JPH05167143A - Semiconductor laser equipment - Google Patents

Semiconductor laser equipment

Info

Publication number
JPH05167143A
JPH05167143A JP35392091A JP35392091A JPH05167143A JP H05167143 A JPH05167143 A JP H05167143A JP 35392091 A JP35392091 A JP 35392091A JP 35392091 A JP35392091 A JP 35392091A JP H05167143 A JPH05167143 A JP H05167143A
Authority
JP
Japan
Prior art keywords
semiconductor laser
heat
light emitting
laser
heat pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP35392091A
Other languages
Japanese (ja)
Inventor
Hirofumi Imai
浩文 今井
Satoru Yamaguchi
哲 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP35392091A priority Critical patent/JPH05167143A/en
Publication of JPH05167143A publication Critical patent/JPH05167143A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes

Abstract

PURPOSE:To provide a semiconductor laser equipment in which a cooler attached to a light emitting unit thereof can be reduced in size by a safe and simple method and a plurality of light emitting units thereof can be disposed near at hand. CONSTITUTION:An array semiconductor laser 1 having an optical output 10W is used as a semiconductor laser, mounted at a temperature control Peltier element 3 for controlling a temperature of the laser 1 through a copper spacer 2, integrally disposed on a copper heat block 4, the block 4 is fixed to one side end of a heat pipe 5, a radiating fin 6 is mounted at the other, and forcibly air-cooled by an air cooling fan 7, thereby obtaining an excellent operation of the laser 1. After emitted lights from the two lasers 1 disposed near a light emitting unit 8 are collimated by a collimator lens 9, and polarized planes are disposed to match the input port of a polarized wave combining polarizing beam splitter 10 to obtain a polarized wave combining optical output 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光エネルギー源として
半導体レーザを用いる応用分野(例えば、固体レーザ励
起やレーザマイクロプロセッシングなど)に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an application field in which a semiconductor laser is used as a light energy source (for example, solid-state laser pumping and laser microprocessing).

【0002】[0002]

【従来の技術】狭い活性層に電流を注入する半導体レー
ザの光/電気変換効率は非常に高く、中には50%を越
えるものもある。しかし、残りの50%は熱に変わるの
であり、これを局所的発熱という観点からみると非常に
大きなものになっていることがわかる。近年、発展著し
い高出力型の半導体レーザを例にとれば、活性層幅20
0μm、長さ300μm、光出力1W、光/電気変換効
率30%の半導体レーザでは、3.9kW/cm2 とな
る。これは、なんらかの強制的冷却を行わない限り、半
導体の溶融による破壊を招く。このため、ペルチエ素子
による電子冷却や空冷などが広く行われている(例え
ば、1991 PRODUCT CATALOG p56 :SPECTRA DIODE LABS等
参照)。
2. Description of the Related Art A semiconductor laser for injecting a current into a narrow active layer has a very high optical / electrical conversion efficiency, some of which exceed 50%. However, the remaining 50% is changed to heat, and it is understood that this is extremely large from the viewpoint of local heat generation. Taking a high-power type semiconductor laser that has made remarkable progress in recent years as an example, the active layer width 20
A semiconductor laser having 0 μm, a length of 300 μm, an optical output of 1 W, and an optical / electrical conversion efficiency of 30% has a power of 3.9 kW / cm 2 . This leads to destruction by melting of the semiconductor unless some forced cooling is done. For this reason, electronic cooling and air cooling by Peltier elements are widely performed (see, for example, 1991 PRODUCT CATALOG p56: SPECTRA DIODE LABS).

【0003】[0003]

【発明が解決しようとする課題】ところが、従来の半導
体レーザ装置は、ヒートシンク等の抜熱部が半導体レー
ザの発光部と一体型になっているため、一つの半導体レ
ーザの発光部が占める体積が大きく、複数の半導体レー
ザの発光部を近接して配置し、偏波合成などの技術によ
り複数の半導体レーザのパワーを一つの光エネルギー源
として集積化を図ることが難しい。これでは、本来、小
型、高効率、高出力である半導体レーザの特質を十分に
活かすことが出来ない。一方、水冷は、半導体レーザか
らの発熱を一旦水を介して移動させ、他の場所に設置し
た放熱器によって最終的に放熱する点で、上記課題を解
決し得るものであるが、万一、半導体レーザ側で水もれ
を起こした場合、致命的である。また、配管や循環ポン
プなどを必要とするため、装置全体が複雑になり、必然
的に大型になってしまう。
However, in the conventional semiconductor laser device, the heat radiating portion such as the heat sink is integrated with the light emitting portion of the semiconductor laser, so that the volume occupied by the light emitting portion of one semiconductor laser is small. It is difficult to arrange the light emitting portions of a plurality of semiconductor lasers close to each other and to integrate the powers of the plurality of semiconductor lasers as one optical energy source by a technique such as polarization combination. In this case, originally, the characteristics of the semiconductor laser which is small in size, high in efficiency and high in output cannot be fully utilized. On the other hand, water cooling can solve the above-mentioned problem in that heat generated from the semiconductor laser is once moved through water and finally dissipated by a radiator installed in another place. If water leaks from the semiconductor laser side, it is fatal. Further, since the piping and the circulation pump are required, the whole apparatus becomes complicated and inevitably becomes large.

