housing 5 is set on the stage portion of the wire bonder device so that the connection surface of the light emitting element 1 and the capillaries of the wire bonder device are orthogonal to each other, the respective connection surfaces are in a parallel state, that is, the connection surfaces are always orthogonal to the capillary. Only the height differs due to the positional relationship. Therefore, the light emitting element 1 and the light receiving element 4 can be electrically connected only by a simple movement of the stage in the xy direction and a movement of the capillary in the z direction.

【0018】次に発光素子1の出力光を反射して筐体5
から外部に取り出すためのミラー2を発光素子1の前方
にマウントする。又、封止用ガラス板3の所定の位置に
反射ミラー7をマウントし接着剤にて固定する。そし
て、この反射ミラー7が固定された封止用ガラス板3を
発光素子1等がマウントされた筐体5に被せ、封止用シ
ール材によりパッケージ内部を気密に封止する。
Next, the output light of the light emitting element 1 is reflected to reflect the housing 5
The mirror 2 for taking out from the outside is mounted in front of the light emitting element 1. Further, the reflection mirror 7 is mounted at a predetermined position on the sealing glass plate 3 and fixed with an adhesive. Then, the sealing glass plate 3 to which the reflection mirror 7 is fixed is covered on the housing 5 on which the light emitting element 1 and the like are mounted, and the inside of the package is hermetically sealed by a sealing sealing material.

【0019】以上のように本実施例の光半導体装置は従
来ものと比較して、単純な製造方法で極めて薄型化され
る。又、発光素子の出力光の中心部(光軸)付近の光が
受光素子に導かれるため正確に光出力モニタを行うこと
ができる。又、発光素子と受光素子が分離されているた
め、受光素子は発光素子の発熱による影響が少ないとい
う利点も有する。
As described above, the optical semiconductor device of this embodiment can be made extremely thin by a simple manufacturing method as compared with the conventional one. Further, since the light near the central portion (optical axis) of the output light of the light emitting element is guided to the light receiving element, it is possible to accurately monitor the light output. Further, since the light emitting element and the light receiving element are separated, the light receiving element has an advantage that the heat generated by the light emitting element is less affected.

【0020】[実施例2]図2は第2実施例による光半
導体装置の構成を示す断面図であり、図1と同一の符号
は同一もしくは同等の部材を示す。本実施例は光学反射
部材としてプリズム8を用いてこれを筐体5の内部側壁
に固定したことを特徴とする。なお、プリズム8は反射
ミラーや凹面鏡に置き換えても良い。
[Embodiment 2] FIG. 2 is a sectional view showing the structure of an optical semiconductor device according to a second embodiment, and the same reference numerals as those in FIG. 1 denote the same or equivalent members. The present embodiment is characterized in that a prism 8 is used as an optical reflection member and is fixed to the inner side wall of the housing 5. The prism 8 may be replaced with a reflection mirror or a concave mirror.

【0021】製造手順は、半導体レーザの発光素子1及
び受光素子4をマウントしてワイヤボンディングし、次
にプリズム8をセラミックの筐体5の側面に接着剤によ
り固定する。そして封止用ガラス板3を筐体5に被せ、
封止用シール材によりパッケージ内を気密封止する。
In the manufacturing procedure, the light emitting element 1 and the light receiving element 4 of the semiconductor laser are mounted and wire-bonded, and then the prism 8 is fixed to the side surface of the ceramic housing 5 with an adhesive. Then, the sealing glass plate 3 is covered on the housing 5,
The inside of the package is hermetically sealed with a sealing material for sealing.

【0022】又、本実施例では筐体5の内部側壁にプリ
ズム8を貼付けたが、変形例として図3に示すように受
光素子4のマウントされる側面の筐体5に段差部を設
け、その段差部にプリズム8をマウントしても同様の作
用効果を得ることができる。
Further, in this embodiment, the prism 8 is attached to the inner side wall of the housing 5, but as a modification, as shown in FIG. 3, a step portion is provided on the side surface of the housing 5 on which the light receiving element 4 is mounted. Even if the prism 8 is mounted on the stepped portion, the same effect can be obtained.

【0023】[実施例3]図4は第3実施例による光半
導体装置を示す断面図である。本実施例は光学反射部材
であるプリズム8を受光素子4の上に直接固定したこと
を特徴とする。製造手順は、上記と同様に半導体レーザ
の発光素子1、受光素子4をマウントしてワイヤボンデ
ィングした後に、プリズム8を受光素子4の受光部上に
接着剤により貼りつける。次に封止用ガラス板3を筐体
5に被せ、封止用シール材によりパッケージ内部を気密
封止する。
[Embodiment 3] FIG. 4 is a sectional view showing an optical semiconductor device according to a third embodiment. The present embodiment is characterized in that the prism 8 which is an optical reflection member is directly fixed on the light receiving element 4. In the manufacturing procedure, the light emitting element 1 and the light receiving element 4 of the semiconductor laser are mounted and wire bonded in the same manner as described above, and then the prism 8 is attached onto the light receiving portion of the light receiving element 4 with an adhesive. Next, the glass plate 3 for sealing is covered on the housing 5, and the inside of the package is hermetically sealed with a sealing material for sealing.