【0004】本発明は、かかる状況に鑑みてなされたも
ので、半導体レーザの発光部に付随する冷却部を安全か
つ簡便な方法にて小型化し、複数の半導体レーザの発光
部を近接して配置することが出来る半導体レーザ装置を
提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and downsizes a cooling unit associated with a light emitting unit of a semiconductor laser by a safe and simple method, and arranges a plurality of light emitting units of semiconductor lasers close to each other. It is an object of the present invention to provide a semiconductor laser device that can be manufactured.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、この発明の手段として、半導体レーザ装置におい
て、半導体レーザからの発熱あるいは半導体レーザを温
度制御するための電子冷却素子からの発熱を除去するた
めのヒートパイプを備えるものである。
To achieve the above object, as means of the present invention, in a semiconductor laser device, heat generation from a semiconductor laser or heat generation from an electronic cooling element for controlling the temperature of the semiconductor laser is performed. It is equipped with a heat pipe for removal.

【0006】[0006]

【作用】本発明では、半導体レーザあるいは半導体レー
ザを温度制御するための電子冷却素子からの発熱をヒー
トパイプによって除去する。ヒートパイプとは、銅など
の熱伝導性の良い金属の中空パイプ中に水あるいはフロ
ンの蒸気を低気圧で封入したものである。ヒートパイプ
の一方の端に発熱体、他方の端にフィンなどの放熱器を
取り付けると、発熱体側で熱せられた蒸気が高速で放熱
器側に移動し、放熱器で熱を奪われて液体となる。ヒー
トパイプの傾斜等によりこの液体が再び発熱体側に戻る
ようにしておけば、このサイクルが繰り返される。かく
して、蒸気を介して発熱体から放熱器へ熱が移動するの
である。
In the present invention, the heat generated from the semiconductor laser or the electronic cooling element for controlling the temperature of the semiconductor laser is removed by the heat pipe. The heat pipe is a hollow pipe made of a metal having a good thermal conductivity such as copper, in which water or chlorofluorocarbon vapor is sealed at low pressure. When a heating element is attached to one end of the heat pipe and a radiator such as fins is attached to the other end, the steam heated on the heating element side moves to the radiator side at high speed, and the heat is taken away by the radiator to become liquid. Become. If this liquid is returned to the heating element side by the inclination of the heat pipe or the like, this cycle is repeated. Thus, heat is transferred from the heating element to the radiator via the steam.

【0007】ヒートパイプは円筒状であるので、発熱源
であるところの半導体レーザパッケージあるいは電子冷
却素子をヒートパイプに取り付けるためのヒートブロッ
クを通して熱がヒートパイプに伝えられるようにする必
要がある。ヒートブロックは、熱伝導性のよい銅などで
作成する。片側の形状は半導体レーザパッケージあるい
は電子冷却素子の形状に合わせて加工し、他方はヒート
パイプの形状に合わせて円筒状にくり抜く。これらを組
み合わせる際には、隙間にシリコングリスや銀ペースト
など熱伝導性のよい充填材を充填する。ヒートパイプの
他端には、放熱用のフィンやフィンを強制空冷するため
のファン、あるいは場合により水冷器等を取り付ける。
このようにして、半導体レーザの発光部に付随する冷却
部を実質的に小型化することができる。
Since the heat pipe has a cylindrical shape, it is necessary to transmit heat to the heat pipe through a heat block for attaching the semiconductor laser package or the electronic cooling element, which is a heat source, to the heat pipe. The heat block is made of copper or the like having good thermal conductivity. The shape on one side is processed according to the shape of the semiconductor laser package or the electronic cooling element, and the other side is hollowed out according to the shape of the heat pipe. When combining these, the gap is filled with a filler having good thermal conductivity such as silicon grease or silver paste. At the other end of the heat pipe, a fin for radiating heat, a fan for forcibly cooling the fin, or a water cooler, etc. are attached in some cases.
In this way, the cooling section associated with the light emitting section of the semiconductor laser can be substantially downsized.