【0024】[実施例4]図5は第4実施例による光半
導体装置を示す断面図及び正面図である。本実施例はセ
ラミックパッケージの代わりに金属製のキャンパッケー
ジを使用したものである。金属製ステム9に半導体レー
ザの発光素子1及び受光素子4を図5のようにマウント
し、各素子の接続用電極とステム9に設けられたリード
ピンとをワイヤボンディングする。次にプリズム8を受
光素子4の受光部上に接着剤により貼り付けた後に、金
属製のキャップ10を被せ、放電溶接によりパッケージ
内を気密封止する。キャップ10の光射出用の開口には
透明ガラス板11が取り付けられ、光学窓部を形成して
いる。
[Embodiment 4] FIG. 5 is a sectional view and a front view showing an optical semiconductor device according to a fourth embodiment. In this embodiment, a metal can package is used instead of the ceramic package. The light emitting element 1 and the light receiving element 4 of the semiconductor laser are mounted on the metal stem 9 as shown in FIG. 5, and the connection electrode of each element and the lead pin provided on the stem 9 are wire-bonded. Next, after the prism 8 is attached onto the light receiving portion of the light receiving element 4 with an adhesive, a metal cap 10 is covered and the package is hermetically sealed by discharge welding. A transparent glass plate 11 is attached to the light emitting opening of the cap 10 to form an optical window portion.

【0025】[変形例]本発明は以上の実施例の形態に
は限定されず、本発明の技術思想の範囲内で種々の変形
が可能である。例えば発光素子と受光素子とを実質的に
同一面上にマウントしても良い。又、発光素子は半導体
レーザ以外にも高輝度発光LED等も用いることができ
る。
[Modification] The present invention is not limited to the embodiments described above, and various modifications can be made within the scope of the technical idea of the present invention. For example, the light emitting element and the light receiving element may be mounted on substantially the same surface. In addition to the semiconductor laser, a high brightness LED or the like can be used as the light emitting element.

【0026】[0026]

【発明の効果】本発明によれば、容易に製造できる構成
をとることにより低コストに光半導体装置を提供するこ
とができる。
According to the present invention, an optical semiconductor device can be provided at low cost by adopting a structure that can be easily manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例の構成図である。FIG. 1 is a configuration diagram of a first embodiment.

【図2】第2実施例の構成図である。FIG. 2 is a configuration diagram of a second embodiment.

【図3】第2実施例の変形例の構成図である。FIG. 3 is a configuration diagram of a modification of the second embodiment.

【図4】第3実施例の構成図である。FIG. 4 is a configuration diagram of a third embodiment.

【図5】第4実施例の構成図である。FIG. 5 is a configuration diagram of a fourth embodiment.

【図6】従来の半導体レーザ光源パッケージの構成図で
ある。
FIG. 6 is a configuration diagram of a conventional semiconductor laser light source package.

【図7】従来のレーザカプラの構成図である。FIG. 7 is a configuration diagram of a conventional laser coupler.

【符号の説明】[Explanation of symbols]

1 発光素子 2 反射ミラー 3 封止用ガラス板 4 受光素子 5 筐体 6 パッケージ電極 7 反射ミラー 8 反射プリズム 9 ステム 10 金属製キャップ 11 ガラス板 DESCRIPTION OF SYMBOLS 1 Light emitting element 2 Reflection mirror 3 Glass plate for sealing 4 Light receiving element 5 Housing 6 Package electrode 7 Reflection mirror 8 Reflection prism 9 Stem 10 Metal cap 11 Glass plate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光学窓部を有する筐体内に発光素子と受
光素子を内蔵し、前記発光素子の前方端面から射出した
光を前記窓部より出力する光半導体装置において、 前記発光素子のマウント面と前記受光素子のマウント面
とが平行状態をなし、前記発光素子の後方面から前記マ
ウント面と水平方向に発する光を反射して前記受光素子
に導くための反射光学部材を有することを特徴とする光
半導体装置。
1. An optical semiconductor device in which a light emitting element and a light receiving element are built in a housing having an optical window portion, and light emitted from a front end face of the light emitting element is output from the window portion, a mount surface of the light emitting element. And a mount surface of the light receiving element are in parallel with each other, and a reflection optical member for reflecting light emitted from the rear surface of the light emitting element in the horizontal direction to the mount surface and guiding the light to the light receiving element. Optical semiconductor device.
【請求項2】 前記反射光学部材はミラー又はプリズム
を有する請求項1記載の光半導体装置。
2. The optical semiconductor device according to claim 1, wherein the reflective optical member has a mirror or a prism.
JP3345067A 1991-12-26 1991-12-26 Optical semiconductor device Pending JPH05175614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3345067A JPH05175614A (en) 1991-12-26 1991-12-26 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3345067A JPH05175614A (en) 1991-12-26 1991-12-26 Optical semiconductor device