【0008】[0008]

【実施例】本発明の特徴と利点を一層明らかにするた
め、以下、実施例に基づいて詳細に説明する。
EXAMPLES In order to further clarify the features and advantages of the present invention, detailed description will be given below based on examples.

【0009】図1は、半導体レーザ及び半導体レーザを
温度制御するための電子冷却素子からの発熱をヒートパ
イプを用いて除去する半導体レーザ装置を2台使用して
偏波合成を行った実施例の模式図である。図1に示すご
とく、半導体レーザとして、一つの活性層が幅100μ
m、長さ250μmのものが20個1次元的にならべら
れた、光出力10Wのアレイ半導体レーザ1を用い、こ
れを固定のための銅のスペーサー2を介して半導体レー
ザの温度制御を行う電子冷却素子として用いるペルチエ
素子3に取り付けた。これらを一体として、銅のヒート
ブロック4に取り付け、ヒートブロック4をヒートパイ
プ5の片方の端に固定した。ヒートパイプ5として直径
16mm、長さ250mmの銅製のものを用いた。これ
は1台の半導体レーザの発熱量とこれを温度制御するた
めのペルチエ素子からの発熱量を合わせた熱量を除去で
きるヒートパイプでできるだけ小型のものという観点か
ら選択したものであるが、この点を満たすものであれば
上記の寸法でなくてもよい。個々の物の間の境界面には
熱伝導性のシリコングリスを塗った。ヒートパイプ5の
他方の端には放熱用のフィン6を取り付け、空冷ファン
7により強制空冷を行った。アレイ半導体レーザ1から
の発熱及びアレイ半導体レーザ1の温度制御のためのペ
ルチエ素子3からの発熱は、ヒートパイプ5を介して放
熱フィン6へ良好に熱伝達され、アレイ半導体レーザ1
は良好に動作した。アレイ半導体レーザ1の発光部8に
対して、ヒートブロック4までを含めた大きさは実質的
に十分コンパクトであり、このようにコンパクトな冷却
部を備えて初めて図1に示すような2台のアレイ半導体
レーザ1の発光部8を近接させた構成が可能となった。
すなわち、2台のアレイ半導体レーザ1をそれぞれコリ
メーティングレンズ9でコリメートした後、各々の偏波
面を偏波合成のために用いる偏光ビームスプリッター1
0の2つの入力ポートの内1つに合うように配置した。
これにより2台の10W型アレイ半導体レーザ1から出
射したレーザ光は完全に同軸に合わせられ、合成された
光出力11として18Wが得られた。これをさらに集光
レンズで集光することにより強力な光電磁界を得ること
ができる。また、半導体レーザの波長を変えて、ダイク
ロイックミラーを用いれば、ますます高密度に光パワー
を集積していくことができる。
FIG. 1 shows an embodiment in which two semiconductor laser devices for removing heat generated from a semiconductor laser and an electronic cooling element for controlling the temperature of the semiconductor laser by using a heat pipe are used to perform polarization combination. It is a schematic diagram. As shown in FIG. 1, as a semiconductor laser, one active layer has a width of 100 μm.
An array semiconductor laser 1 with an optical output of 10 W, in which 20 pieces each having a length of m and a length of 250 μm are arranged one-dimensionally, is used to control the temperature of the semiconductor laser through a copper spacer 2 for fixing the array semiconductor laser 1. It was attached to a Peltier element 3 used as a cooling element. These were integrated and attached to a copper heat block 4, and the heat block 4 was fixed to one end of a heat pipe 5. As the heat pipe 5, a copper pipe having a diameter of 16 mm and a length of 250 mm was used. This is selected from the viewpoint of a heat pipe that is as small as possible, capable of removing the heat quantity of the heat quantity of one semiconductor laser and the heat quantity of the Peltier element for controlling the temperature of the semiconductor laser. The dimensions do not have to be the above as long as they satisfy the above conditions. The interface between the individual objects was coated with thermally conductive silicone grease. A fin 6 for radiating heat was attached to the other end of the heat pipe 5, and forced air cooling was performed by an air cooling fan 7. The heat generated from the array semiconductor laser 1 and the heat generated from the Peltier element 3 for controlling the temperature of the array semiconductor laser 1 are satisfactorily transferred to the heat radiation fins 6 via the heat pipe 5, and the array semiconductor laser 1
Worked well. The size including the heat block 4 is substantially sufficiently compact with respect to the light emitting section 8 of the array semiconductor laser 1, and only two units as shown in FIG. 1 are provided with such a compact cooling section. It has become possible to arrange the light emitting portions 8 of the array semiconductor laser 1 close to each other.
That is, after the two array semiconductor lasers 1 are collimated by the collimating lens 9, each polarization plane is used for polarization combination.
It was arranged so as to fit one of the two 0 input ports.
As a result, the laser beams emitted from the two 10 W type array semiconductor lasers 1 were perfectly coaxially aligned, and 18 W was obtained as the combined optical output 11. A strong photoelectric field can be obtained by further condensing this with a condensing lens. Moreover, if the wavelength of the semiconductor laser is changed and a dichroic mirror is used, the optical power can be integrated with even higher density.