Publications (1)

Publication Number Publication Date
JPH05175614A true JPH05175614A (en) 1993-07-13

Family

ID=18374064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3345067A Pending JPH05175614A (en) 1991-12-26 1991-12-26 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JPH05175614A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7326946B2 (en) 2004-06-11 2008-02-05 Eudyna Devices Inc. Optical module having a reflector element and method of manufacturing the same
EP1976023A2 (en) 2007-03-29 2008-10-01 Eudyna Devices Inc. Optical semiconductor module and light receiving element
WO2013168445A1 (en) * 2012-05-08 2013-11-14 古河電気工業株式会社 Semiconductor laser module
JP2017528920A (en) * 2014-10-08 2017-09-28 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Laser component and manufacturing method thereof
JP2020537332A (en) * 2017-10-09 2020-12-17 オスラム オーエルイーディー ゲゼルシャフト ミット ベシュレンクテル ハフツングOSRAM OLED GmbH Optoelectronic semiconductor components, and methods for manufacturing optoelectronic semiconductor components
WO2022176992A1 (en) * 2021-02-19 2022-08-25 京セラ株式会社 Light emitting device
WO2022176987A1 (en) * 2021-02-19 2022-08-25 京セラ株式会社 Light emitting device
US11990728B2 (en) 2020-05-26 2024-05-21 Nichia Corporation Light emitting device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7326946B2 (en) 2004-06-11 2008-02-05 Eudyna Devices Inc. Optical module having a reflector element and method of manufacturing the same
EP1976023A2 (en) 2007-03-29 2008-10-01 Eudyna Devices Inc. Optical semiconductor module and light receiving element
US7807954B2 (en) 2007-03-29 2010-10-05 Eudyna Devices Inc. Light receiving element with upper and side light receiving faces and an optical semiconductor module with the light receiving element and a light emitting element mounted on the same mounting unit
WO2013168445A1 (en) * 2012-05-08 2013-11-14 古河電気工業株式会社 Semiconductor laser module
JP2013235943A (en) * 2012-05-08 2013-11-21 Furukawa Electric Co Ltd:The Semiconductor laser module
US9373932B2 (en) 2012-05-08 2016-06-21 Furukawa Electric Co., Ltd. Semiconductor laser module
JP2017528920A (en) * 2014-10-08 2017-09-28 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Laser component and manufacturing method thereof
DE112015004631B4 (en) 2014-10-08 2022-01-13 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Laser component and method for its manufacture
JP2020537332A (en) * 2017-10-09 2020-12-17 オスラム オーエルイーディー ゲゼルシャフト ミット ベシュレンクテル ハフツングOSRAM OLED GmbH Optoelectronic semiconductor components, and methods for manufacturing optoelectronic semiconductor components
US11316075B2 (en) 2017-10-09 2022-04-26 Osram Oled Gmbh Optoelectronic semiconductor component, and method for producing an optoelectronic semiconductor component
US11990728B2 (en) 2020-05-26 2024-05-21 Nichia Corporation Light emitting device
WO2022176992A1 (en) * 2021-02-19 2022-08-25 京セラ株式会社 Light emitting device
WO2022176987A1 (en) * 2021-02-19 2022-08-25 京セラ株式会社 Light emitting device

Similar Documents

Publication Publication Date Title
US6567435B1 (en) VCSEL power monitoring system using plastic encapsulation techniques
US6969204B2 (en) Optical package with an integrated lens and optical assemblies incorporating the package
US5130531A (en) Reflective photosensor and semiconductor light emitting apparatus each using micro Fresnel lens
US7467897B2 (en) Light transmitting modules with optical power monitoring
US20040190836A1 (en) Package with a light emitting device
JP7119271B2 (en) Laser diode package modules, distance detectors, electronic devices
KR20060090492A (en) Optical scanner package and method for manufacturing the same
JP3233837B2 (en) Semiconductor laser device and optical pickup device
KR100780522B1 (en) Semiconductor laser
JPH10321900A (en) Optical module
JPWO2002063730A1 (en) Optical transmitter
JPH1093133A (en) Photodetction device with integrated mirror and its preparation
JPH05175614A (en) Optical semiconductor device
US20040141699A1 (en) Optical module
JPH10132558A (en) Optical semiconductor device
JPH1022576A (en) Semiconductor laser device
JP2736197B2 (en) Package for optical semiconductor device
JP3295327B2 (en) Bidirectional optical module
JP2008041918A (en) Optical unit and optical module
JP3032376B2 (en) Semiconductor laser device
JP2006041085A (en) Semiconductor laser device and optical pickup unit equipped therewith
JPS62276515A (en) Photoelectronic device and its sub-carrier
JPH1069674A (en) Optical pickup device
KR102239822B1 (en) Laser diode with surface mounting device type of multichannel operation
JP2003075690A (en) Transmitter and receiver