【0010】なお、本発明の実施例においては、LDの
温度制御のため、ペルチエ素子を用いたが、温度制御が
不要な場合には、LDを直接ヒートブロックに取り付け
ればよい。また、スペーサー、ヒートブロックとして銅
製のものを用いたが、他の熱伝導性のよい材質のもので
もよい。
In the embodiment of the present invention, the Peltier element is used for controlling the temperature of the LD. However, when the temperature control is not necessary, the LD may be directly attached to the heat block. Further, although the spacer and the heat block are made of copper, they may be made of other material having good thermal conductivity.

【0011】[0011]

【発明の効果】冷却機構としてかかる構成を持つ半導体
レーザ装置は、半導体レーザの発光部に付随する冷却部
を小型化し、複数の半導体レーザの発光部を近接して配
置することを可能とし、ハイパワーレーザとしての半導
体レーザの利用を重工業、半導体産業、医療など様々な
産業分野において促進するものである。
In the semiconductor laser device having such a structure as the cooling mechanism, the cooling section associated with the light emitting section of the semiconductor laser can be downsized, and the light emitting sections of a plurality of semiconductor lasers can be arranged close to each other. The use of semiconductor lasers as power lasers is promoted in various industrial fields such as heavy industry, semiconductor industry, and medical care.

【図面の簡単な説明】[Brief description of drawings]

【図1】半導体レーザ及び半導体レーザを温度制御する
ための電子冷却素子からの発熱をヒートパイプを用いて
除去する半導体レーザ装置を2台使用して偏波合成を行
った実施例の模式図である。
FIG. 1 is a schematic diagram of an embodiment in which polarization synthesizing is performed using two semiconductor laser devices that remove heat generated from a semiconductor laser and an electronic cooling element for controlling the temperature of the semiconductor laser by using a heat pipe. is there.

【符号の説明】[Explanation of symbols]

1 アレイ半導体レーザ 2 銅スペーサー 3 ペルチエ素子 4 ヒートブロック 5 ヒートパイプ 6 熱フィン 7 空冷ファン 8 アレイ半導体レーザ発光部 9 コリメーティングレンズ 10 偏光ビームスプリッター 11 合成光出力 1 Array Semiconductor Laser 2 Copper Spacer 3 Peltier Element 4 Heat Block 5 Heat Pipe 6 Heat Fin 7 Air Cooling Fan 8 Array Semiconductor Laser Light Emitting Section 9 Collimating Lens 10 Polarizing Beam Splitter 11 Composite Light Output

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体レーザからの発熱あるいは半導体
レーザを温度制御するための電子冷却素子からの発熱を
除去するためのヒートパイプを備えることを特徴とする
半導体レーザ装置。
1. A semiconductor laser device comprising a heat pipe for removing heat generated from the semiconductor laser or heat generated from an electronic cooling element for controlling the temperature of the semiconductor laser.
JP35392091A 1991-12-19 1991-12-19 Semiconductor laser equipment Withdrawn JPH05167143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35392091A JPH05167143A (en) 1991-12-19 1991-12-19 Semiconductor laser equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35392091A JPH05167143A (en) 1991-12-19 1991-12-19 Semiconductor laser equipment

Publications (1)

Publication Number Publication Date
JPH05167143A true JPH05167143A (en) 1993-07-02

Family

ID=18434114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35392091A Withdrawn JPH05167143A (en) 1991-12-19 1991-12-19 Semiconductor laser equipment

Country Status (1)

Country Link
JP (1) JPH05167143A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1206018A2 (en) * 2000-11-08 2002-05-15 The Furukawa Electric Co., Ltd. Light source comprising laser diode module
JP2002164607A (en) * 2000-11-24 2002-06-07 Furukawa Electric Co Ltd:The Light source constituted of laser diode modules
EP1241752A2 (en) * 2001-03-16 2002-09-18 The Furukawa Electric Co., Ltd. Light source having plural laser diode modules
JP2002280660A (en) * 2001-03-16 2002-09-27 Furukawa Electric Co Ltd:The Light source constituted of laser diode module
JP2002280661A (en) * 2001-03-16 2002-09-27 Furukawa Electric Co Ltd:The Light source constituted of laser diode module
JP2002368326A (en) * 2001-06-05 2002-12-20 Furukawa Electric Co Ltd:The Method of cooling laser diode module and light source consisting thereof
GB2387025A (en) * 2002-03-26 2003-10-01 Enfis Ltd LED and laser diode array cooling
JP2005164908A (en) * 2003-12-02 2005-06-23 Nec Viewtechnology Ltd Liquid crystal projector system and cooling method of the same
JP2005317925A (en) * 2004-04-02 2005-11-10 Ricoh Co Ltd Light source device, recording device, platemaking device, and image forming apparatus
WO2007002766A2 (en) * 2005-06-27 2007-01-04 Intel Corporation Optical transponder module with active heat transfer
KR100698009B1 (en) * 2005-07-05 2007-03-23 유기조 Led lighting apparatus having loop-type heat pipe
JP2007201285A (en) * 2006-01-27 2007-08-09 Sony Corp Light source device
JP2009042703A (en) * 2007-07-18 2009-02-26 Sanyo Electric Co Ltd Projection type image display device
JP4965781B2 (en) * 1999-09-02 2012-07-04 インテル・コーポレーション Double enclosure optoelectronic package
US20130177033A1 (en) * 2009-12-30 2013-07-11 National University Corporation Chiba University Tunable external resonator laser
WO2014103019A1 (en) * 2012-12-28 2014-07-03 Necディスプレイソリューションズ株式会社 Semiconductor element cooling structure and electronic apparatus provided with same
JP2020145327A (en) * 2019-03-07 2020-09-10 株式会社島津製作所 Semiconductor laser module and device thereof
CN116027836A (en) * 2023-03-30 2023-04-28 济南森峰激光科技股份有限公司 Laser temperature and humidity control system and method

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4965781B2 (en) * 1999-09-02 2012-07-04 インテル・コーポレーション Double enclosure optoelectronic package
EP1206018A3 (en) * 2000-11-08 2002-11-06 The Furukawa Electric Co., Ltd. Light source comprising laser diode module
JP2002151784A (en) * 2000-11-08 2002-05-24 Furukawa Electric Co Ltd:The Light source composed of laser diode module
JP4646166B2 (en) * 2000-11-08 2011-03-09 古河電気工業株式会社 Light source consisting of a laser diode module
EP1206018A2 (en) * 2000-11-08 2002-05-15 The Furukawa Electric Co., Ltd. Light source comprising laser diode module
US6839367B2 (en) 2000-11-08 2005-01-04 The Furukawa Electric Co., Ltd. Light source comprising laser diode module
US6876681B2 (en) 2000-11-24 2005-04-05 The Furukawa Electric Co., Ltd. Light source comprising laser diode module
EP1215776A3 (en) * 2000-11-24 2004-03-24 The Furukawa Electric Co., Ltd. Light source comprising laser diode module
JP2002164607A (en) * 2000-11-24 2002-06-07 Furukawa Electric Co Ltd:The Light source constituted of laser diode modules
EP1215776A2 (en) * 2000-11-24 2002-06-19 The Furukawa Electric Co., Ltd. Light source comprising laser diode module
JP2002280660A (en) * 2001-03-16 2002-09-27 Furukawa Electric Co Ltd:The Light source constituted of laser diode module
US6676306B2 (en) * 2001-03-16 2004-01-13 The Furukawa Electric Co., Ltd. Light source having plural laser diode modules
EP1241752A3 (en) * 2001-03-16 2004-04-07 The Furukawa Electric Co., Ltd. Light source having plural laser diode modules
JP2002280659A (en) * 2001-03-16 2002-09-27 Furukawa Electric Co Ltd:The Light source constituted of laser diode module
US6872011B2 (en) 2001-03-16 2005-03-29 The Furukawa Electric Co., Ltd. Light source having plural laser diode modules
EP1241752A2 (en) * 2001-03-16 2002-09-18 The Furukawa Electric Co., Ltd. Light source having plural laser diode modules
JP2002280661A (en) * 2001-03-16 2002-09-27 Furukawa Electric Co Ltd:The Light source constituted of laser diode module
JP2002368326A (en) * 2001-06-05 2002-12-20 Furukawa Electric Co Ltd:The Method of cooling laser diode module and light source consisting thereof
GB2387025A (en) * 2002-03-26 2003-10-01 Enfis Ltd LED and laser diode array cooling
JP2005164908A (en) * 2003-12-02 2005-06-23 Nec Viewtechnology Ltd Liquid crystal projector system and cooling method of the same
US7967446B2 (en) 2003-12-02 2011-06-28 Nec Viewtechnology, Ltd. Liquid crystal projector apparatus and cooler
US7703927B2 (en) 2003-12-02 2010-04-27 Nec Viewtechnology, Ltd. Liquid crystal projector apparatus using heat exchanger and method of cooling liquid crystal projector apparatus
JP2005317925A (en) * 2004-04-02 2005-11-10 Ricoh Co Ltd Light source device, recording device, platemaking device, and image forming apparatus
US7457126B2 (en) 2005-06-27 2008-11-25 Intel Corporation Optical transponder with active heat transfer
WO2007002766A3 (en) * 2005-06-27 2007-04-26 Intel Corp Optical transponder module with active heat transfer
WO2007002766A2 (en) * 2005-06-27 2007-01-04 Intel Corporation Optical transponder module with active heat transfer
KR100698009B1 (en) * 2005-07-05 2007-03-23 유기조 Led lighting apparatus having loop-type heat pipe
JP2007201285A (en) * 2006-01-27 2007-08-09 Sony Corp Light source device
JP2009042703A (en) * 2007-07-18 2009-02-26 Sanyo Electric Co Ltd Projection type image display device
US20130177033A1 (en) * 2009-12-30 2013-07-11 National University Corporation Chiba University Tunable external resonator laser
US9042422B2 (en) * 2009-12-30 2015-05-26 National University Corporation Chiba University Tunable external resonator laser
WO2014103019A1 (en) * 2012-12-28 2014-07-03 Necディスプレイソリューションズ株式会社 Semiconductor element cooling structure and electronic apparatus provided with same
US9829775B2 (en) 2012-12-28 2017-11-28 Nec Display Solutions, Ltd. Semiconductor element cooling structure and electronic apparatus provided with same
JP2020145327A (en) * 2019-03-07 2020-09-10 株式会社島津製作所 Semiconductor laser module and device thereof
CN116027836A (en) * 2023-03-30 2023-04-28 济南森峰激光科技股份有限公司 Laser temperature and humidity control system and method

Similar Documents

Publication Publication Date Title
JPH05167143A (en) Semiconductor laser equipment
US4949346A (en) Conductively cooled, diode-pumped solid-state slab laser
US7466732B2 (en) Laser diode package with an internal fluid cooling channel
US10243320B2 (en) Low swap laser pump diode module and laser amplifier incorporating the same
US6724792B2 (en) Laser diode arrays with replaceable laser diode bars and methods of removing and replacing laser diode bars
US4791634A (en) Capillary heat pipe cooled diode pumped slab laser
US5029335A (en) Heat dissipating device for laser diodes
US5140607A (en) Side-pumped laser with angled diode pumps
US4969155A (en) Integrating laser diode pumped laser apparatus
US5084886A (en) Side-pumped laser system with independent heat controls
CN201270374Y (en) Infrared solid laser for semi-conductor optical fiber coupling pump
McDougall et al. Advances in diode laser bar power and reliability for multi-kW disk laser pump sources
WO2018200863A1 (en) Low swap laser pump diode module and laser amplifier incorporating the same
JPH08116138A (en) Cooling device of semiconductor laser element
US5504764A (en) Micro-heatpipe cooling of solid-state slab
JPH02281782A (en) Semiconductor laser array device
JPH036875A (en) Semiconductor laser
EP1238447B1 (en) Method and system for generating laser light
Fassbender et al. Reliable QCW diode laser arrays for operation with high duty cycles
JPH02281781A (en) Semiconductor laser array device
Huddle et al. Thermal management of diode laser arrays
Pais et al. Spray cooling of a high power laser diode
US20050189089A1 (en) Fluidic apparatus and method for cooling a non-uniformly heated power device
JPH10341051A (en) Solid state laser
KR102332955B1 (en) laser pump chamber device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311